The Learning with Rounding Problem: Reductions and Applications

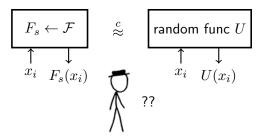
Alon Rosen IDC Herzliya

(Thanks: Chris Peikert)

Mysore Park Theory Workshop August 15, 2013

Pseudorandom Functions [GGM'84]

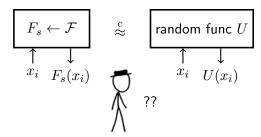
▶ A family $\mathcal{F} = \{F_s : \{0,1\}^k \to D\}$ s.t. given adaptive query access,



(The "seed" or "secret key" for F_s is s.)

Pseudorandom Functions [GGM'84]

▶ A family $\mathcal{F} = \{F_s : \{0,1\}^k \to D\}$ s.t. given adaptive query access,



(The "seed" or "secret key" for F_s is s.)

Many applications in symmetric cryptography: (efficient) encryption, identification, authentication, . . .

- 1 Heuristically: AES, Blowfish.
 - ✓ Fast!
 - ✓ Withstand known cryptanalytic techniques (linear, differential, . . .)

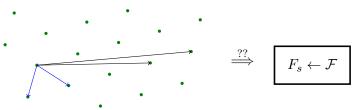
- Heuristically: AES, Blowfish.
 - ✓ Fast!
 - ✓ Withstand known cryptanalytic techniques (linear, differential, ...)
 - PRF security is subtle: want provable (reduction) guarantees

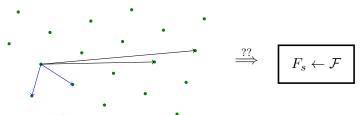
- 1 Heuristically: AES, Blowfish.
 - ✓ Fast!
 - ✓ Withstand known cryptanalytic techniques (linear, differential, ...)
 - PRF security is subtle: want provable (reduction) guarantees
- ② Goldreich-Goldwasser-Micali [GGM'84]
 - ightharpoonup Based on any (doubling) PRG. $F_s(x_1\cdots x_k)=G_{x_k}(\cdots G_{x_1}(s)\cdots)$

- 1 Heuristically: AES, Blowfish.
 - ✓ Fast!
 - ✓ Withstand known cryptanalytic techniques (linear, differential, . . .)
 - PRF security is subtle: want <u>provable</u> (reduction) guarantees
- ② Goldreich-Goldwasser-Micali [GGM'84]
 - ightharpoonup Based on any (doubling) PRG. $F_s(x_1\cdots x_k)=G_{x_k}(\cdots G_{x_1}(s)\cdots)$
 - X Inherently sequential: $\geq k$ iterations (circuit depth)

- 1 Heuristically: AES, Blowfish.
 - ✓ Fast!
 - ✓ Withstand known cryptanalytic techniques (linear, differential, . . .)
 - PRF security is subtle: want <u>provable</u> (reduction) guarantees
- ② Goldreich-Goldwasser-Micali [GGM'84]
 - ✓ Based on any (doubling) PRG. $F_s(x_1 \cdots x_k) = G_{x_k}(\cdots G_{x_1}(s) \cdots)$
 - \nearrow Inherently sequential: $\geq k$ iterations (circuit depth)
- 3 Naor-Reingold [NR'95,NR'97,NRR'00]
 - ✓ Based on "synthesizers" or number theory (DDH, factoring)
 - ✓ Low-depth: NC^2 , NC^1 or even TC^0 [O(1) depth w/ threshold gates]

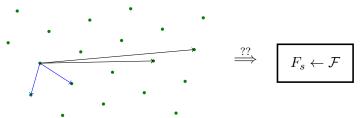
- 1 Heuristically: AES, Blowfish.
 - ✓ Fast!
 - ✓ Withstand known cryptanalytic techniques (linear, differential, . . .)
 - PRF security is subtle: want <u>provable</u> (reduction) guarantees
- 2 Goldreich-Goldwasser-Micali [GGM'84]
 - ightharpoonup Based on any (doubling) PRG. $F_s(x_1\cdots x_k)=G_{x_k}(\cdots G_{x_1}(s)\cdots)$
 - \nearrow Inherently sequential: $\geq k$ iterations (circuit depth)
- Naor-Reingold [NR'95,NR'97,NRR'00]
 - ✓ Based on "synthesizers" or number theory (DDH, factoring)
 - \checkmark Low-depth: NC², NC¹ or even TC⁰ [O(1) depth w/ threshold gates]
 - X Large circuits that need much preprocessing
 - No "post-quantum" construction under standard assumptions





Advantages of Lattice Crypto Schemes

- ► Simple & efficient: linear, highly parallel operations
- Resist quantum attacks (so far)
- Secure under worst-case hardness assumptions [Ajtai'96,...]

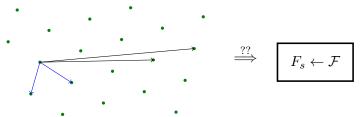


Advantages of Lattice Crypto Schemes

- ► Simple & efficient: linear, highly parallel operations
- Resist quantum attacks (so far)
- ► Secure under worst-case hardness assumptions [Ajtai'96,...]

Disadvantages

Only known PRF is generic GGM (not parallel or efficient)



Advantages of Lattice Crypto Schemes

- ► Simple & efficient: linear, highly parallel operations
- Resist quantum attacks (so far)
- ► Secure under worst-case hardness assumptions [Ajtai'96,...]

Disadvantages

Only known PRF is generic GGM (not parallel or efficient)

** We don't even have practical PRGs from lattices: biased errors

1 Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE

- Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE
 - **★** Synthesizer-based PRF in $TC^1 \subseteq NC^2$ a la [NR'95]
 - **★** Direct construction in $TC^0 \subseteq NC^1$ analogous to [NR'97,NRR'00]

- 1 Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE
 - **★** Synthesizer-based PRF in $TC^1 \subseteq NC^2$ a la [NR'95]
 - **★** Direct construction in $TC^0 \subseteq NC^1$ analogous to [NR'97,NRR'00]
- Main technique: Learning With Rounding (LWR)

"derandomization" of LWE: deterministic errors

- 1 Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE
 - **★** Synthesizer-based PRF in $TC^1 \subseteq NC^2$ a la [NR'95]
 - ★ Direct construction in $TC^0 \subseteq NC^1$ analogous to [NR'97,NRR'00]
- Main technique: Learning With Rounding (LWR)

"derandomization" of LWE: deterministic errors

Also gives more practical PRGs, GGM-type PRFs, encryption, ...

Synthesizer

A deterministic function $S: D \times D \to D$ s.t. for <u>any</u> m = poly: for $a_1, \ldots, a_m, b_1, \ldots, b_m \leftarrow D$, $\{ S(a_i, b_i) \} \stackrel{c}{\approx} \text{Unif}(D^{m \times m}).$

Synthesizer

A deterministic function $S \colon D \times D \to D$ s.t. for <u>any</u> m = poly: for $a_1, \dots, a_m, b_1, \dots, b_m \leftarrow D$,

$$\{\,S(a_i\,,\,b_j)\,\}\ \stackrel{c}{\approx}\ \mathrm{Unif}(D^{m\times m}).$$

	b_1	b_2		_			
a_1	$S(a_1,b_1)$	$S(a_1,b_2)$		VS.	$U_{1,1}$	$U_{1,2}$	
a_2	$ S(a_1, b_1) $ $S(a_2, b_1) $	$S(a_2,b_2)$			$ \begin{array}{ c c } U_{1,1} \\ U_{2,1} \end{array} $	$U_{2,2}$	
:		٠				٠.	

