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Expander Graphs

Sparse regular well-connected graphs 
with many properties of random graphs.

Every set of vertices has many neighbors.

Random walks mix quickly.

Pseudo-random generators.

Error-correcting codes.

Used throughout Computer Science.



Spectral Expanders

Let G be a graph and A be its adjacency matrix

eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯𝜆𝑛
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Spectral Expanders

Let G be a graph and A be its adjacency matrix

eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯𝜆𝑛
If d-regular, then 𝐴𝟏 = 𝑑𝟏 so 𝜆1 = 𝑑
If bipartite then eigs are symmetric

about zero so 𝜆𝑛 = −𝑑

a

c

d

e
b

0     1     0     0     1
1     0     1     0     1
0     1     0     1     0
0     0     1     0     1
1     1     0     1     0

“trivial”



Spectral Expanders

Definition: G is a good expander 
if all non-trivial eigenvalues are small

0
[ ]
-d d



Spectral Expanders

Definition: G is a good expander 
if all non-trivial eigenvalues are small

0
[ ]
-d d

e.g. 𝐾𝑑 and 𝐾𝑑,𝑑 have all nontrivial eigs 0.



Spectral Expanders

Definition: G is a good expander 
if all non-trivial eigenvalues are small

0
[ ]
-d d

e.g. 𝐾𝑑 and 𝐾𝑑,𝑑 have all nontrivial eigs 0.

Alon-Boppana’86: For every 𝜖 > 0, every sufficiently 
large d-regular graph has a nontrivial eigenvalue 

greater than2 𝑑 − 1 − 𝜖

Challenge: construct infinite families.



Ramanujan Graphs: 

Definition: G is Ramanujan if all non-trivial eigs

have absolute value at most 2 𝑑 − 1
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Ramanujan Graphs: 

Definition: G is Ramanujan if all non-trivial eigs

have absolute value at most 2 𝑑 − 1

0
[ ]
-d d

[
-2 𝑑 − 1

]
2 𝑑 − 1

Margulis, Lubotzky-Phillips-Sarnak’88: Infinite 
sequences of Ramanujan graphs exist for 𝑑 = 𝑝 + 1

Friedman’08: A random d-regular graph is almost 

Ramanujan : 2 𝑑 − 1 + 𝜖
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Main Result

Theorem. Infinite families of bipartite Ramanujan graphs 
exist for every 𝑑 ≥ 3.

Proof is elementary, doesn’t use number theory.

Not explicit.

Based on a new existence argument: method of 
interlacing families of polynomials.
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Bilu-Linial’06 Approach

Find an operation which doubles the size of a 
graph without blowing up its eigenvalues.

0
[ ]
-d d

[
-2 𝑑 − 1

]
2 𝑑 − 1

…∞
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2-lifts of  graphs

for every pair of edges:

leave on either side (parallel),

or make both cross

a0

c0

d0

e0

b0

a1

d1

e1

b1

c1

2𝑚 possibilities



2-lifts of  graphs

0     1     0     0     1
1     0     1     0     1
0     1     0     1     0
0     0     1     0     1
1     1     0     1     0

n eigenvalues {𝜆1 …𝜆𝑛}



2-lifts of  graphs

0     1     0     0     1  0     0     0     0     0
1     0     1     0     1  0     0     0     0     0
0     1     0     1     0  0     0     0     0     0
0     0     1     0     1  0     0     0     0     0
1     1     0     1     0   0     0     0     0     0

0     0     0     0     0   0     1     0     0     1
0     0     0     0     0   1     0     1     0     1
0     0     0     0     0   0     1     0     1     0
0     0     0     0     0  0     0     1     0     1
0     0     0     0     0   1     1     0     1     0



2-lifts of  graphs

0    0     0     0     1   0    1     0     0     0
0 0     1     0     1  1 0     0     0     0
0     1     0     0 0  0     0     0     1 0
0     0     0 0     1       0     0     1 0     0
1     1     0     1     0  0     0     0     0     0

0     1 0     0     0 0     0 0     0     1
1 0     0     0     0 0 0     1     0     1
0     0     0     1 0  0     1     0     0 0
0     0     1 0     0 0     0     0 0     1
0     0     0     0     0   1     1     0     1 0



2-lifts of  graphs

0    0     0     0     1   0    1     0     0     0
0 0     1     0     1  1 0     0     0     0
0     1     0     0 0  0     0     0     1 0
0     0     0 0     1       0     0     1 0     0
1     1     0     1     0  0     0     0     0     0

