
comput. complex. 16 (2007), 1–33
1016-3328/07/010001-33
DOI 10.1007/s00037-007-0224-y

c© Birkhäuser Verlag, Basel 2007

computational complexity

COMMUNICATION VS. COMPUTATION

Prahladh Harsha, Yuval Ishai, Joe Kilian,

Kobbi Nissim, and S. Venkatesh

Abstract. We initiate a study of tradeoffs between communication and
computation in well-known communication models and in other related
models. The fundamental question we investigate is the following: Is
there a computational task that exhibits a strong tradeoff behavior be-
tween the amount of communication and the amount of time needed for
local computation?
Under various standard assumptions, we exhibit Boolean functions that
show strong tradeoffs between communication and time complexity in
the following scenarios:

Two-party communication complexity. We exhibit a polynomial-
time computable Boolean function that has a low random-
ized communication complexity, while any communication-
efficient (randomized) protocol for this function requires a super-
polynomial amount of local computation. In the case of deter-
ministic two-party protocols, we show a similar result relative to
a random oracle.

Query complexity. We exhibit a polynomial-time computable
Boolean function that can be computed by querying a few bits of
its input, but where any such query-efficient scheme requires a
super-polynomial amount of computation.

Property testing. We exhibit a polynomial-time decidable property
that can be tested (i.e., strings which have the property can be
distinguished from ones that are far from the property) by query-
ing a few bits of the input, but where any such query-efficient
tester requires a super-polynomial amount of computation.

Finally, we study a time-degree tradeoff problem that arises in arithmeti-
zation of Boolean functions, and relate it to time-communication tradeoff
questions in multi-party communication complexity and cryptography.
Keywords. Communication complexity, tradeoffs, computation.
Subject classification. 68Q15, 68Q17.



2 Harsha et al. cc 16 (2007)

1. Introduction

A motivating riddle. Consider the following multi-party communication
game. Fix a finite field F and let M be a n × k matrix over F. The columns
of M are assigned to k players so that each player j knows all columns of M
except the jth. (This is known as the “input on the forehead” model, Chandra,
Furst & Lipton 1983.) The players’ goal is to compute the product of the n
row sums, namely the function

PS(M) =
n∏

i=1

k∑

j=1

Mi,j ,

by means of simultaneously sending messages to an external referee. This
can be easily done by having the entire matrix M sent to the referee (e.g.,
letting P1 send the second column and P2 the remaining columns). The goal
is to minimize the communication complexity, measured as the length of the
longest message sent. A closely related problem was studied by Babai et al.
(2003). When k > n (say, k = n + 1) our problem admits the following simple
solution, implicit in Babai et al. (2003). Write PS(M) as the sum of kn terms,
where each term is a product involving a single entry from each row of M .
Since there are more players than rows, for each such term there is a player
holding all of its values. Hence, one can assign each term to some player who
knows its value, and have each player send the sum of all terms assigned to it.
The referee can then recover PS(M) by simply adding up the k field elements it
received. While this protocol is very efficient in communication, the combined
computation of the players is exponential in n. Note that if one uses the natural
greedy strategy of assigning each term to the first player to which it can be
assigned, then player n+1 will need to compute the permanent of an n×n sub-
matrix of M , a #P -hard problem. (Even if F has characteristic 2, in which case
the permanent can be efficiently computed, it is not clear that the computation
of (say) the middle player can be made efficient.) Thus, a natural question is
the following:

When k > n, does the function PS(M) admit a protocol in which
(1) each player only sends a single element of F; and (2) the local
computation of each player is polynomial in n?

A negative answer seems likely in light of the failure of the natural term as-
signment strategy. It also seems reasonable that for any valid way of assigning
the kn terms to the players, some player will be forced to compute a hard func-
tion. Thus, this problem looks like a good candidate for a time-communication



cc 16 (2007) Communication vs. computation 3

tradeoff: it requires little time to compute when there is no limit on the com-
munication complexity, requires little communication when there is no limit
on the time complexity, but seems to defy solutions that are simultaneously
efficient with respect to both complexity measures.

Somewhat surprisingly, it turns out that the answer to the above question
is “yes”. (The impatient reader can skip to Section 5.2 for a solution to the
riddle.) Thus, this particular problem does not exhibit the time-communication
tradeoff that was initially suspected. However, this question served as the
original motivation for this work, which explores the existence of similar kinds
of tradeoffs in related contexts.

1.1. Problem description. Let f : X × Y → Z be an arbitrary function
of two inputs. In the two-party communication model of Yao (1979), there are
two players A and B. A is given x ∈ X, B is given y ∈ Y and they need to
compute z = f(x, y) by communicating with each other. In any communication
protocol designed for f , there are three useful measures of complexity:

◦ Communication complexity: The total number of bits exchanged be-
tween A and B;

◦ Time complexity: The amount of time needed by A and B for local
computation;

◦ Round complexity: The number of messages exchanged by A and B.

Given any two of these three complexity measures, it is natural to ask if
there are tasks which exhibit a tradeoff between them. The question of round
complexity vs. time complexity does not arise in the two-party model, as the
simple protocol in which A send his entire input over to B is optimal with
respect to both measures.However, this question does make sense in a crypto-
graphic setting when players need to compute a function of their inputs without
revealing their inputs to each other. Such a tradeoff question is addressed in
Section 5.3. Tradeoffs between round complexity and communication complex-
ity have been well studied (see Section 1.2). In this paper, we initiate the study
of the remaining question: proving tradeoffs between communication and lo-
cal computation. Specifically, our main goal is to find functions f such that:
(1) f has a protocol with low communication complexity given no restriction on
the computation; and (2) there is no protocol for f which simultaneously has
low communication and efficient computation. To avoid trivial tradeoffs due
to hardness of computing f we also require that f can be efficiently computed
given both its inputs, i.e., given no restriction on the communication.



4 Harsha et al. cc 16 (2007)

To give a simple example in a specific communication model, suppose A
is given a CNF formula g as input and B an assignment x to its variables.
They need to decide whether x satisfies g by having A send a single message
to B. Moreover, suppose that A is deterministic. In this setting, it is easy
to argue that, unless P = NP , there is no protocol that simultaneously uses
efficient computation and “optimal” communication (in the sense of minimizing
the size of the set of possible messages sent from A to B for the given input
instance size). Indeed, in such an “optimal” protocol the message sent by A
should directly correspond to the equivalence class of g: by the protocol’s
correctness two non-equivalent formulas cannot induce the same message, and
by its optimality two equivalent formulas must induce the same message. Thus,
such a protocol would allow to efficiently decide equivalence between two given
formulas g1, g2 by simply comparing the message sent by A on these two inputs.
Note that this tradeoff result is very weak, as it does not rule out time-efficient
protocols in which the communication is, say, twice larger than the optimal.
Our goal is to obtain stronger tradeoff results in various models.