Synthesizer

A deterministic function $S \colon D \times D \to D$ s.t. for <u>any</u> m = poly: for $a_1, \ldots, a_m, b_1, \ldots, b_m \leftarrow D$,

$$\{ S(a_i, b_j) \} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m}).$$

► <u>Alternative view</u>: an (almost) <u>length-squaring PRG</u> with <u>locality</u>: maps $D^{2m} \rightarrow D^{m^2}$, and each output depends on only 2 inputs.

PRF from Synthesizer, Recursively

▶ Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m})$.

PRF from Synthesizer, Recursively

- ▶ Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m})$.
- ▶ Base case: "one-bit" PRF $F_{s_0,s_1}(x) := s_x \in D$. ✓

PRF from Synthesizer, Recursively

- ▶ Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m})$.
- ▶ Base case: "one-bit" PRF $F_{s_0,s_1}(x) := s_x \in D$. ✓
- ▶ Input doubling: given k-bit PRF family $\mathcal{F} = \{F : \{0,1\}^k \to D\}$, define a $\{0,1\}^{2k} \to D$ function with seed $F_\ell, F_r \leftarrow \mathcal{F}$:

$$F_{(F_{\ell},F_r)}(x_{\ell}, x_r) = S(F_{\ell}(x_{\ell}), F_r(x_r)).$$

PRF from Synthesizer, Recursively

- ▶ Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m})$.
- ▶ Base case: "one-bit" PRF $F_{s_0,s_1}(x) := s_x \in D$. ✓
- ▶ Input doubling: given k-bit PRF family $\mathcal{F} = \{F \colon \{0,1\}^k \to D\}$, define a $\{0,1\}^{2k} \to D$ function with seed $F_\ell, F_r \leftarrow \mathcal{F}$:

$$F_{(F_{\ell},F_r)}(x_{\ell}, x_r) = S(F_{\ell}(x_{\ell}), F_r(x_r)).$$

$$s_{1,0}, s_{1,1} \longrightarrow s_{1,x_1}$$
 $s_{2,0}, s_{2,1} \longrightarrow s_{2,x_2}$
 $s_{3,0}, s_{3,1} \longrightarrow s_{3,x_3}$
 $s_{4,0}, s_{4,1} \longrightarrow s_{4,x_4}$
 $S \longrightarrow F_{\{s_{i,b}\}}(x_1 \cdots x_4)$

PRF from Synthesizer, Recursively

- ▶ Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m})$.
- ▶ Base case: "one-bit" PRF $F_{s_0,s_1}(x) := s_x \in D$. ✓
- ▶ Input doubling: given k-bit PRF family $\mathcal{F} = \{F \colon \{0,1\}^k \to D\}$, define a $\{0,1\}^{2k} \to D$ function with seed $F_\ell, F_r \leftarrow \mathcal{F}$:

$$F_{(F_{\ell},F_r)}(x_{\ell}, x_r) = S(F_{\ell}(x_{\ell}), F_r(x_r)).$$

$$s_{1,0}, s_{1,1} \longrightarrow s_{1,x_1}$$
 $s_{2,0}, s_{2,1} \longrightarrow s_{2,x_2}$
 $s_{3,0}, s_{3,1} \longrightarrow s_{3,x_3}$
 $s_{4,0}, s_{4,1} \longrightarrow s_{4,x_4}$
 $S \longrightarrow F_{\{s_{i,b}\}}(x_1 \cdots x_4)$

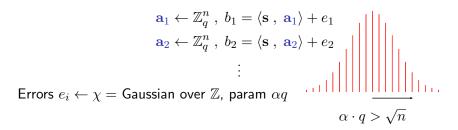
Security: the queries $F_{\ell}(x_{\ell})$ and $F_{r}(x_{r})$ define (pseudo)random inputs $a_{1}, a_{2}, \ldots \in D$ and $b_{1}, b_{2}, \ldots \in D$ to synthesizer S.

▶ Dimension n (security param), modulus $q \ge 2$

- lacktriangle Dimension n (security param), modulus $q\geq 2$
- **Search:** find $\mathbf{s} \in \mathbb{Z}_q^n$ given 'noisy random inner products'

$$\mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n} , \ b_{1} = \langle \mathbf{s} , \mathbf{a}_{1} \rangle + e_{1}$$
$$\mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n} , \ b_{2} = \langle \mathbf{s} , \mathbf{a}_{2} \rangle + e_{2}$$
$$\vdots$$

- lacktriangle Dimension n (security param), modulus $q\geq 2$, 'error rate' $lpha\ll 1$
- **Search:** $\underline{\operatorname{find}} \ \mathbf{s} \in \mathbb{Z}_q^n$ given 'noisy random inner products'



- ▶ Dimension n (security param), modulus $q \ge 2$, 'error rate' $\alpha \ll 1$
- **Search:** $\underline{\mathsf{find}}\ \mathbf{s} \in \mathbb{Z}_q^n$ given 'noisy random inner products'

$$\mathbf{a}_1 \leftarrow \mathbb{Z}_q^n \;,\; b_1 = \langle \mathbf{s} \;,\; \mathbf{a}_1 \rangle + e_1$$
 $\mathbf{a}_2 \leftarrow \mathbb{Z}_q^n \;,\; b_2 = \langle \mathbf{s} \;,\; \mathbf{a}_2 \rangle + e_2$
 \vdots
ssian over \mathbb{Z}_n param αq

Errors $e_i \leftarrow \chi = \mathsf{Gaussian}$ over \mathbb{Z} , param αq

Decision: distinguish (\mathbf{a}_i,b_i) from uniform (\mathbf{a}_i,b_i) pairs $\alpha \cdot q > \sqrt{n}$

- lacktriangle Dimension n (security param), modulus $q\geq 2$, 'error rate' $lpha\ll 1$
- **Search:** $\underline{\mathsf{find}}\ \mathbf{s} \in \mathbb{Z}_q^n$ given 'noisy random inner products'

$$\mathbf{A} = \begin{pmatrix} | & & | \\ \mathbf{a}_1 & \cdots & \mathbf{a}_m \\ | & & | \end{pmatrix} \;,\; \mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$$
 Errors $e_i \leftarrow \chi = \mathsf{Gaussian}$ over \mathbb{Z} , param αq

Decision: distinguish (\mathbf{a}_i,b_i) from uniform (\mathbf{a}_i,b_i) pairs $\alpha \cdot q > \sqrt{n}$

- Dimension n (security param), modulus $q \geq 2$, 'error rate' $\alpha \ll 1$
- **Search:** find $\mathbf{s} \in \mathbb{Z}_q^n$ given 'noisy random inner products'

$$\mathbf{A} = \begin{pmatrix} | & & | \\ \mathbf{a}_1 & \cdots & \mathbf{a}_m \\ | & & | \end{pmatrix} \;,\; \mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$$
 Errors $e_i \leftarrow \chi = \mathsf{Gaussian}$ over \mathbb{Z} , param αq

Decision: distinguish
$$(\mathbf{a}_i,b_i)$$
 from uniform (\mathbf{a}_i,b_i) pairs $\alpha \cdot q > \sqrt{n}$

Generalizes LPN (q = 2, Bernoulli noise) [AL'88,BFKL'94,...]