0     1 0     0     0 0     0 0     0     1
1 0     0     0     0 0 0     1     0     1
0     0     0     1 0  0     1     0     0 0
0     0     1 0     0 0     0     0 0     1
0     0     0     0     0   1     1     0     1 0

2n eigenvalues 𝜆1 …𝜆𝑛 ∪ {𝜆1
′ …𝜆𝑛

′ }



Eigenvalues of  2-lifts (Bilu-Linial)

Given a 2-lift of G,

create a signed adjacency matrix As

with a -1 for crossing edges

and a 1 for parallel edges

0    -1     0     0     1
-1     0     1     0     1
0     1     0    -1     0
0     0    -1     0    1
1     1     0    1     0
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c1



Eigenvalues of  2-lifts (Bilu-Linial)

Theorem:
The eigenvalues of the 2-lift are the

union of the eigenvalues of A (old)
and the eigenvalues of As (new)

𝜆1
′ …𝜆𝑛

′ = 𝑒𝑖𝑔𝑠(𝐴𝑠)

0    -1     0     0     1
-1     0     1     0     1
0     1     0    -1     0
0     0    -1     0    1
1     1     0    1     0

𝐴𝑠 =
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have absolute value at most 
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Eigenvalues of  2-lifts (Bilu-Linial)

Conjecture:
Every d-regular adjacency matrix A

has a signing 𝐴𝑠 with ||𝐴𝑆|| ≤ 2 𝑑 − 1

We prove this in the bipartite case.



Eigenvalues of  2-lifts (Bilu-Linial)

Theorem:
Every d-regular adjacency matrix A

has a signing 𝐴𝑠 with 𝜆1(𝐴𝑆) ≤ 2 𝑑 − 1



Eigenvalues of  2-lifts (Bilu-Linial)

Theorem:
Every d-regular bipartite adjacency matrix A

has a signing 𝐴𝑠 with ||𝐴𝑆|| ≤ 2 𝑑 − 1

Trick: eigenvalues of bipartite graphs
are symmetric about 0, 
so only need to bound largest



Random Signings

Idea 1: Choose 𝑠 ∈ −1,1 𝑚 randomly.



Random Signings

Idea 1: Choose 𝑠 ∈ −1,1 𝑚 randomly.

Unfortunately, 

(Bilu-Linial showed when

A is nearly Ramanujan ) 
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Random Signings

Idea 2: Observe that
where 

Usually useless, but not here!

is an interlacing family.

such that 

Consider 
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Step 2: The expected polynomial

Theorem [Godsil-Gutman’81]

For any graph G,

the matching polynomial of G



The matching polynomial

(Heilmann-Lieb ‘72)

mi = the number of matchings with i edges





one matching with 0 edges



7 matchings with 1 edge
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0 ±1 x  ±1   0   0

0 0  ±1   x  ±1   0

±1 0   0  ±1   x  ±1

±1  0   0   0  ±1   x

Expand                                using permutations

Get 0 if take just one entry for any edge
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3-Step Proof  Strategy

1. Show that some poly does as well as the      .

2. Calculate the expected polynomial.

[Godsil-Gutman’81]

3. Bound the largest root of the expected poly.

such that 


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(Heilmann-Lieb ‘72)

Theorem (Heilmann-Lieb)
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The matching polynomial

(Heilmann-Lieb ‘72)

Theorem (Heilmann-Lieb)

all the roots are real

and have absolute value at most

Proof: simple, based on recurrences. 



3-Step Proof  Strategy

1. Show that some poly does as well as the      .

2. Calculate the expected polynomial.

[Godsil-Gutman’81]

3. Bound the largest root of the expected poly.

[Heilmann-Lieb’72]

such that 
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3-Step Proof  Strategy

1. Show that some poly does as well as the      .

2. Calculate the expected polynomial.

[Godsil-Gutman’81]

3. Bound the largest root of the expected poly.

[Heilmann-Lieb’72]

such that 







3-Step Proof  Strategy

1. Show that some poly does as well as the      .

Implied by:

“ is an interlacing family.”

such that 
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Answer: Certainly not always…



Averaging Polynomials

Basic Question: Given when are the roots 
of the              related to roots of                  ?

But sometimes it works:



A Sufficient Condition

Basic Question: Given when are the roots 
of the              related to roots of                  ?

Answer: When they have a common interlacing.