1.2. Related work. Papadimitriou & Sipser (1984) first discussed the prob-
lem of showing tradeoffs between rounds of communication and communication
complexity. For any fixed k, they proposed a Boolean function pk called the
pointer chasing problem that has a k-round protocol with O(logn) bits of com-
munication. They conjectured that its communication complexity is at least
linear if only k−1 rounds are allowed. In other words, pk shows a strong trade-
off behavior between rounds and communication complexity. This conjecture
was proved in a series of papers (Duris et al. 1987; Nisan & Wigderson 1993;
Papadimitriou & Sipser 1984).

Additional complexity measures which are not considered in this work are
space complexity and randomness complexity. Tradeoffs between space and
communication were considered by Beame, Tompa & Yan (1994). Tradeoffs
between randomness and communication were studied by Canetti & Goldreich
(1993).

1.3. Our results. Our first result is a strong time-communication tradeoff
for a Boolean function in the two-party randomized communication model.

Randomized communication model. Suppose that there is a UP rela-
tion R such that the search problem corresponding to R is not solvable by
any probabilistic algorithm running in time 2O(T (n)). (This would follow from
the existence of a one-way permutation secure against a 2O(T (n)) bounded ad-
versary. In fact, it suffices for our purposes that the permutation be hard to



cc 16 (2007) Communication vs. computation 5

invert in the worst case.) Then, there is an efficiently computable Boolean func-
tion fR with the following properties. If Alice and Bob are computationally
unbounded, then there is an O(logn)-bit 1-round randomized protocol that
computes fR. But if Alice and Bob are computationally bounded, then any
randomized protocol for fR, even with multiple rounds, will require Ω(T (n))
bits of communication.

As a corollary we get the following strong separation result. Let Fc de-
note the class of functions f(x, y) computable in polynomial time such that
the randomized communication complexity of f is bounded by c. Similarly, let
F poly

c be the functions f(x, y) computable in polynomial time such that f(x, y)
is computable by two probabilistic polynomial-time parties with communica-
tion c. Then there is an explicit Boolean function f in Flog n \ F poly

T (n) for T (n)
as above.

Deterministic communication model. Obtaining similar tradeoff results
for the deterministic two-party model appears to be much harder.In particular,
the lack of an efficient equality test prevents a direct translation of our result
for the randomized communication model into the deterministic communication
model. Instead, we show a strong tradeoff result relative to a random oracle.
Specifically, let L be a random sparse language. Then, with probability 1 over
choice of L, there is a Boolean function fL (efficiently computable relative
to L) with the following properties. There is a deterministic communication
protocol for fL with, say, O(log2 n) bits of communication if both Alice and Bob
are computationally unbounded with oracle access to L. However, any protocol
in which Alice and Bob are computationally bounded will require Ω(n) bits of
communication, even with oracle access to L.

Query complexity and property testing. Our next results prove trade-
offs in related models like the query complexity model and the property testing
model. In these models, information is stored in the form of a table and the
queries are answered by bit-probes to this table. We view the probes as commu-
nication between the stored table and the query scheme (or the tester), and the
computation of the query scheme (or the tester) as the local computation. We
show that: (a) Under a cryptographic assumption, given any ε > 0, there exists
a language L such that, on inputs of length n, a query scheme with unlimited
computation makes nε queries while a query scheme with efficient local com-
putation requires Ω(n1−ε) queries; (b) assuming NP�⊆ BPP, given any ε > 0,
there exists a property P such that, on inputs of length n, a computationally
unbounded tester will require only nε bits to check if the input satisfies the
property or is far from satisfying it. On the other hand, a computationally



6 Harsha et al. cc 16 (2007)

bounded tester will require n1−ε bits. This result can be strengthened to any
sub-exponential tradeoff under a stronger assumption that all languages in NP
do not have randomized sub-exponential time algorithms.

Tradeoff questions motivated by secure multi-party computation. In
addition to proving the existence of tradeoffs in various contexts, we also put
forward several concrete natural tradeoff questions and relate them to each
other. We propose three different tradeoff questions arising in different con-
texts:

◦ Arithmetization of Boolean functions. We consider a possible trade-
off between the degree of a polynomial extension and the time required
to evaluate it. Does every efficiently computable function admit a low-
degree extension that can be efficiently evaluated?

◦ Multi-party communication. We consider a generalization of the rid-
dle described above, where instead of computing the product of the row
sums one computes a general function f of the row sums. Can the riddle
be solved for any efficiently computable function f?

◦ Cryptography. We consider the problem of secure multi-party compu-
tation, where several parties wish to evaluate a function f on their joint
inputs without revealing their inputs to each other. We suggest a possible
tradeoff between the time complexity and communication complexity of
secure protocols with a constant number of rounds. Does every efficiently
computable f admit a constant-round secure protocol with efficient local
computation?

We relate the above questions by showing that a (positive) solution to the first
would imply a solution to the second, which in turn would imply a solution
to the third. Hence, the cryptographic application may serve as an additional
motivation for studying the other two problems.

1.4. Tradeoffs without assumptions?. An interesting question that arises
when discussing such tradeoffs is that of finding the minimal complexity as-
sumptions under which the tradeoffs exist. For instance, the communication
vs. computation tradeoff for the randomized communication model is based on
the existence of hard UP relations. Can this assumption be weakened? Can
such tradeoffs be established assuming only P�=NP, or even unconditionally? If
we consider a very simple model such as a 1-round deterministic communica-
tion model, then the communication-optimal (1-round) protocol can be made



cc 16 (2007) Communication vs. computation 7

computation-efficient given an oracle to Σ2. Thus, a tradeoff in this model im-
plies P�=NP. As mentioned in Section 1.1, P�=NP is also a sufficient assumption
for establishing a weak tradeoff in this model. The situation in more general
models is not clear. In fact, it is not clear that unconditional tradeoff results
cannot be established.

Another interesting open problem is to obtain an “explicit” tradeoff in the
deterministic communication model (i.e., not relative to a random oracle). The
question of obtaining strong tradeoff results of this type (in contrast to the weak
tradeoff sketched in Section 1.1) appears to be challenging even in the simple
case of 1-round protocols.

2. Preliminaries

In this section, we describe the communication complexity model, a formal
definition of the problem we consider and the notion of UP relations.

