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> A family F = {F;: {0,1}* — D} s.t. given adaptive query access,

Fs«— F
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random func U
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(The “seed” or “secret key" for Fy is s.)

> Many applications in symmetric cryptography:
(efficient) encryption, identification, authentication, ...

(Images courtesy xked.org)
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How to Construct PRFs

@ Heuristically: AES, Blowfish.
v’ Fast!
v/ Withstand known cryptanalytic techniques (linear, differential, ...)

X PRF security is subtle: want provable (reduction) guarantees

® Goldreich-Goldwasser-Micali [GGM'84]

v Based on any (doubling) PRG.  Fy(z1---xk) = Gy (- Ggy (8) -+
X Inherently sequential: > k iterations (circuit depth)

© Naor-Reingold [NR'95,NR'97,NRR'00]
v Based on “synthesizers” or number theory (DDH, factoring)
v Low-depth: NC?, NC! or even TC® [O(1) depth w/ threshold gates]
X Large circuits that need much preprocessing

X No “post-quantum” construction under standard assumptions

)
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= Fy«— F

Advantages of Lattice Crypto Schemes

> Simple & efficient: linear, highly parallel operations
P Resist quantum attacks (so far)

P Secure under worst-case hardness assumptions [Ajtai'96,...]

Disadvantages

X Only known PRF is generic GGM (not parallel or efficient)

XX We don't even have practical PRGs from lattices: biased errors
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PRFs From Lattices [Banerjee, Peikert, Rosen'12]

@ Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE
* Synthesizer-based PRF in TC! € NC? a /a [NR'95]

* Direct construction in TC® C NC! analogous to [NR'97,NRR'00]

@® Main technique: Learning With Rounding (LWR)
“derandomization” of LWE: deterministic errors

Also gives more practical PRGs, GGM-type PRFs, encryption, ...
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Synthesizers and PRFs  [NaorReingold'95]

» A deterministic function S: D x D — D s.t. for any m = poly:
for ai,...,am, b1,...,by < D,

{S(ai, b;)} =~ Unif(D™™).

b1 by
ai || S(a1,b1) S(ar,b2) - vs Uig Ui
az || S(az,b1) S(az,b2) --- Ui U2

» Alternative view: an (almost) length-squaring PRG with locality:

maps D?" — D™ and each output depends on only 2 inputs.
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Synthesizers and PRFs  [NaorReingold'95]

> Synthesizer S: D x D — D, where {S(a;, bj)} ~ Unif(D™*m),

» Base case: “one-bit” PRF Fy, s (z) =5, € D. v

> Input doubling: given k-bit PRF family 7 = {F: {0,1}* — D},
define a {0,1}2¥ — D function with seed Fy, F,. < F:

Fig, 5 (@e, 2r) = S(Fo(xe) , Fr(z,)).

81,05 S].,]. — S].,CE1 > S
52,0, 52,1 — 52,z \
53,0, 53,1 — 53,23 _—

S
54,05 S4,1 —> Sd,z4 —

» Security: the queries Fy(z¢) and F,.(z,) define (pseudo)random
inputs a1, as,... € D and by, bs,... € D to synthesizer S.

S— F{Si,b}(wl ceexyq)
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Learning With Errors [Regev0s]
» Dimension n (security param), modulus g > 2, ‘error rate’ a < 1

> Search: find s € Z; given ‘noisy random inner products’

A=la - a, s bt:StA+et

Errors e; + x = Gaussian over Z, param agq

a-q>+/n

» Decision: distinguish (a;, b;) from uniform (a;, b;) pairs
Generalizes LPN (¢ = 2, Bernoulli noise)  [AL'88,BFKL'94,...]

» Why error aig > /n?
* Required by worst-case hardness proofs [R'05,P'09,MP'12,BLPRS'13]
* There's an exp((aq)?)-time attack! [AG'11]
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Simple Properties of LWE
©® Check a candidate solution s’ € Z7:  test if all b — (s',a) ‘small.’
If 8" #s, then b — (s',a) = (s — s’,a) + e is ‘well-spread’ in Z,.
@® ‘Shift’ the secret by any t € Zj: given (a,b = (s,a) + ¢), output

a, b =b+(t,a)
= (s+t,a) +e.
Random t's (with fresh samples) = random self-reduction.