- Dimension n (security param), modulus $q \geq 2$, 'error rate' $\alpha \ll 1$
- **Search:** find $\mathbf{s} \in \mathbb{Z}_q^n$ given 'noisy random inner products'

$$\mathbf{A} = \begin{pmatrix} | & & | \\ \mathbf{a}_1 & \cdots & \mathbf{a}_m \\ | & & | \end{pmatrix} \;,\; \mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$$
 Errors $e_i \leftarrow \chi =$ Gaussian over \mathbb{Z} , param αq

- ▶ Decision: distinguish (\mathbf{a}_i,b_i) from uniform (\mathbf{a}_i,b_i) pairs $\alpha \cdot q > \sqrt{n}$

Generalizes LPN (q = 2, Bernoulli noise) [AL'88,BFKL'94,...]

- Why error $\alpha q > \sqrt{n}$?
 - ★ Required by worst-case hardness proofs [R'05,P'09,MP'12,BLPRS'13]

- Dimension n (security param), modulus $q \geq 2$, 'error rate' $\alpha \ll 1$
- **Search:** find $\mathbf{s} \in \mathbb{Z}_q^n$ given 'noisy random inner products'

$$\mathbf{A} = \begin{pmatrix} | & & | \\ \mathbf{a}_1 & \cdots & \mathbf{a}_m \\ | & & | \end{pmatrix} \;,\; \mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$$
 Errors $e_i \leftarrow \chi =$ Gaussian over \mathbb{Z} , param αq

▶ Decision: distinguish
$$(\mathbf{a}_i,b_i)$$
 from uniform (\mathbf{a}_i,b_i) pairs $\alpha \cdot q > \sqrt{n}$

Generalizes LPN (q = 2, Bernoulli noise) [AL'88,BFKL'94,...]

- Why error $\alpha q > \sqrt{n}$?
 - ★ Required by worst-case hardness proofs [R'05,P'09,MP'12,BLPRS'13]
 - ★ There's an $\exp((\alpha q)^2)$ -time attack! [AG'11]

Simple Properties of LWE

 $\textbf{1} \ \mathsf{Check} \ \mathsf{a} \ \mathsf{candidate} \ \mathsf{solution} \ \mathbf{s}' \in \mathbb{Z}_q^n ;$

Simple Properties of LWE

1 Check a candidate solution $\mathbf{s}' \in \mathbb{Z}_q^n$: test if all $b - \langle \mathbf{s}', \mathbf{a} \rangle$ 'small.'

Simple Properties of LWE

 $\textbf{1} \ \, \mathsf{Check} \ \, \mathsf{a} \ \, \mathsf{candidate} \ \, \mathsf{solution} \ \, \mathbf{s}' \in \mathbb{Z}_q^n \mathsf{:} \quad \ \, \mathsf{test} \ \, \mathsf{if} \ \, \mathsf{all} \ \, b - \langle \mathbf{s}', \mathbf{a} \rangle \ \, \mathsf{`small}. \mathsf{'}$

If $\mathbf{s}' \neq \mathbf{s}$, then $b - \langle \mathbf{s}', \mathbf{a} \rangle = \langle \mathbf{s} - \mathbf{s}', \mathbf{a} \rangle + e$ is 'well-spread' in \mathbb{Z}_q .

- **1** Check a candidate solution $\mathbf{s}' \in \mathbb{Z}_q^n$: test if all $b \langle \mathbf{s}', \mathbf{a} \rangle$ 'small.' If $\mathbf{s}' \neq \mathbf{s}$, then $b \langle \mathbf{s}', \mathbf{a} \rangle = \langle \mathbf{s} \mathbf{s}', \mathbf{a} \rangle + e$ is 'well-spread' in \mathbb{Z}_q .
- 2 'Shift' the secret by any $\mathbf{t} \in \mathbb{Z}_q^n$:

- ① Check a candidate solution $\mathbf{s}' \in \mathbb{Z}_q^n$: test if all $b \langle \mathbf{s}', \mathbf{a} \rangle$ 'small.' If $\mathbf{s}' \neq \mathbf{s}$, then $b \langle \mathbf{s}', \mathbf{a} \rangle = \langle \mathbf{s} \mathbf{s}', \mathbf{a} \rangle + e$ is 'well-spread' in \mathbb{Z}_q .
- 2 'Shift' the secret by any $\mathbf{t} \in \mathbb{Z}_q^n$: given $(\mathbf{a}, b = \langle \mathbf{s}, \mathbf{a} \rangle + e)$, output

$$\mathbf{a} , b' = b + \langle \mathbf{t}, \mathbf{a} \rangle$$

= $\langle \mathbf{s} + \mathbf{t}, \mathbf{a} \rangle + e$.

- ① Check a candidate solution $\mathbf{s}' \in \mathbb{Z}_q^n$: test if all $b \langle \mathbf{s}', \mathbf{a} \rangle$ 'small.' If $\mathbf{s}' \neq \mathbf{s}$, then $b \langle \mathbf{s}', \mathbf{a} \rangle = \langle \mathbf{s} \mathbf{s}', \mathbf{a} \rangle + e$ is 'well-spread' in \mathbb{Z}_q .
- 2 'Shift' the secret by any $\mathbf{t} \in \mathbb{Z}_q^n$: given $(\mathbf{a},b=\langle \mathbf{s},\mathbf{a} \rangle + e)$, output

$$\mathbf{a}$$
, $b' = b + \langle \mathbf{t}, \mathbf{a} \rangle$
= $\langle \mathbf{s} + \mathbf{t}, \mathbf{a} \rangle + e$.

Random t's (with fresh samples) \Rightarrow random self-reduction.

Lets us amplify success probabilities (both search & decision):

non-negl on uniform $\mathbf{s} \leftarrow \mathbb{Z}_q^n \quad \Longrightarrow \quad pprox 1$ on $\underline{\mathsf{any}} \; \mathbf{s} \in \mathbb{Z}_q^n$

- ① Check a candidate solution $\mathbf{s}' \in \mathbb{Z}_q^n$: test if all $b \langle \mathbf{s}', \mathbf{a} \rangle$ 'small.' If $\mathbf{s}' \neq \mathbf{s}$, then $b \langle \mathbf{s}', \mathbf{a} \rangle = \langle \mathbf{s} \mathbf{s}', \mathbf{a} \rangle + e$ is 'well-spread' in \mathbb{Z}_q .
- 2 'Shift' the secret by any $\mathbf{t} \in \mathbb{Z}_q^n$: given $(\mathbf{a},b=\langle \mathbf{s},\mathbf{a}\rangle+e)$, output

$$\mathbf{a} , b' = b + \langle \mathbf{t}, \mathbf{a} \rangle$$

= $\langle \mathbf{s} + \mathbf{t}, \mathbf{a} \rangle + e$.

Random t's (with fresh samples) \Rightarrow random self-reduction.