2.1. The communication complexity model (Yao 1986). Let X, Y
and Z be arbitrary finite sets and f : X × Y → Z be an arbitrary function.
There are two players, Alice and Bob who wish to evaluate f(x, y) for x ∈ X
and y ∈ Y . However, Alice only knows x and Bob only knows y. To evaluate the
function, they communicate with each other according to some fixed protocol P
in which they send messages to each other.

The communication cost of a protocol P on an input (x, y) is the number
of bits exchanged by Alice and Bob when Alice is given x and Bob is given y.
The communication cost of a protocol P is the worst case communication cost
of P over all inputs (x, y). The (deterministic) communication complexity of f
is the minimum communication cost of a protocol that computes f .

If Alice and Bob are allowed access to random coin tosses and their mes-
sages depend also on the result of the coin tosses besides their input and the
communication so far, we say that the protocol P is randomized. The ran-
domized communication complexity of a function f is the minimum cost of a
randomized protocol that computes f with error probability at most 1/4 on
any input (x, y). The probability of error is taken over the internal coin tosses
of the protocol. We refer the reader to the book on Communication Complexity
by Kushilevitz & Nisan (1997) for a detailed account of this model.

In general, we will consider a family of functions F = {fn : n ∈ Z
+} and

the corresponding family of protocols {Pn : n ∈ Z
+} such that protocol Pn

computes the function fn, for each n ∈ Z
+. The communication complexity

of a family of functions F is the function C : Z
+ → Z

+ such that C(n) is the



8 Harsha et al. cc 16 (2007)

communication complexity of the function fn. For ease of writing, henceforth
whenever we say function (protocol), we really mean a “family of functions”
(“family of protocols”), one for each n ∈ Z

+.
We say that a computationally bounded Alice and Bob compute the function

family F = {fn : n ∈ Z
+} using a (deterministic/randomized) protocol with

communication at most C(n) if there exists a polynomial p(·) and a pair of (de-
terministic/probabilistic) Turing machines (A(·, ·), B(·, ·)) such that for every
n ∈ Z

+ and (x, y) ∈ {0, 1}n × {0, 1}n, we have (i) A(1n, x) and B(1n, y) run in
time at most p(n), (ii) the protocol corresponding to Alice A(1n, x) and Bob
B(1n, y) computes fn(x, y) (exactly/with error probability at most 1/4) and,
(iii) the communication cost of the above (deterministic/randomized) protocol
is at most C(n). Note that the above definition allows only for uniform Alice
and Bob. An equivalent non-uniform definition can be stated and the tradeoff
result for the randomized communication model holds even in this non-uniform
setting. However we prove the tradeoff result in the deterministic model only
for the uniform setting. For this purpose, we state our results only in the
uniform setting.

2.2. Tradeoffs. We now describe formally our tradeoff problem in the two-
party randomized communication complexity model. Similar definitions can
be given for other models we consider. Our goal is to find a Boolean function
f : X × Y → {0, 1} with the following properties:

◦ f(x, y) can be computed efficiently, that is in polynomial time, if both
the inputs x ∈ X and y ∈ Y are given.

◦ f has very efficient communication protocols, that is, protocols with ran-
domized communication complexity (log n)c for some c.

◦ There is no protocol for f which is simultaneously communication and
computation efficient. In other words, any protocol in which Alice and
Bob use only probabilistic polynomial time for local computation requires
almost a linear number of bits of communication in the worst case.

2.3. UP relations.

Definition 2.1. A relation R ⊆ Σ∗ × Σ∗ is said to be a UP relation (with
witness size nk, for some constant k) if

(i) there exists a deterministic Turing machine that decides the language
{(x, w)|(x, w) ∈ R} in polynomial time.



cc 16 (2007) Communication vs. computation 9

(ii) for every x, there exists at most one w such that (x, w) ∈ R and fur-
thermore, this w satisfies |w| = |x|k. We denote this w, if it exists, by
w(x).

The search problem corresponding to R is the problem of finding w such that
R(x, w) holds, given x.

We denote the set {x ∈ Σ∗ : ∃w, (x, w) ∈ R} by LR. Thus, w(x) is defined
if and only if x ∈ LR.

We will assume the existence of UP relations for which the corresponding search
problem is very hard. Such an assumption is standard in cryptography. In
particular, the existence of strong one-way permutations implies the existence
of such hard UP relations. More formally,

Definition 2.2. We say is that a UP relation R is T (n)-hard if no probabilis-
tic algorithm running in time solves the search problem corresponding to R.

3. Tradeoffs in the two-party communication complexity
model

3.1. Randomized communication model. We start with the definition
of the Boolean function we consider.

Definition 3.1. Let R ⊆ {0, 1}∗× {0, 1}∗ be a UP relation with witness size
nk for some constant k. Consider the 2-player (Alice and Bob) Boolean function
fR : {0, 1}n+nk × {0, 1}nk → {0, 1}.

Alice’s input: (x, z) ∈ {0, 1}n × {0, 1}nk

Bob’s input: w ∈ {0, 1}nk

fR

(
(x, z), w

)
=

{
〈z, w〉 if R(x, w) holds

0 otherwise

where 〈a, b〉 denotes the inner product of a, b modulo 2.

Theorem 3.2. Let R be a T (n)-hard UP relation. Then, the predicate fR has
the following properties.

(i) fR is computable in polynomial time.

(ii) There exists a 1-round randomized protocol that computes fR with
O(log n)-bit communication.



10 Harsha et al. cc 16 (2007)

(iii) Any computationally bounded Alice and Bob, that compute the function
fR (using a randomized protocol, even with multiple rounds), require at
least Ω(T (n)) bits of communication.

Proof. Observe that fR can be computed efficiently given both its inputs.
We just need to check that R(x, w) holds and if so, output 〈z, w〉.

Lemma 3.3. If Alice is computationally unbounded, then there exists a 1-
round randomized protocol that computes fR with O(log n)-bit communication.

Proof. Alice computes the unique w such that R(x, w) holds. Alice and Bob
then engage in an “equality” protocol1 to check that Bob’s input equals w. If
so, she computes and sends Bob the answer 〈z, w〉. �

The following lemma demonstrates that such a communication-efficient pro-
tocol is unlikely when Alice and Bob are computationally bounded. In fact, it
is sufficient for the proof that only Alice is computationally bounded. Bob is
allowed to be computationally unbounded.

Lemma 3.4. Suppose there exists a b(n)-bit communication randomized multi-
round protocol Π that computes fR involving Alice whose running time is at
most TA(n), then there exists a randomized algorithm that solves the search
problem corresponding to R in time poly(n, 2b(n)) · TA(n).

Proof. For the rest of the argument, we assume that for any x ∈ LR, w,
denoted earlier by w(x), is the unique string such that R(x, w) holds. Hence,
for our purposes, fR ((x, z), w) = 〈z, w〉.