Lets us amplify success probabilities (both search & decision):

non-negl on uniform s <~ Zy = ~1lonanys € Z;

© Multiple secrets: (a,b; &~ (s1,a),...,b; =~ (s,a)) vs. (a,b1,...,b;).
Simple hybrid argument, since a’s are public.
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Search /Decision Equivalence [BFkL94,R05]

» Suppose D solves decision-LWE: it ‘perfectly’ distinguishes between
pairs (a,b = (s,a) + e) and (a,b).

We want to solve search-LWE: given pairs (a, b), find s.

» If | g = poly(n)|, to find s; € Z, it suffices to test whether s; . 0,

because we can shift sy by 0,1,...,¢g — 1. Same for s, 53, ..., Sn.

The test: for each (a,b), choose fresh 1 <— Z,. Invoke D on pairs

(@’ =a—(r,0,...,0), b).

» Notice: b= (s,a’) +s1-r+e.
* If s1 =0, then b= (s,a’) + e = D accepts.

* If 1 # 0 and then b = uniform = D rejects.

> Don't really need ‘ prime ¢ = poly(n)‘ [P'09,ACPS’09,MM'11,MP'12]
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LWE =- Synthesizer?

Learning With Errors (LWE) [Regev'05]

> Hard to distinguish (a; € Zy , b; = (a;,s) + ¢;) from (a; , b;), where
a;, b;,s uniform and e; +— x = Gaussian over Z w/ param aq > \/n

» By hybrid argument, can't distinguish tuples
(A;€Zy™, Ai-S1+E;j1 €Z)7™, Ai- S+ Eip € Z7", ..)

An LWE-Based Synthesizer?

C
| S: S, . V{Ai S+ Eij}R
A [[A-Si+E; A -S;+E;, Uniform, but. ..

Ay || Ay-S;+Eg; Ay-Sy+Epy - X What about E; ;7
: g Synthesizer must be
deterministic. . .

A
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“Learning With Rounding” (LWR) [Banerjee Peikert Rosen'12]

7 6 5
Ce . . 8 4
> IDEA: generate errors deterministically by rounding 9 3
o e " 10 2
Zq to a “sparse” subset (e.g. Zp). u L
. . 12 0
(Common in decryption to remove error.) 13 03
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“Learning With Rounding” (LWR) [Banerjee Peikert Rosen'12]
7 6 5
» IDEA: generate errors deterministically by rounding e \8\\ by 3
Zq to a “sparse” subset (e.g. Zp). L X1

-

. . 12
(Common in decryption to remove error.) 13

Let p < ¢ and define |z], = |(p/q) - x| mod p.
> LWR problem: distinguish any m = poly pairs
(a;i , [(ai,s)]p) € Zq x Z, from uniform

Interpretation: LWE conceals low-order bits by adding small random
error. LWR just discards those bits instead.

» Theorem: LWE < LWR for ¢ > p- n@(1) [but it seems 2™-hard for ¢ > p+/n]

Proof idea: w.h.p., (a, [(a,s)+e¢],) = (a, [(a,s)]p)
and (a, LU“if(Zqﬂp) = (a, Unif(Zp))

12/20



Properties of LWR

® Random Self Reducubility:
On input A, R(As), output AX, R(As), for random X € Zy*",

AX,R(As) ~ A,R(AX " 's) = A, R(A(X1s)).

Similar to LWE, but shift labels (not secret).
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On input A, R(As), output AX, R(As), for random X € Zy*",

AX,R(As) ~ A,R(AX " 's) = A, R(A(X1s)).

Similar to LWE, but shift labels (not secret).

@® Search /Decision:
On input A, b output A + uel where u is a random vector,

If 51 =0,
A+uel, R(As) ~ A, R(As + (s1)u) = A, R(As)
If s1#0,
A+uel | R(As) ~ A, R(As + (s1)u) = A, R(u)
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> Synthesizer S: Zy " X Zy"" — Zy*™is  S(A,S) = [A-S]p.

(Note: range Z,, is slightly smaller than domain Z,. Only limits composition.)
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(Note: range Z,, is slightly smaller than domain Z,. Only limits composition.)

PRF on Domain {0, 1}¥=2"

> “Tower" of public moduli g3 > g4—1 > -+ > qo.