Lets us amplify success probabilities (both search & decision):

non-negl on uniform $\mathbf{s} \leftarrow \mathbb{Z}_q^n \implies \approx 1$ on $\underline{\mathsf{any}} \ \mathbf{s} \in \mathbb{Z}_q^n$

3 Multiple secrets: $(\mathbf{a}, b_1 \approx \langle \mathbf{s}_1, \mathbf{a} \rangle, \dots, b_t \approx \langle \mathbf{s}_t, \mathbf{a} \rangle)$ vs. $(\mathbf{a}, b_1, \dots, b_t)$. Simple hybrid argument, since \mathbf{a} 's are *public*.

Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs $(\mathbf{a}, b = \langle \mathbf{s}, \mathbf{a} \rangle + e)$ and (\mathbf{a}, b) .

▶ Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs $(\mathbf{a}, b = \langle \mathbf{s}, \mathbf{a} \rangle + e)$ and (\mathbf{a}, b) .

We want to solve search-LWE: given pairs (\mathbf{a}, b) , find \mathbf{s} .

▶ Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs $(\mathbf{a}, b = \langle \mathbf{s}, \mathbf{a} \rangle + e)$ and (\mathbf{a}, b) .

We want to solve search-LWE: given pairs (\mathbf{a}, b) , find \mathbf{s} .

▶ If $q = \mathsf{poly}(n)$, to find $s_1 \in \mathbb{Z}_q$ it suffices to test whether $s_1 \stackrel{?}{=} 0$, because we can shift s_1 by $0, 1, \ldots, q-1$. Same for s_2, s_3, \ldots, s_n .

▶ Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs $(\mathbf{a}, b = \langle \mathbf{s}, \mathbf{a} \rangle + e)$ and (\mathbf{a}, b) .

We want to solve search-LWE: given pairs (\mathbf{a}, b) , find \mathbf{s} .

▶ If $q = \mathsf{poly}(n)$, to find $s_1 \in \mathbb{Z}_q$ it suffices to test whether $s_1 \stackrel{?}{=} 0$, because we can shift s_1 by $0, 1, \ldots, q-1$. Same for s_2, s_3, \ldots, s_n .

The test: for each (\mathbf{a},b) , choose fresh $r\leftarrow \mathbb{Z}_q$. Invoke \mathcal{D} on pairs

$$(\mathbf{a}' = \mathbf{a} - (r, 0, \dots, 0), b).$$

▶ Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs $(\mathbf{a}, b = \langle \mathbf{s}, \mathbf{a} \rangle + e)$ and (\mathbf{a}, b) .

We want to solve search-LWE: given pairs (\mathbf{a}, b) , find \mathbf{s} .

▶ If $q = \mathsf{poly}(n)$, to find $s_1 \in \mathbb{Z}_q$ it suffices to test whether $s_1 \stackrel{?}{=} 0$, because we can shift s_1 by $0, 1, \ldots, q-1$. Same for s_2, s_3, \ldots, s_n .

The test: for each (\mathbf{a},b) , choose fresh $r\leftarrow \mathbb{Z}_q$. Invoke \mathcal{D} on pairs

$$(\mathbf{a}' = \mathbf{a} - (r, 0, \dots, 0), b).$$

Notice: $b = \langle \mathbf{s}, \mathbf{a}' \rangle + s_1 \cdot r + e$.

▶ Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs $(\mathbf{a}, b = \langle \mathbf{s}, \mathbf{a} \rangle + e)$ and (\mathbf{a}, b) .

We want to solve search-LWE: given pairs (\mathbf{a}, b) , find \mathbf{s} .

▶ If $q = \mathsf{poly}(n)$, to find $s_1 \in \mathbb{Z}_q$ it suffices to test whether $s_1 \stackrel{?}{=} 0$, because we can shift s_1 by $0, 1, \ldots, q-1$. Same for s_2, s_3, \ldots, s_n .

The test: for each (\mathbf{a}, b) , choose fresh $r \leftarrow \mathbb{Z}_q$. Invoke \mathcal{D} on pairs

$$(\mathbf{a}' = \mathbf{a} - (r, 0, \dots, 0), b).$$

- Notice: $b = \langle \mathbf{s}, \mathbf{a}' \rangle + s_1 \cdot r + e$.
 - * If $s_1 = 0$, then $b = \langle \mathbf{s}, \mathbf{a}' \rangle + e \Rightarrow \mathcal{D}$ accepts.

▶ Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs $(\mathbf{a}, b = \langle \mathbf{s}, \mathbf{a} \rangle + e)$ and (\mathbf{a}, b) .

We want to solve search-LWE: given pairs (\mathbf{a}, b) , find \mathbf{s} .

▶ If $q = \mathsf{poly}(n)$, to find $s_1 \in \mathbb{Z}_q$ it suffices to test whether $s_1 \stackrel{?}{=} 0$, because we can shift s_1 by $0, 1, \ldots, q-1$. Same for s_2, s_3, \ldots, s_n .

The test: for each (\mathbf{a}, b) , choose fresh $r \leftarrow \mathbb{Z}_q$. Invoke \mathcal{D} on pairs

$$(\mathbf{a}' = \mathbf{a} - (r, 0, \dots, 0), b).$$

- Notice: $b = \langle \mathbf{s}, \mathbf{a}' \rangle + s_1 \cdot r + e$.
 - * If $s_1 = 0$, then $b = \langle \mathbf{s}, \mathbf{a}' \rangle + e \Rightarrow \mathcal{D}$ accepts.
 - * If $s_1 \neq 0$ and q prime then $b = \text{uniform} \Rightarrow \mathcal{D}$ rejects.

▶ Suppose \mathcal{D} solves decision-LWE: it 'perfectly' distinguishes between pairs $(\mathbf{a}, b = \langle \mathbf{s}, \mathbf{a} \rangle + e)$ and (\mathbf{a}, b) .

We want to solve search-LWE: given pairs (\mathbf{a}, b) , find \mathbf{s} .

▶ If $q = \mathsf{poly}(n)$, to find $s_1 \in \mathbb{Z}_q$ it suffices to test whether $s_1 \stackrel{?}{=} 0$, because we can shift s_1 by $0, 1, \ldots, q-1$. Same for s_2, s_3, \ldots, s_n .