To begin with, let us assume that the input x is in the set LR. Note that
there might not exist an efficient algorithm for deciding if x ∈ LR unless NP=P.
Our goal is to relate the search problem of computing w (if it exists), given x,
to the problem of computing 〈z, w〉 with a low communication protocol. Our
approach is to convert a low communication protocol into an efficient oracle
that, given x and z, computes 〈z, w〉 with some advantage over random guess-
ing. Given such an oracle, we can then use the Goldreich-Levin reconstruction
algorithm (Goldreich & Levin 1989) to compute a small number of candidates
for w. More precisely, we create a “small” set of oracles such that one of the or-
acles computes 〈z, w〉 with some nontrivial advantage. We then try each oracle
by exhaustive search, and use the fact that we can recognize the correct w.

1Recall that there exists a 1-round protocol for equality with randomized communication
complexity at most O(log n) (Kushilevitz & Nisan 1997).



cc 16 (2007) Communication vs. computation 11

Converting protocols into oracles. Let Π be a randomized protocol for fR

with b(n) communication. Let T be a transcript of Π. For simplicity, we assume
Alice outputs fR ((x, z), w) as her final bit; this convention increases the size
of the transcript by at most 2 bits. Thus, T includes a “guess” for 〈z, w〉 as
the last bit. Using T , we define the probabilistic oracle AT (x, z) for computing
〈z, w〉, as follows.

Algorithm AT (Input: (x, z) ∈ {0, 1}n × {0, 1}nk
).

Simulate the protocol Π from Alice’s end. Whenever a message from Bob
is required, use the transcript T to obtain the corresponding message. If
at any point the message generated by Alice according to the protocol
Π disagrees with the contents of the transcript T , abandon the protocol
and output a random bit b. Otherwise, follow the protocol to the end
and output the bit b generated by the protocol Π.

We are interesting in analyzing the advantage of the oracle above in guessing
〈z, w〉. To do that, we define our notation for the advantage of Π and AT in
guessing 〈z, w〉.

Definition 3.5. Let x ∈ {0, 1}n ∩ LR, w = w(x) and z be distributed uni-
formly. We define adv(Π, x) by

adv(Π, x) = Pr [Alice outputs 〈z, w〉]− Pr [Alice doesn’t output 〈z, w〉] ,

where Alice and Bob run Π with respective inputs (x, z) and w, and the prob-
ability is taken over the choice of z and over the coin tosses of Alice and Bob.
We define adv(AT , x) analogously. Fixing x and a transcript T , we define
adv(Π, x, T ) by

adv(Π, x, T ) = Pr [T occurs and Alice outputs 〈z, w〉]
−Pr [T occurs and Alice doesn’t output 〈z, w〉]

Note that the only contribution to AT ’s advantage is by events in which T
occurs, hence we do not bother to define adv(AT , x, T ). It follows from the
definitions that, for every x ∈ LR

(3.6) adv(Π, x) =
∑

T
adv(Π, x, T ) .

Since the protocol Π computes fR correctly, it holds that adv(Π, x) ≥ 1/2
for every x. Since there are at most 22b(n) possible transcripts T , it follows
from (3.6) that for every x ∈ {0, 1}n ∩ LR, there exists a transcript T ∗,

(3.7) adv(Π, x, T ∗) ≥ 1

22b(n)+1



12 Harsha et al. cc 16 (2007)

A simple but key observation is that we can often bound adv(AT , x) by
adv(Π, x, T ).

Proposition 3.8. For every x ∈ LR, if adv(Π, x, T ) > 0 then adv(AT , x) ≥
adv(Π, x, T ).

Proof. Let ρ
(x,z)
w (T ) be the probability that Alice and Bob’s coins are con-

sistent with T when running Π with respective inputs (x, z) and w. Likewise,
let ρ(x,z)(T ) be the probability that Alice’s coins are consistent with T . Thus,
ρ(x,z)(T ) is the probability that T occurs when running AT (x, z). Finally, let
ρw(T ) be the probability that Bob’s coins are consistent with T . Note that
ρw(T ) is independent of z. It follows from the definitions that

(3.9) ρ(x,z)
w (T ) = ρ(x,z)(T )ρw(T ) .

Fixing x (and w = w(x)), let G denote the set of z such that T gives the correct
value for 〈z, w〉, and B denote the set of z such that gives the incorrect value.
Then we can express adv(Π, x, T ) and adv(AT , x) by

adv(Π, x, T ) =
1

2nk

(
∑

z∈G

ρ(x,z)
w (T )−

∑

z∈B

ρ(x,z)
w (T )

)
and(3.10)

adv(AT , x) =
1

2nk

(
∑

z∈G

ρ(x,z)(T )−
∑

z∈B

ρ(x,z)(T )

)
.(3.11)

From (3.9), (3.10) and (3.11), it follows that

(3.12) adv(Π, x, T ) = adv(AT , x)ρw(T ) .

Since 0 ≤ ρw(T ) ≤ 1, the proposition follows (note that when ρw(T ) = 0,
adv(Π, x, T ) = 0). �

Fix any x ∈ {0, 1}n. Consider the transcript T ∗ guaranteed to exist by (3.7).
For this transcript, we conclude from Proposition 3.8 that

(3.13) adv(AT ∗ , x) ≥ 1

22b(n)+1
.

Solving the search problem. As shown above, there exists a transcript T ∗

such AT ∗ has a good advantage in guessing 〈z, w〉. We now show that we can
solve the search problem using AT ∗ . Set ε = 1

22b(n)+1 . We run the Goldreich-
Levin algorithm GL (See Theorem 3.14) with parameters n, ε, oracle access to
AT ∗(x, .) and predicate R(x, .).



cc 16 (2007) Communication vs. computation 13

Theorem 3.14 (Goldreich & Levin 1989). There exists a randomized algo-
rithm GL with oracle access to a function and a predicate satisfying the follow-
ing: Fix u ∈ {0, 1}n. Let h : {0, 1}n → {0, 1} be a randomized algorithm such
that h(v) = 〈u, v〉 with probability at least 1/2 + ε where the probability is
over choice of v, picked uniformly at random, and the internal coin tosses of h.
Let P : {0, 1}n → {0, 1} be a polynomial time computable predicate such that
P (v) = 1 iff u = v. Then, the randomized algorithm GL with oracle access
to h and P satisfies

Pr
[
GLh,P (n, ε) = u

]
≥ 3

4

Moreover, the running time of GL is at most poly(n, 1
ε
).