> Secret key is 2k square matrices S;;, over Zg, for i € [k], b € {0,1}.
» Depth d = Igk tree of LWR synthesizers:
F{Sin}(ajl “ e xS) =

ULSM So214; [S5.as Staaly, | - | 18505 Seely; [Sror Ssims g, J
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Even Better

> Synthesizer S: ZI™ x ZIX™ — Z"<™ s S(A,S) = |A - S],.

Idea: to match range and domain sizes take m = 2n and ¢ = p?.
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> Given S1,S, € Zg”xn " cast” LS1 : Stﬂp € ZE”XQ” into Zg"xn.
(Works because ||S;|| = || [S1-S2], || = 4n?logp.)

» Depth d = 1gk tree of LWR synthesizers:

[[CE AT [CRE AT WA
q
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More Efficient?

Ring Learning With Errors (RLWE) [LPR'10]

» For (e.g.) n a power of 2, define “cyclotomic” polynomial rings

R:=7Z[z]/(2" +1) and R;:= R/qR = Z4[x]/(z" +1).

16 /20



More Efficient?

Ring Learning With Errors (RLWE) [LPR'10]

» For (e.g.) n a power of 2, define “cyclotomic” polynomial rings

R:=7Z[z]/(2" +1) and R;:= R/qR = Z4[x]/(z" +1).

» Hard to distinguish m pairs (a; , a; - s+ €;) € Ry X R, from uniform,

where a;, s < R, uniform and e; “short.”

16 /20
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Ring Learning With Errors (RLWE) [LPR'10]

» For (e.g.) n a power of 2, define “cyclotomic” polynomial rings

R:=7Z[z]/(2" +1) and R;:= R/qR = Z4[x]/(z" +1).

» Hard to distinguish m pairs (a; , a; - s+ €;) € Ry X R, from uniform,

where a;, s < R, uniform and e; “short.”

» Shorter description/faster computation (using FFT/NTT).
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Shallower?
» Synth-based PRF is log k levels of NC! synthesizers = NC2.
» [NR'97]: direct PRFs from DDH / factoring, in TC® C NC!.

ngsh.”’sk (ml . xk) — gH Siz

(Computing this in TC® needs large circuits, though. .. )

Direct LWE-Based Construction

» Public moduli g > p.
» Secret key is uniform a <— R, and short s1,...,s; € R.

> “Rounded subset-product” function:
k
Fos,.sp(@1--x) = {a . Hsfz mod q-‘
i=1 »

Has small(ish) TC? circuit, via CRT and reduction to subset-sum.
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Proof Outline
» Seed is uniform a € R, and short s1,...,s; € R.
Fossp (@1 ap) = |a-s7 -+ 57" mod qu

P> Like the LWE < LWR proof, but “souped up” to handle queries.

Thought experiment: answer queries with

k k
F(z) := L(a it A wreg, ) s S5t sik]p = aHsf" + xl-e;pl-H s
i=1 =2
W.h.p., F(z) = F(z) on all queries due to “small” error & rounding.
» Replace (a,a - s1 + ez, ) with uniform (ag,a1) [ring-LWE].
= New function F'(z) = |ag, - 52 - - - 5." | p.
» Repeat for s, s3,... until F””""'(z) = |a,]p = Uniform func. O
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Open Questions 1

@ Better (worst-case) hardness for LWR, e.g. for q/p = /n?
(The proof from LWE relies on approx factor and modulus = n“’(l).)

[AKPW'13]: LWE < LWR for ¢ = n®1) (bounded #samples).
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Open Questions 1

@ Better (worst-case) hardness for LWR, e.g. for q/p = /n?
(The proof from LWE relies on approx factor and modulus = n“’(l).)

[AKPW'13]: LWE < LWR for ¢ = n®1) (bounded #samples).

® Non-trivial algorithms for LWR?

[BCGR'13]:
* LWR < LWE for [¢/p] = n®™M) (uses ideas from [FGKP'06]).
* Adaptations of [AG'11] and [BKL'03] to LWR.
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Open Questions 2

©® Synth-based PRF can rely on approx factor and modulus = n®).

Direct construction still relies on approx factor and modulus = n®*),

Are such strong assumptions necessary (even for these constructions)?

Conjecture (?): direct PRF is secure for integral q/p = poly(n).
@® Efficient PRF from parity with noise (LPN)?

©® Efficient PRF from subset sum?

http://factcenter.org
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