The test: for each (\mathbf{a}, b) , choose fresh $r \leftarrow \mathbb{Z}_q$. Invoke \mathcal{D} on pairs

$$(\mathbf{a}' = \mathbf{a} - (r, 0, \dots, 0), b).$$

- Notice: $b = \langle \mathbf{s}, \mathbf{a}' \rangle + s_1 \cdot r + e$.
 - * If $s_1 = 0$, then $b = \langle \mathbf{s}, \mathbf{a}' \rangle + e \Rightarrow \mathcal{D}$ accepts.
 - * If $s_1 \neq 0$ and q prime then $b = \mathsf{uniform} \Rightarrow \mathcal{D}$ rejects.
- ▶ Don't really need prime $q = \mathsf{poly}(n)$ [P'09,ACPS'09,MM'11,MP'12]

Learning With Errors (LWE) [Regev'05]

▶ <u>Hard</u> to distinguish $(\mathbf{a}_i \in \mathbb{Z}_q^n , b_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$ from (\mathbf{a}_i , b_i) , where $\mathbf{a}_i, b_i, \mathbf{s}$ uniform and $e_i \leftarrow \chi = \text{Gaussian over } \mathbb{Z} \text{ w/ param } \alpha q > \sqrt{n}$

Learning With Errors (LWE) [Regev'05]

- Hard to distinguish $(\mathbf{a}_i \in \mathbb{Z}_q^n , b_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$ from (\mathbf{a}_i, b_i) , where $\mathbf{a}_i, b_i, \mathbf{s}$ uniform and $e_i \leftarrow \chi = \text{Gaussian over } \mathbb{Z} \text{ w/param } \alpha q > \sqrt{n}$
- By hybrid argument, can't distinguish tuples

$$(\mathbf{A}_i \in \mathbb{Z}_q^{n \times n} , \; \mathbf{A}_i \cdot \mathbf{S}_1 + \mathbf{E}_{i,1} \in \mathbb{Z}_q^{n \times n} , \; \mathbf{A}_i \cdot \mathbf{S}_2 + \mathbf{E}_{i,2} \in \mathbb{Z}_q^{n \times n} , \; \ldots)$$

Learning With Errors (LWE) [Regev'05]

- Hard to distinguish $(\mathbf{a}_i \in \mathbb{Z}_q^n , b_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$ from (\mathbf{a}_i , b_i) , where $\mathbf{a}_i, b_i, \mathbf{s}$ uniform and $e_i \leftarrow \chi = \mathsf{Gaussian}$ over \mathbb{Z} w/ param $\alpha q > \sqrt{n}$
- By hybrid argument, can't distinguish tuples

$$(\mathbf{A}_i \in \mathbb{Z}_q^{n \times n}, \ \mathbf{A}_i \cdot \mathbf{S}_1 + \mathbf{E}_{i,1} \in \mathbb{Z}_q^{n \times n}, \ \mathbf{A}_i \cdot \mathbf{S}_2 + \mathbf{E}_{i,2} \in \mathbb{Z}_q^{n \times n}, \ldots)$$

An LWE-Based Synthesizer?

	$ $ \mathbf{S}_1	\mathbf{S}_2	•••
\mathbf{A}_1	$\mathbf{A}_1 \cdot \mathbf{S}_1 + \mathbf{E}_{1,1}$	$\mathbf{A}_1 \cdot \mathbf{S}_2 + \mathbf{E}_{1,2}$	•••
\mathbf{A}_2	$\begin{vmatrix} \mathbf{A}_1 \cdot \mathbf{S}_1 + \mathbf{E}_{1,1} \\ \mathbf{A}_2 \cdot \mathbf{S}_1 + \mathbf{E}_{2,1} \end{vmatrix}$	$\mathbf{A}_2\cdot\mathbf{S}_2+\mathbf{E}_{2,2}$	• • •
i		••.	

Learning With Errors (LWE) [Regev'05]

- Hard to distinguish $(\mathbf{a}_i \in \mathbb{Z}_q^n , b_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$ from (\mathbf{a}_i, b_i) , where $\mathbf{a}_i, b_i, \mathbf{s}$ uniform and $e_i \leftarrow \chi = \mathsf{Gaussian}$ over \mathbb{Z} w/ param $\alpha q > \sqrt{n}$
- By hybrid argument, can't distinguish tuples

$$(\mathbf{A}_i \in \mathbb{Z}_q^{n \times n}, \ \mathbf{A}_i \cdot \mathbf{S}_1 + \mathbf{E}_{i,1} \in \mathbb{Z}_q^{n \times n}, \ \mathbf{A}_i \cdot \mathbf{S}_2 + \mathbf{E}_{i,2} \in \mathbb{Z}_q^{n \times n}, \ldots)$$

An LWE-Based Synthesizer?

	$ $ \mathbf{S}_1	\mathbf{S}_2	
\mathbf{A}_1	$\mathbf{A}_1 \cdot \mathbf{S}_1 + \mathbf{E}_{1,1}$	$\mathbf{A}_1 \cdot \mathbf{S}_2 + \mathbf{E}_{1,2}$	 = Uniform, but
\mathbf{A}_2	$\mathbf{A}_1 \cdot \mathbf{S}_1 + \mathbf{E}_{1,1} \\ \mathbf{A}_2 \cdot \mathbf{S}_1 + \mathbf{E}_{2,1}$	$\mathbf{A}_2\cdot\mathbf{S}_2+\mathbf{E}_{2,2}$	
i		٠	

Learning With Errors (LWE) [Regev'05]

- ▶ Hard to distinguish $(\mathbf{a}_i \in \mathbb{Z}_q^n, b_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$ from (\mathbf{a}_i, b_i) , where $\mathbf{a}_i, b_i, \mathbf{s}$ uniform and $e_i \leftarrow \chi = \mathsf{Gaussian}$ over $\mathbb{Z} \ \mathsf{w}/\ \mathsf{param}\ \alpha q > \sqrt{n}$
- By hybrid argument, can't distinguish tuples

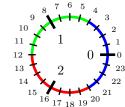
$$(\mathbf{A}_i \in \mathbb{Z}_q^{n \times n}, \ \mathbf{A}_i \cdot \mathbf{S}_1 + \mathbf{E}_{i,1} \in \mathbb{Z}_q^{n \times n}, \ \mathbf{A}_i \cdot \mathbf{S}_2 + \mathbf{E}_{i,2} \in \mathbb{Z}_q^{n \times n}, \ldots)$$

An LWE-Based Synthesizer?

	$ \mathbf{S}_1 $	\mathbf{S}_2	 $m{arphi} \ \left\{ \mathbf{A}_i \cdot \mathbf{S}_j + \mathbf{E}_{i,j} ight\} \stackrel{c}{pprox}$
\mathbf{A}_1	$\mathbf{A}_1 \cdot \mathbf{S}_1 + \mathbf{E}_{1,1}$	$\mathbf{A}_1 \cdot \mathbf{S}_2 + \mathbf{E}_{1,2}$	 Uniform, but
\mathbf{A}_2	$\begin{array}{ c c } \mathbf{A}_1 \cdot \mathbf{S}_1 + \mathbf{E}_{1,1} \\ \mathbf{A}_2 \cdot \mathbf{S}_1 + \mathbf{E}_{2,1} \end{array}$	$\mathbf{A}_2 \cdot \mathbf{S}_2 + \mathbf{E}_{2,2}$	 $m{ ilde{K}}$ What about $\mathbf{E}_{i,j}$?
:	,		Synthesizer must be deterministic

▶ $\frac{\mathsf{IDEA}}{\mathbb{Z}_q}$: generate errors deterministically by rounding \mathbb{Z}_q to a "sparse" subset (e.g. \mathbb{Z}_p).

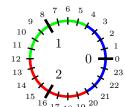
(Common in decryption to remove error.)



▶ $\overline{\text{IDEA}}$: generate errors deterministically by rounding $\overline{\mathbb{Z}_q}$ to a "sparse" subset (e.g. \mathbb{Z}_p).

(Common in decryption to remove error.)

Let p < q and define $\lfloor x \rceil_p = \lfloor (p/q) \cdot x \rceil \bmod p$.