Theorem 3.14 guarantees that the algorithm GL computes w in time
poly(n, 1/ε) with constant probability. However, we do not have the tran-
script T ∗. (Recall that we only know that there exists a transcript T ∗ that
satisfies (3.13), we do not how to obtain one.) For this purpose, we run the
Goldreich-Levin algorithm GL for every possible transcript T with parameters
n and ε. One of these must succeed. Moreover, we can check which one suc-
ceeds by verifying that R(x, w) holds. The total time taken by this algorithm is
at most 22b ·poly(n, 22b+1) ·TA(n) = poly(n, 2b) ·TA(n). So far we have assumed
x ∈ LR. However, since we have an efficient algorithm to recognize the correct
w (if it exists), we need not assume that x ∈ LR. One may as well run the
above algorithm on any x (not necessarily those in LR) and finally check if the
candidate w is the correct one (if it exists). This proves Lemma 3.4. �

To conclude the proof of the tradeoff result, we now use the assumption
that the search problem corresponding to UP relation R does not have ran-
domized algorithm that run in time 2o(T (n)) on inputs of length n. Therefore,
poly(n, 2b) · TA(n) ≥ 2Ω(T (n)) and hence b(n) = Ω(T (n)) since TA(n) is polyno-
mially bounded in n. �

Remarks.

1. If we make the assumption that there is a search problem in UP that
does not have sub-exponential time randomized algorithms, we get a very
strong tradeoff. Such an assumption is used in cryptography.

2. We can prove the same result under a weaker assumption that the class
FewP has a relation whose search problem is hard. In this case, we could
use the set membership function instead of equality.



14 Harsha et al. cc 16 (2007)

3. If the search problem corresponding to the relation R had average-case
complexity at least 2Ω(T (n)) when x is chosen from the distribution D
(instead of worst case complexity), then the same proof as above demon-
strates that fR has average-case communication complexity at least
Ω(T (n)) for polynomially bounded Alice and Bob when x is chosen from
the distribution D, z uniformly and w = w(x).

3.2. Deterministic model. Curiously, it seems harder to obtain strong
tradeoff results for the deterministic model. This is due, in part, to the weak-
ness of this model (e.g., one cannot implement an efficient equality checking
protocol). For this model, we show tradeoff results relative to a random oracle.
By this we mean that relative to essentially all oracles of a certain class, we can
obtain a provable tradeoff. We stress that one cannot use the oracle to ‘ran-
domize’ the protocol. In particular, we require our protocols not to produce
errors.

We first give a definition of the Boolean function that we consider.

Definition 3.15. Let L ⊆ {0, 1}∗ be any language. Consider the 2-player
(Alice and Bob) Boolean function fL, defined on inputs of length n as follows.

Alice’s input: x ∈ {0, 1}n

Bob’s input: y ∈ {0, 1}n

fL (x, y) =

{
〈x, y〉 if x and y are in L

0 otherwise

where 〈x, y〉 denotes the inner product of x, y modulo 2.

Theorem 3.16. Let k(n) be any time-constructible function such that k(n) =
ω(log n), k(n) = o(n), and n − k(n) is monotone non-decreasing. Let L be
a random 2k(n)-sparse language, namely a random language containing 2k(n)

strings of length n. Then, with probability 1 over the choice of L, the predicate
fL has the following properties given an oracle access to L:

(i) fL can be computed in polynomial time.

(ii) fL has a 1-round deterministic communication protocol with k(n)+1 bits
of communication.

(iii) There does not exist any computationally bounded Alice and Bob (even
with oracle access to L), that compute the function fL using either a



cc 16 (2007) Communication vs. computation 15

deterministic or randomized protocol using o(n) bits of communication.
Note that the choice of protocol may depend on the choice of L.

Property (i) is easy to verify: to compute fL(x, y) it suffices to check if x
and y belong to L using the oracle access, and then compute their inner product
if necessary. Next we prove Property (ii).

Lemma 3.17. If Alice and Bob are computationally unbounded and have or-
acle access to L, then fL has a communication protocol with k(n) + 1 bits of
communication.

Proof. Alice, using oracle access to L, determines if x belongs to L or not.
If it does, she also finds out the position of x in the lexicographic ordering of
strings in L. She sends this information to Bob who outputs 〈x, y〉 if both x
and y belong to L and 0 otherwise. �

In the remainder of this section we establish Property (iii), which is a simple
corollary of the following more general lemma.

Lemma 3.18. Let C, T, k be such that C(n) = o(n), T (n) = 2o(k(n)), and k(n)
as in Theorem 3.16. Let L be a random 2k(n)-sparse language. Then, with
probability 1 over the choice of L there is no communication protocol for fL

in which Alice and Bob run in time T (n) and exchange C(n) bits of commu-
nication, even with oracle access to L and even if the protocol is allowed to be
randomized and err with a small probability.

Proof overview. The proof of Lemma 3.18 proceeds as follows. Suppose
that we are given a protocol which is efficient with respect to both communi-
cation and computation. We first show that oracle calls are not of much use
for such protocols. In other words, we can get another protocol with similar
efficiency which does not make oracle calls to L. The intuition for this step
is that since L is sparse, a time-bounded protocol is unlikely to query L on
any input q ∈ L which is different from its inputs (x, y). Next we use the fact
that the inner product function is hard on the average for low-communication
protocols. Hence, the protocol we obtain defines a time-efficient procedure that
distinguishes a pair of random elements from L from a pair of truly random
strings without access to L. Since L is a random language, this leads to a
contradiction.

Proof of Lemma 3.18. We refer to a communication protocol π as being
(C, T )-bounded if it uses at most C(n) communication bits and its running time



16 Harsha et al. cc 16 (2007)

is at most T (n) in the worst case (when running on inputs of length n). Fur-
thermore, if π is an oracle-aided protocol, then these time and communication
bounds should hold relative to all oracles. As long as C, T are “well-behaved”
in the sense that they can be computed in time O(T (n)), any protocol π which
is (C, T )-bounded relative to a specific oracle L can be easily converted to a
(C, O(T ))-bounded protocol π̂, such that πL and π̂L have the same outputs.
Throughout this section it is assumed that the functions C, T are well behaved.
Similarly, we say that an oracle-aided TM M is T -bounded, if its running time
is bounded by T (n) regardless of the given oracle.

Definition 3.19 ((C, T )-bad oracle). A language L ⊆ {0, 1}∗ is called (C, T )-
bad if there exists a (C, T )-bounded protocol π, having oracle access to L, such
that for infinitely many input lengths n,

Pr
x,y∈RLn

[
πL(x, y) = 〈x, y〉

]
> 3/4 .

That is, πL “succeeds well” in predicting the inner product of two random
inputs from L of length n.