Definition.                                    interlaces

if



Theorem. If               have a common 
interlacing,
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Theorem. If               have a common 
interlacing,

Proof. 
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Proof: By common interlacing, one of        ,
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has   

Interlacing Family of  Polynomials

Theorem: There is an s so that



An interlacing family

Theorem:

Let 

is an interlacing family



An interlacing family

Theorem:

Let 

is an interlacing family

Lemma (easy):

and          have a common interlacing 

if and only if

is real rooted for all 



To prove interlacing family

Let

Leaves of tree = signings 𝑠1, … , 𝑠𝑚

Internal nodes = partial signings 𝑠1, … , 𝑠𝑘



To prove interlacing family

Let

Need to prove that for all                , 

is real rooted



To prove interlacing family

Need to prove that for all                , 

are fixed

is 1 with probability   , -1 with 

are uniformly 

is real rooted

Let
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for every independent distribution
on the entries of s:
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Transformation to PSD Matrices



𝑣𝑖𝑗 =  
𝛿𝑖 − 𝛿𝑗 with probability λ𝑖𝑗

𝛿𝑖 + 𝛿𝑗 with probability (1−𝜆𝑖𝑗)

Transformation to PSD Matrices

𝔼𝑠 det 𝑥𝐼 − 𝑑𝐼 − 𝐴𝑠 = 𝔼det 𝑥𝐼 −  

𝑖𝑗∈𝐸

𝑣𝑖𝑗𝑣𝑖𝑗
𝑇

where



Master Real-Rootedness Theorem

Given any independent random vectors 
𝑣1, … , 𝑣𝑚 ∈ ℝ𝑑, their expected characteristic 
polymomial

has real roots.

𝔼det 𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
𝑇



Master Real-Rootedness Theorem

Given any independent random vectors 
𝑣1, … , 𝑣𝑚 ∈ ℝ𝑑, their expected characteristic 
polymomial

has real roots.

𝔼det 𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
𝑇

How to prove this?



The Multivariate Method

A. Sokal, 90’s-2005:
“…it is often useful to consider the multivariate 
polynomial … even if one is ultimately interested in 
a particular one-variable specialization”

Borcea-Branden 2007+: prove that univariate
polynomials are real-rooted by showing that 
they are nice transformations of real-rooted
multivariate polynomials. 



Real Stable Polynomials

is real stable if for all i

Implies .

Definition: 



Real Stable Polynomials

is real stable if

no roots in the upper half-plane

univariate real stable = real-rooted

for all i

Implies .

Definition: 



If is real stable, then so is

1. 𝑝(𝛼, 𝑧2, … , 𝑧𝑛) for any 𝛼 ∈ ℝ

2. 1 − 𝜕𝑧𝑖
𝑝(𝑧1, … 𝑧𝑛)

Excellent Closure Properties

is real stable if for all i

Implies .

Definition: 



A Useful Real Stable Poly

Borcea-Brändén ‘08:

For PSD matrices 

is real stable



A Useful Real Stable Poly

Borcea-Brändén ‘08:

For PSD matrices 

is real stable

Plan: apply closure properties to this

to show that 𝔼det 𝑥𝐼 −  𝑖 𝑣𝑖𝑣𝑖
𝑇 is real stable.



Central Identity

Suppose 𝑣1, … , 𝑣𝑚 are independent random 
vectors with 𝐴𝑖 ≔ 𝔼𝑣𝑖𝑣𝑖

𝑇. Then

𝔼det 𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
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=   

𝑖=1

𝑚

1 −
𝜕

𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖

𝑧𝑖𝐴𝑖

𝑧1=⋯=𝑧𝑚=0
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Suppose 𝑣1, … , 𝑣𝑚 are independent random 
vectors with 𝐴𝑖 ≔ 𝔼𝑣𝑖𝑣𝑖

𝑇. Then

𝔼det 𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
𝑇

=   

𝑖=1

𝑚

1 −
𝜕

𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖
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𝑧1=⋯=𝑧𝑚=0

Proof: easy, tomorrow.
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3-Step Proof  Strategy

1. Show that some poly does as well as the      .

2. Calculate the expected polynomial.

3. Bound the largest root of the expected poly.

such that 









Infinite Sequences of  Bipartite 
Ramanujan Graphs

Find an operation which doubles the size of a 
graph without blowing up its eigenvalues.

0
[ ]
-d d

[
-2 𝑑 − 1

]
2 𝑑 − 1

…∞
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