▶ <u>IDEA</u>: generate errors deterministically by rounding $\overline{\mathbb{Z}_q}$ to a "sparse" subset (e.g. \mathbb{Z}_p).

(Common in decryption to remove error.)

Let p < q and define $\lfloor x \rceil_p = \lfloor (p/q) \cdot x \rceil \mod p$.

▶ LWR problem: distinguish any m = poly pairs

$$\left(\mathbf{a}_i\;,\; \lfloor \langle \mathbf{a}_i, \mathbf{s} \rangle \rceil_p \right) \in \mathbb{Z}_q \times \mathbb{Z}_p$$
 from uniform

▶ <u>IDEA</u>: generate errors deterministically by rounding $\overline{\mathbb{Z}_q}$ to a "sparse" subset (e.g. \mathbb{Z}_p).

(Common in decryption to remove error.)

Let p < q and define $\lfloor x \rceil_p = \lfloor (p/q) \cdot x \rceil \mod p$.

▶ LWR problem: distinguish any m = poly pairs

$$\left(\mathbf{a}_i\;,\; \lfloor \langle \mathbf{a}_i, \mathbf{s} \rangle \rceil_p \right) \in \mathbb{Z}_q \times \mathbb{Z}_p$$
 from uniform

<u>Interpretation</u>: LWE conceals low-order bits by adding small random error. LWR just discards those bits instead.

▶ <u>IDEA</u>: generate errors deterministically by rounding $\overline{\mathbb{Z}_q}$ to a "sparse" subset (e.g. \mathbb{Z}_p).

(Common in decryption to remove error.)

Let
$$p < q$$
 and define $\lfloor x \rceil_p = \lfloor (p/q) \cdot x \rceil \mod p$.

▶ LWR problem: distinguish any m = poly pairs

$$\left(\mathbf{a}_i\;,\; \lfloor \langle \mathbf{a}_i, \mathbf{s} \rangle \rceil_p \right) \in \mathbb{Z}_q \times \mathbb{Z}_p$$
 from uniform

<u>Interpretation</u>: LWE conceals low-order bits by adding small random error. LWR just discards those bits instead.

► Theorem: LWE \leq LWR for $q \geq p \cdot n^{\omega(1)}$ [but it seems 2^n -hard for $q \geq p \sqrt{n}$]

- ▶ <u>IDEA</u>: generate errors deterministically by rounding $\overline{\mathbb{Z}_q}$ to a "sparse" subset (e.g. \mathbb{Z}_p).
 - (Common in decryption to remove error.)

Let p < q and define $\lfloor x \rceil_p = \lfloor (p/q) \cdot x \rceil \mod p$.

▶ LWR problem: distinguish any m = poly pairs

$$\left(\mathbf{a}_i\;,\;\lfloor\langle\mathbf{a}_i,\mathbf{s}\rangle\rceil_p\right)\in\mathbb{Z}_q imes\mathbb{Z}_p$$
 from uniform

<u>Interpretation</u>: LWE conceals low-order bits by adding small random error. LWR just discards those bits instead.

Theorem: LWE ≤ LWR for $q \ge p \cdot n^{\omega(1)}$ [but it seems 2^n -hard for $q \ge p\sqrt{n}$]

Proof idea: w.h.p.,
$$(\mathbf{a}, \lfloor \langle \mathbf{a}, \mathbf{s} \rangle + e \rceil_p) = (\mathbf{a}, \lfloor \langle \mathbf{a}, \mathbf{s} \rangle \rceil_p)$$

and $(\mathbf{a}, \lfloor \mathsf{Unif}(\mathbb{Z}_q) \rceil_p) = (\mathbf{a}, \mathsf{Unif}(\mathbb{Z}_p))$

Properties of LWR

Random Self Reducubility:

On input A,R(As), output AX,R(As), for random $X\in\mathbb{Z}_q^{n\times n}$,

$$AX, R(As) \sim A, R(AX^{-1}s) = A, R(A(X^{-1}s)).$$

Similar to LWE, but shift labels (not secret).

Properties of LWR

Random Self Reducubility:

On input A,R(As), output AX,R(As), for random $X\in\mathbb{Z}_q^{n\times n}$,

$$AX, R(As) \sim A, R(AX^{-1}s) = A, R(A(X^{-1}s)).$$

Similar to LWE, but shift labels (not secret).

2 Search/Decision:

On input A, b output $A + ue_1^T$ where u is a random vector, If $s_1 = 0$.

$$A + ue_1^T, R(As) \sim A, R(As + (s_1)u) = A, R(As)$$

If $s1 \neq 0$,

$$A + ue_1^T, R(As) \sim A, R(As + (s_1)u) = A, R(u)$$

LWR-Based Synthesizer & PRF

 $\blacktriangleright \ \, \mathsf{Synthesizer} \,\, S \colon \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^{n \times n} \to \mathbb{Z}_p^{n \times n} \,\, \mathsf{is} \quad S(\mathbf{A},\mathbf{S}) = \lfloor \mathbf{A} \cdot \mathbf{S} \rceil_p.$

(Note: range \mathbb{Z}_p is slightly smaller than domain \mathbb{Z}_q . Only limits composition.)

LWR-Based Synthesizer & PRF

 $\qquad \qquad \textbf{Synthesizer} \ S \colon \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^{n \times n} \to \mathbb{Z}_p^{n \times n} \ \text{is} \quad S(\mathbf{A}, \mathbf{S}) = \lfloor \mathbf{A} \cdot \mathbf{S} \rceil_p.$

(Note: range \mathbb{Z}_p is slightly smaller than domain \mathbb{Z}_q . Only limits composition.)

PRF on Domain $\{0,1\}^{k=2^d}$

- "Tower" of public moduli $q_d > q_{d-1} > \cdots > q_0$.
- ▶ Secret key is 2k square matrices $\mathbf{S}_{i,b}$ over \mathbb{Z}_{q_d} for $i \in [k]$, $b \in \{0,1\}$.

LWR-Based Synthesizer & PRF

 $\qquad \qquad \textbf{Synthesizer} \ S \colon \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^{n \times n} \to \mathbb{Z}_p^{n \times n} \ \text{is} \quad S(\mathbf{A}, \mathbf{S}) = \lfloor \mathbf{A} \cdot \mathbf{S} \rceil_p.$

(Note: range \mathbb{Z}_p is slightly smaller than domain \mathbb{Z}_q . Only limits composition.)

PRF on Domain $\{0,1\}^{k=2^d}$

- "Tower" of public moduli $q_d > q_{d-1} > \cdots > q_0$.
- ▶ Secret key is 2k square matrices $\mathbf{S}_{i,b}$ over \mathbb{Z}_{q_d} for $i \in [k]$, $b \in \{0,1\}$.
- ▶ Depth $d = \lg k$ tree of LWR synthesizers:

$$F_{\{\mathbf{S}_{i,b}\}}(x_1 \cdots x_8) = \left[\left[\left[\mathbf{S}_{1,x_1} \cdot \mathbf{S}_{2,x_2} \right]_{q_2} \cdot \left[\mathbf{S}_{3,x_3} \cdot \mathbf{S}_{4,x_4} \right]_{q_2} \right]_{q_1} \cdot \left[\left[\mathbf{S}_{5,x_5} \cdot \mathbf{S}_{6,x_6} \right]_{q_2} \cdot \left[\mathbf{S}_{7,x_7} \cdot \mathbf{S}_{8,x_8} \right]_{q_2} \right]_{q_1} \right]_{q_0}$$

Even Better

Synthesizer $S \colon \mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^{n \times m} \to \mathbb{Z}_p^{m \times m}$ is $S(\mathbf{A}, \mathbf{S}) = \lfloor \mathbf{A} \cdot \mathbf{S} \rceil_p$. Idea: to match range and domain sizes take m = 2n and $q = p^2$.