Note that if the requirements of Definition 3.19 are satisfied by a randomized
protocol π then, by an averaging argument, there is also a deterministic protocol
which satisfies these requirements using a nonuniform advice of length T (n).
(For each input length n, the advice will consist of a sequence of coin-tosses
which maximizes the success probability.) We may thus assume from now on
that the protocol π is deterministic and uses advice of size T (n).

To prove Lemma 3.18 it suffices to show the following.

Claim 3.20. Let C, T, k be as in Lemma 3.18. Then a random 2k(n)-sparse
oracle L is (C, T )-bad with probability 0.

We start by showing a procedure for turning a (C, T )-bounded oracle-aided
protocol π and a 2k(n)-sparse language L into a (C, T )-bounded protocol π′

which does not make any calls to L. Except with probability 0 over the choice
of L, this transformation will maintain the advantage of πL in predicting the
inner product of two inputs from L. The protocol π′ runs π, simulating oracle
calls as follows.

◦ If the oracle query is “short”, namely of size smaller than 3k(n), the
answer will be wired into π′. That is, π′ will include a nonuniform advice
of size (3k(n))2 · 2k(3k(n)) = 2o(k(n)) containing all short oracle queries to
which the answer is “yes”. (Together with the advice of size T (n) used
to derandomize π, the total advice size is still 2o(k(n)).)



cc 16 (2007) Communication vs. computation 17

◦ Long oracle queries, of size 3k(n) or more, are handled as follows. When-
ever a party needs to make a long query different from its input, it takes
the answer to be “no”. Whenever the query string is equal to the input
the answer is taken to be “yes”.

We turn to analyze the success of π′ on inputs from L × L. Short queries
pose no problem since, by the definition of π′, they are simulated correctly. We
argue that long queries are very unlikely to be simulated incorrectly. That is,
when running πL on (x, y) ∈ L×L, each party is unlikely to make a long query
from L which differs from its local input. This is formalized below.

Definition 3.21 (Offending queries). Let π be a deterministic oracle-aided
protocol and L ⊆ {0, 1}∗ be a language. We say that πL makes an offending
query on input (x, y) if some party queries the oracle on a string q ∈ {0, 1}∗
such that q ∈ L, |q| ≥ 3k(n), and q is different from its local input.

Lemma 3.22. Let C, T, k be as in Lemma 3.18. Let π be a deterministic,
(C, T )-bounded oracle-aided protocol. Then, with probability 1 over the choice
of a random 2k(n)-sparse L, there are only finitely many (x, y) ∈ L × L such
that |x| = |y| and πL makes an offending query on input (x, y).

Proof. It suffices to show that the expected number of inputs (x, y) ∈ L×L
on which offending queries are made is finite, where the expectation is taken
over the choice of L. For this, we separate offending queries into two types.
The first type includes queries whose length is equal to the input length, and
the second type includes the remaining queries.

The main intuition for analyzing offending queries of the first type is that
the bound on the communication complexity prevents the parties from guessing
each other’s input, and the bound on the time complexity prevents them from
finding a string in L via exhaustive search. To formalize this intuition, consider
the view of one of the parties (say Alice) on some input x ∈ L of length n. Each
possible communication transcript c, of length C(n), uniquely determines the
queries made by Alice when running πL on input x (independently of Bob’s
input y). Let QL,x,c denote this set of queries. Consider the experiment of
picking L at random from the set of 2k(n)-sparse languages, and let Bn denote
the event that QL,x,c includes an offending query of the first type for some
x ∈ Ln and c ∈ {0, 1}C(n).

We would like to argue that Bn occurs with exponentially small probability.
For each fixed x, c, the event that QL,x,c includes an offending query of the first
type (of length n) occurs with at most T (n) · 2k(n)−n probability. (This is



18 Harsha et al. cc 16 (2007)

analogous to the event that 2k balls placed randomly in 2n distinct bins will hit
some fixed subset of T bins.) By a union bound, the probability of the latter
event occurring for some c is bounded by 2C(n) · T (n) · 2k(n)−n. We would have
liked to use a similar union-bound argument over all x ∈ L; however, since the
set of x over which we take the union depends on the choice of L we cannot apply
such an argument directly. To get around this difficulty, augment the previous
experiment by picking a random labeling σ of the elements in L; that is, σn is
a random bijection such that σn([2k(n)]) = Ln. Defining Q′

L,σ,n,i,c = QL,σn(i),c, it
follows by symmetry that for any fixed n, i, c the event that Q′

L,σ,n,i,c includes

an offending query of the first type also occurs with at most T (n) · 2k(n)−n

probability. (This is because the knowledge of σn(i) gives no information about
the other strings in Ln; note that this would no longer be true if σn were fixed
to be, say, the lexicographic ordering of Ln.) Now we can take the union over
all i ∈ [2k(n)] and c ∈ {0, 1}C(n) and conclude that

Pr[Bn] ≤ 2C(n)+k(n) · T (n) · 2k(n)−n = 2−Ω(n) .

It follows that the expected number of inputs (x, y) on which Alice makes an
offending query of the first type is finite. Since the same holds for Bob, the
expected number of inputs on which some party makes an offending query of
the first type is also finite, as required.

We turn to analyzing offending queries of the second type. This case is
somewhat easier, since we no longer need to worry about the parties communi-
cating their inputs to each other. In fact, the current analysis does not depend
on C(n) and only relies on T (n) being sufficiently small with respect to k(n).
As before, consider the experiment of picking L at random along with a ran-
dom labeling σ of its elements, and denote by Q′

L,σ,n,i,j the set of queries made
by the two parties on input (σn(i), σn(j)). For any fixed n, i, j, the probability
that these queries include an offending query of the second type is bounded
by T (n) · 2k(3k(n))−3k(n) = 2−3k(n)+o(k(n)). This follows from the facts that (1)
the length of offending queries is (by definition) at least 3k(n); (2) n − k(n)
is monotone non-decreasing (thus it suffices to consider queries of the mini-
mal length); and (3) the inputs σn(i), σn(j) do not give any information about
words in L that are not of length n. Hence, making an offending query of the
second type is at least as hard as finding a non-empty bin in T (n) trials, where
there are 2k(3k(n)) balls randomly placed in 23k(n) distinct bins.

Taking the union over all i, j ∈ [2k(n)], the probability that an offending
query of the second type is made on some input (x, y) ∈ Ln × Ln is bounded
by 2−k(n)+o(k(n)). Since k(n) = ω(logn), the expected number of inputs on
which offending queries of the second type are made is finite.



cc 16 (2007) Communication vs. computation 19

Altogether, the expected number of inputs on which an offending query of
either type is made is finite. Hence, the probability (over L) that πL makes
offending queries on infinitely many inputs is 0. �

Lemma 3.22 implies that for any fixed π, the transformed protocol π′ will
produce the same output as πL on all but finitely many inputs, except with
probability 0 over the choice of L. Since there are only countably many (uni-
form)2 protocols π, we get the following stronger corollary.