Even Better

Synthesizer $S \colon \mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^{n \times m} \to \mathbb{Z}_p^{m \times m}$ is $S(\mathbf{A}, \mathbf{S}) = \lfloor \mathbf{A} \cdot \mathbf{S} \rceil_p$.

Idea: to match range and domain sizes take m = 2n and $q = p^2$.

PRF on Domain $\{0,1\}^{k=2^d}$

- Public modulus $q = p^2$.
- ▶ Secret key is 2k $m \times n$ matrices $\mathbf{S}_{i,b}$ over \mathbb{Z}_q for $i \in [k]$, $b \in \{0,1\}$.
- ▶ Given $\mathbf{S}_1, \mathbf{S}_2 \in \mathbb{Z}_q^{2n \times n}$ "cast" $\left[\mathbf{S}_1 \cdot \mathbf{S}_2^t\right]_p \in \mathbb{Z}_p^{2n \times 2n}$ into $\mathbb{Z}_q^{2n \times n}$. (Works because $\|\mathbf{S}_i\| = \|\left[\mathbf{S}_1 \cdot \mathbf{S}_2\right]_p\| = 4n^2 \log p$.)

Even Better

Synthesizer $S \colon \mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^{n \times m} \to \mathbb{Z}_p^{m \times m}$ is $S(\mathbf{A}, \mathbf{S}) = \lfloor \mathbf{A} \cdot \mathbf{S} \rceil_p$. Idea: to match range and domain sizes take m = 2n and $q = p^2$.

PRF on Domain $\{0,1\}^{k=2^d}$

- Public modulus $q = p^2$.
- ▶ Secret key is 2k $m \times n$ matrices $\mathbf{S}_{i,b}$ over \mathbb{Z}_q for $i \in [k]$, $b \in \{0,1\}$.
- ▶ Given $\mathbf{S}_1, \mathbf{S}_2 \in \mathbb{Z}_q^{2n \times n}$ "cast" $\left[\mathbf{S}_1 \cdot \mathbf{S}_2^t\right]_p \in \mathbb{Z}_p^{2n \times 2n}$ into $\mathbb{Z}_q^{2n \times n}$. (Works because $\|\mathbf{S}_i\| = \|\left[\mathbf{S}_1 \cdot \mathbf{S}_2\right]_p\| = 4n^2 \log p$.)
- ▶ Depth $d = \lg k$ tree of LWR synthesizers:

$$\left[\left\lfloor \left\lfloor \left[\mathbf{S}_{1,x_{1}} \cdot \mathbf{S}_{2,x_{2}}^{t} \right]_{q} \left\lfloor \mathbf{S}_{3,x_{3}} \cdot \mathbf{S}_{4,x_{4}}^{t} \right\rceil_{q} \right]_{q} \left\lfloor \left[\mathbf{S}_{5,x_{5}} \cdot \mathbf{S}_{6,x_{6}}^{t} \right]_{q} \left\lfloor \left[\mathbf{S}_{7,x_{7}} \cdot \mathbf{S}_{8,x_{8}}^{t} \right]_{q} \right\rceil_{q} \right]_{q} \right]_{q}$$

More Efficient?

Ring Learning With Errors (RLWE) [LPR'10]

ightharpoonup For (e.g.) n a power of 2, define "cyclotomic" polynomial rings

$$R:=\mathbb{Z}[x]/(x^n+1)\quad\text{and}\quad R_q:=R/qR=\mathbb{Z}_q[x]/(x^n+1).$$

More Efficient?

Ring Learning With Errors (RLWE) [LPR'10]

ightharpoonup For (e.g.) n a power of 2, define "cyclotomic" polynomial rings

$$R:=\mathbb{Z}[x]/(x^n+1)\quad\text{and}\quad R_q:=R/qR=\mathbb{Z}_q[x]/(x^n+1).$$

▶ <u>Hard</u> to distinguish m pairs $(a_i , a_i \cdot s + e_i) \in R_q \times R_q$ from uniform, where $a_i, s \leftarrow R_q$ uniform and e_i "short."

More Efficient?

Ring Learning With Errors (RLWE) [LPR'10]

ightharpoonup For (e.g.) n a power of 2, define "cyclotomic" polynomial rings

$$R:=\mathbb{Z}[x]/(x^n+1) \quad \text{and} \quad R_q:=R/qR=\mathbb{Z}_q[x]/(x^n+1).$$

- ▶ <u>Hard</u> to distinguish m pairs $(a_i , a_i \cdot s + e_i) \in R_q \times R_q$ from uniform, where $a_i, s \leftarrow R_q$ uniform and e_i "short."
- ▶ Shorter description/faster computation (using FFT/NTT).

Shallower?

▶ Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².

Shallower?

- ▶ Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².
- ▶ [NR'97]: direct PRFs from DDH / factoring, in $TC^0 \subseteq NC^1$.

$$F_{g,s_1,\ldots,s_k}(x_1\cdots x_k)=g^{\prod s_i^{x_i}}$$

(Computing this in TC^0 needs large circuits, though. . .)

Shallower?

- ▶ Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².
- ▶ [NR'97]: direct PRFs from DDH / factoring, in $TC^0 \subseteq NC^1$.

$$F_{g,s_1,\dots,s_k}(x_1\cdots x_k) = g^{\prod s_i^{x_i}}$$

(Computing this in TC^0 needs large circuits, though. . .)

Direct LWE-Based Construction

- Public moduli q > p.
- ▶ Secret key is uniform $a \leftarrow R_q$ and short $s_1, \ldots, s_k \in R$.

Shallower?

- ▶ Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².
- ▶ [NR'97]: direct PRFs from DDH / factoring, in $TC^0 \subseteq NC^1$.

$$F_{g,s_1,\dots,s_k}(x_1\cdots x_k) = g^{\prod s_i^{x_i}}$$

(Computing this in TC^0 needs large circuits, though. . .)

Direct LWE-Based Construction

- Public moduli q > p.
- ▶ Secret key is uniform $a \leftarrow R_q$ and short $s_1, \ldots, s_k \in R$.
- "Rounded subset-product" function:

$$F_{a,s_1,\dots,s_k}(x_1\cdots x_k) = \left\lfloor a \cdot \prod_{i=1}^k s_i^{x_i} \bmod q \right\rfloor_p$$

Shallower?

- ▶ Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².
- ▶ [NR'97]: direct PRFs from DDH / factoring, in $TC^0 \subseteq NC^1$.

$$F_{g,s_1,\dots,s_k}(x_1\cdots x_k) = g^{\prod s_i^{x_i}}$$

(Computing this in TC^0 needs large circuits, though...)

Direct LWE-Based Construction

- Public moduli q > p.
- ▶ Secret key is uniform $a \leftarrow R_q$ and short $s_1, \ldots, s_k \in R$.
- "Rounded subset-product" function:

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \left[a\cdot\prod_{i=1}^k s_i^{x_i} \bmod q\right]_p$$

Has small(ish) TC⁰ circuit, via CRT and reduction to subset-sum.

▶ Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$.

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \lfloor a\cdot s_1^{x_1}\cdots s_k^{x_k} \bmod q \rceil_p$$

▶ Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$.

$$F_{a,s_1,\dots,s_k}(x_1\cdots x_k) = \lfloor a\cdot s_1^{x_1}\cdots s_k^{x_k} \bmod q \rceil_p$$

▶ Like the LWE ≤ LWR proof, but "souped up" to handle queries.

▶ Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$.

$$F_{a,s_1,\dots,s_k}(x_1\cdots x_k) = \lfloor a\cdot s_1^{x_1}\cdots s_k^{x_k} \bmod q \rceil_p$$

▶ Like the LWE ≤ LWR proof, but "souped up" to handle queries.

Thought experiment: answer queries with

$$\tilde{F}(x) := \left[(a \cdot s_1^{x_1} + \mathbf{x_1} \cdot \mathbf{e_{x_1}}) \cdot s_2^{x_2} \cdots s_k^{x_k} \right]_p = \left[a \prod_{i=1}^k s_i^{x_i} + \mathbf{x_1} \cdot \mathbf{e_{x_1}} \cdot \prod_{i=2}^k s_i^{x_i} \right]$$

W.h.p., $\tilde{F}(x) = F(x)$ on all queries due to "small" error & rounding.

▶ Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$.

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \lfloor a\cdot s_1^{x_1}\cdots s_k^{x_k} \bmod q \rceil_p$$

lacktriangle Like the LWE \leq LWR proof, but "souped up" to handle queries.

Thought experiment: answer queries with

$$\tilde{F}(x) := \left[(a \cdot s_1^{x_1} + x_1 \cdot e_{x_1}) \cdot s_2^{x_2} \cdots s_k^{x_k} \right]_p = \left[a \prod_{i=1}^k s_i^{x_i} + x_1 \cdot e_{x_1} \cdot \prod_{i=2}^k s_i^{x_i} \right]$$

W.h.p., $\tilde{F}(x) = F(x)$ on all queries due to "small" error & rounding.

- ▶ Replace $(a, a \cdot s_1 + e_{x_1})$ with uniform (a_0, a_1) [ring-LWE].
 - \Rightarrow New function $F'(x) = \lfloor a_{x_1} \cdot s_2^{x_2} \cdots s_k^{x_k} \rceil_p$.

▶ Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$.

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \lfloor a\cdot s_1^{x_1}\cdots s_k^{x_k} \bmod q \rceil_p$$

 \blacktriangleright Like the LWE \leq LWR proof, but "souped up" to handle queries.

Thought experiment: answer queries with

$$\tilde{F}(x) := \left[(a \cdot s_1^{x_1} + x_1 \cdot e_{x_1}) \cdot s_2^{x_2} \cdots s_k^{x_k} \right]_p = \left[a \prod_{i=1}^k s_i^{x_i} + x_1 \cdot e_{x_1} \cdot \prod_{i=2}^k s_i^{x_i} \right]$$

W.h.p., $\tilde{F}(x) = F(x)$ on all queries due to "small" error & rounding.

- lacktriangledown Replace $(a,a\cdot s_1+e_{x_1})$ with uniform (a_0,a_1) [ring-LWE].
 - \Rightarrow New function $F'(x) = \lfloor a_{x_1} \cdot s_2^{x_2} \cdots s_k^{x_k} \rceil_p$.
- ▶ Repeat for s_2, s_3, \ldots until $F''''''(x) = \lfloor a_x \rceil_p = \mathsf{Uniform\ func.\ } \Box$

1 Better (worst-case) hardness for LWR, e.g. for $q/p=\sqrt{n}$? (The proof from LWE relies on approx factor and modulus $=n^{\omega(1)}$.) [AKPW'13]: LWE \leq LWR for $q=n^{O(1)}$ (bounded #samples).

- $\begin{tabular}{ll} \textbf{1} & \textbf{Better (worst-case) hardness for LWR, e.g. for $q/p=\sqrt{n}$?} \\ & \textbf{(The proof from LWE relies on approx factor and modulus} = n^{\omega(1)}.) \\ & \textbf{[AKPW'13]: LWE} \leq \textbf{LWR for } q=n^{O(1)} \begin{tabular}{ll} \textbf{(bounded $\#$samples)}. \\ \end{tabular}$
- Non-trivial algorithms for LWR?

- ① Better (worst-case) hardness for LWR, e.g. for $q/p = \sqrt{n}$? (The proof from LWE relies on approx factor and modulus $= n^{\omega(1)}$.) [AKPW'13]: LWE \leq LWR for $q = n^{O(1)}$ (bounded #samples).
- Non-trivial algorithms for LWR?

[BCGR'13]:

- \star LWR \leq LWE for $\lceil q/p \rceil = n^{O(1)}$ (uses ideas from [FGKP'06]).
- ★ Adaptations of [AG'11] and [BKL'03] to LWR.

1 Synth-based PRF can rely on approx factor and modulus $= n^{\Theta(1)}$. Direct construction still relies on approx factor and modulus $= n^{\Theta(k)}$.

1 Synth-based PRF can rely on approx factor and modulus $= n^{\Theta(1)}$. Direct construction still relies on approx factor and modulus $= n^{\Theta(k)}$. Are such strong assumptions necessary (even for these constructions)?

1 Synth-based PRF can rely on approx factor and modulus $= n^{\Theta(1)}$. Direct construction still relies on approx factor and modulus $= n^{\Theta(k)}$. Are such strong assumptions necessary (even for these constructions)? Conjecture (?): direct PRF is secure for integral $q/p = \operatorname{poly}(n)$.

- Synth-based PRF can rely on approx factor and modulus $= n^{\Theta(1)}$. Direct construction still relies on approx factor and modulus $= n^{\Theta(k)}$. Are such strong assumptions necessary (even for these constructions)? <u>Conjecture</u> (?): direct PRF is secure for integral $q/p = \operatorname{poly}(n)$.
- ② Efficient PRF from parity with noise (LPN)?

- ① Synth-based PRF can rely on approx factor and modulus $= n^{\Theta(1)}$. Direct construction still relies on approx factor and modulus $= n^{\Theta(k)}$. Are such strong assumptions necessary (even for these constructions)? Conjecture (?): direct PRF is secure for integral $q/p = \operatorname{poly}(n)$.
- ② Efficient PRF from parity with noise (LPN)?
- **3** Efficient PRF from subset sum?

- ① Synth-based PRF can rely on approx factor and modulus $= n^{\Theta(1)}$. Direct construction still relies on approx factor and modulus $= n^{\Theta(k)}$. Are such strong assumptions necessary (even for these constructions)? Conjecture (?): direct PRF is secure for integral $q/p = \operatorname{poly}(n)$.
- ② Efficient PRF from parity with noise (LPN)?
- 3 Efficient PRF from subset sum?

http://factcenter.org