Lemma 3.23. Let C, T, k be as in Lemma 3.18. Then, with probability 1
over the choice of a random 2k(n)-sparse L, the following holds. For every
protocol π (possibly depending on L), its transformed protocol π′ produces the
same output as πL on all but finitely many (x, y) ∈ L× L.

We are now ready to wrap up the proof of Claim 3.20. Suppose towards
a contradiction that Claim 3.20 does not hold. That is, for some C(n) =
o(n) and T (n) = 2o(k(n)), a random 2k(n)-sparse L is (C, T )-bad with some
nonzero probability p. From Lemma 3.23 we may conclude that, with the
same probability over the choice of L, there is a (C, T )-bounded protocol π′

predicting the inner product of two random inputs x, y ∈ L without making any
calls to L. That is, for a fraction p > 0 of languages L there is (C, T )-bounded
π′ such that for infinitely many n,

(3.24) Pr
x,y∈RLn

[
π′(x, y) = 〈x, y〉

]
> 3/4 .

By the hardness of the inner product function (Chor & Goldreich 1988), for
any protocol π′ with communication complexity C(n) = o(n) we have:

(3.25) Pr
x,y∈R{0,1}n

[
π′(x, y) = 〈x, y〉

]
< 1/2 + n−ω(1) .

Combining (3.24) and (3.25), one can use π′ to get a T -bounded distin-
guisher between a pair of inputs (x, y) drawn at random from {0, 1}n and a
pair of inputs drawn at random from Ln. Specifically, for a fraction p > 0 of
the 2k(n)-sparse languages L we get a constant distinguishing advantage. How-
ever, by a standard counting argument (cf. Goldreich (2001), Section 3.2.2)
such a distinguisher does not exist when T (n) = 2o(k(n)), except with prob-
ability 0 over the choice of L, even if a nonuniform advice of length 2o(k(n))

is allowed. This completes the proof of Claim 3.20, from which Lemma 3.18
immediately follows. �

2Recall that we introduced uniformity in order to derandomize a randomized protocol π;
however, it suffices to count over the protocols π we started with, of which there are countably
many.



20 Harsha et al. cc 16 (2007)

4. Tradeoffs in related models

4.1. Query vs. time complexity for decision procedures. We consider
the query complexity model in which a decision procedure D probes its input
x choosing to look at some bits, but not others. The query complexity of a
predicate P on n-bit inputs is given by

min
D

max
x

(# probes D makes on x) .

Here, D ranges over all decision procedures for P and x ranges over all inputs
of length n.

We will also consider the computationally bounded analog of this measure,
where D is restricted to run in probabilistic polynomial time. More formally,
we say that a probabilistic polynomial time procedure D computes a func-
tion f using at most q queries if there exists a polynomial p such that for
all instances x, (1) D queries at most q bits of x, (2) D runs in probabilistic
polynomial time p(|x|), and (3) D computes f(x) with probability at least 3/4.

Definition 4.1. We define lsb�(x) to be � least significant bits of x. We say
that a permutation p : {0, 1}m → {0, 1}m is �(m)-lsb hard if p can be com-
puted by a polynomial time algorithm but no probabilistic polynomial-time pro-
cedure A can compute lsbl(m)(p

−1(x)) with probability non-negligibly greater
than 2−�(m), where the probability is over x chosen uniformly from {0, 1}m and
the internal coin tosses of A.

We note that C log m-lsb hard permutations exist based on the hardness
of computing discrete logarithms over composite integers for every constant
C > 1 (H̊astad et al. 1993; Schrift & Shamir 1990). It is to be noted that
H̊astad et al. (1993); Schrift & Shamir (1990) prove stronger results regarding
the simultaneous hardness of bits. We mention only the O(log n) simultaneous
hardness as this is what is required for our purposes.

Theorem 4.2. Let p : {0, 1}m → {0, 1}m be a permutation that is �(m)-lsb
hard for �(m) = C log m for some constant C > 1. Then there exists a predicate

Cp :
(
{0, 1}m

)2�(m)+1 −→ {0, 1}

with the following properties:

(i) Cp is computable in polynomial time.

(ii) The query complexity of Cp is at most 2m.



cc 16 (2007) Communication vs. computation 21

(iii) For any constant α < 1, there is no probabilistic polynomial-time
bounded decision procedure Q that can compute Cp after querying only
2α�(m) bits.

Proof. For notational simplicity, we write � instead of �(m). We abuse
notation and use i both as a numerical value and as an �-bit string. The
predicate Cp is defined as follows:

Cp(y, x1, . . . , x2�) =

{
1 if p(xi) = y and lsb�(xi) = i for some 1 ≤ i ≤ 2�

0 otherwise

In the definition, y and xi are in {0, 1}m. Property (i) is clearly satisfied as Cp

is computable in polynomial time e.g., by running over all the (polynomially-
many) possible values of i. To see that Property (ii) is satisfied, consider a
computationally unbounded decision procedure for Cp that (i) queries y (which
is m bits long), (ii) inverts p to compute x = p−1(y) and i = lsb�(x), (iii)
queries xi (which is m bits long), and accepts iff xi = x.

To conclude the proof, we show that the existence of a probabilistic poly-
nomial-time bounded decision procedure Q for Cp with query complexity 2α�

contradicts our assumption that p is �-lsb hard. Given Q, we construct a
polynomial-time algorithm G for guessing lsb�(x) for input y = p(x) as follows:

1. Set xi ← 0m for all 1 = 1, . . . , 2�.

2. Run Q on input (y, x1, . . . , x2�).
Let I = {i : Q queries at least one bit of xi}.

3. Randomly choose an index i ∈ I. Output i as an �-bit string.

Lemma 4.3. G computes lsb�(x) with success probability at least 1
2α�+1 .

Proof. Fix an input y for the algorithm G. Let p−1(y) = x and i = lsbl(x).
We will consider the behavior of the decision procedure Q on inputs of the form
t = (y, x1, . . . , x2�). For those t’s where xi = x, Q outputs 1 with probability at
least 3/4 and for the remaining t’s Q outputs 0 with probability at least 3/4.
We first claim that (for each of these t’s) with probability at least 1/2, the set I
(constructed in Step. 2 above) contains the index i. Suppose this were not the
case. Then there exists a t = (y, x1, . . . , x2�) such that with probability greater
than 1/4, the decision procedure Q outputs the correct answer on this t and the
set I does not contain the index i. The correct answer on this input t depends



22 Harsha et al. cc 16 (2007)

on whether x = xi or not. Suppose x = xi (the other case is similar), then the
correct answer is 1. As the set I does not contain i, Q’s actions are indifferent
to what xi is. This would imply that the decision procedure Q outputs 1 with
probability greater than 1/4 on the instance t′, Cp(t

′) = 0, obtained from t
by replacing xi = x in t by x′ �= x. This contradicts the definition of the
decision procedure Q. Hence, with probability at least 1/2, the set I contains
the index i. Now the lemma follows from the fact that if i ∈ I, G outputs it
with probability at least 1/|I| and |I| ≤ 2α�. �

For l = O(logm), G computes the lsbl(x) with success probability non-
negligibly greater than 2−l, a contradiction. This proves Property (iii) com-
pleting the proof of the Theorem. �

We now observe that the tradeoff result for query complexity stated in
Section 1.3 follows from Theorem 4.2 and the fact that for any constant C > 1,
C log n-lsb hard permutations exist (H̊astad et al. 1993; Schrift & Shamir 1990)
as stated before.

4.2. Query vs. time complexity for property testing. The property
testing model is very similar to the query complexity model defined above –
given an input x, the tester probes certain bits of x and we count the number
of such queries. Let P be a predicate on n-bit inputs. A ε-tester for P is
a randomized procedure that should output 1 on inputs x satisfying P with
probability at least 3/4 and should output 0, with probability 3/4, on inputs x
that are ε-far (in Hamming distance) from any input x′ satisfying P . The
output of the tester on other instances of length n is arbitrary. The ε-testing
complexity of a predicate P on inputs of length n is given by

min
T

max
x

(# probes T makes on x) .

Here, T ranges over all possible testers for P and x ranges over all inputs of
length n.

We will also consider a computationally bounded analog of this measure,
where the tester T is restricted to run in probabilistic polynomial time. We now
present a predicate that exemplifies a computation-communication tradeoff in
this model:

Theorem 4.4. Let L be any language such that L ∈ NP and L �∈ BPP . Fix
any ε > 0. Fix any c > 1 and let r = mc. Then, there exists a predicate

PL :
(
{0, 1}m

)2r −→ {0, 1}



cc 16 (2007) Communication vs. computation 23

with the following properties:

(i) PL is computable in polynomial time.

(ii) The ε-testing complexity of PL is O(m).

(iii) No probabilistic polynomial-time bounded property ε-tester T can com-
pute PL querying less than r bits.

Proof. To define the predicate PL, we need to introduce some notation. We
start with a language L in NP that is not in BPP and let RL(x, w) be the NP
relation corresponding to L. Without loss of generality, let us assume that |x| =
|w| and denote it m. Let C : {0, 1}m → {0, 1}rm be an error correcting code
with distance greater than 2εrm. For y ∈ {0, 1}rm and w1, . . . , wr ∈ {0, 1}m,
we define PL as follows:

PL(y, w1, . . . , wr) =

{
1 if y = C(x), x ∈ L and RL(x, w1 ⊕ · · · ⊕ wr) holds

0 otherwise

That is, PL(y, w1, . . . , wr) is 1 if and only if y encodes an string x in L and
w1, . . . , wr compose to give a witness for x ∈ L. Property (i) is satisfied because
PL is computable in polynomial time using a procedure that decodes y to get x
and then checks that w1, . . . , wr do compose to give a witness w = w1⊕· · ·⊕wr

for the membership of x in L.

To check that Property (ii) is satisfied, consider the following (computa-
tionally unbounded) tester:

1. Probe m
4ε

random locations of y.

2. Accept if y agrees with C(x) for some x ∈ L. If not, reject.

It is easy to see that the tester outputs 1 on all instances for which PL holds.
To show that the output of the tester is correct on inputs that are ε-far from
satisfying PL, we make the following simple observation. If y encodes x ∈ L
then it is possible to change only w1 (i.e., m � εrm bits) to get an instance
that satisfies PL. Therefore, instances that are ε-far from an instance that
satisfies PL must contain y that is ε-far from any y = C(x) for x ∈ L. Hence,
our computationally unbounded tester decides the property without looking at
w1, . . . , wr. The tester probes bits of y and accepts only if they agree with some



24 Harsha et al. cc 16 (2007)

codeword C(x) for x ∈ L. Since the probability that the bits of y agrees with
a fixed codeword C(x) is at most (1− ε)

m
4ε ,

Pr[The tester accepts] ≤ 2m(1− ε)
m
4ε

≤ 1

4

To conclude the proof, suppose that a probabilistic polynomial time bounded
tester T exists that queries less than r bits. We will use T to design a proba-
bilistic polynomial time algorithm D for membership in L.

1. Given an input x, compute y = C(x).

2. Choose m random strings w1, . . . , wr in {0, 1}m.

3. Output T (y, w1, . . . , wr).

Since T reads less than r bits of the input, it follows that it does not learn
even a single bit of w from probing w1, . . . , wr. More formally, we show that
from T ’s point of view the following two distributions are indistinguishable
for any w: (a) (w1, . . . , wr) where each of the wi are chosen independently
from the uniform distribution and (b) (w1, . . . , wr) where all the wi but for
wr are chosen independently from the uniform distribution and wr is set to
w ⊕

⊕r−1
i=1 wi. It suffices to prove this statement for deterministic (possibly

adaptive) testers since the behavior of a randomized tester can be expressed as
a convex combination of deterministic testers. However this is trivially satisfied
for deterministic testers T , since T reads less than r bits of (w1, . . . , wr−1).
Therefore, the algorithm D has the same probability of success as T . This
implies that L is in BPP, a contradiction. This proves Property (iii). �

Our construction only uses the fact that NP �⊆ BPP. A stronger assump-
tion that all languages in NP do not have sub-exponential time randomized
algorithms enables us to obtain any sub-exponential tradeoff as in the case of
query complexity.

5. Tradeoff questions motivated by secure multi-party

computation

In contrast to previous sections which focus on proving the existence of trade-
offs, in this section we put forward several concrete natural tradeoff questions
and relate them to each other.



cc 16 (2007) Communication vs. computation 25

We propose three different tradeoff questions arising in different contexts:
arithmetization of Boolean functions, multi-party communication, and the
cryptographic problem of secure multi-party computation. We relate them
by showing that a (positive) solution to the first would imply a solution to the
second, which in turn would imply a solution to the third. Hence, the cryp-
tographic application may serve as an additional motivation for studying the
other two.

5.1. Time vs. degree in arithmetization. Arithmetization of Boolean
functions has proved to be a very powerful tool in complexity theory
(Babai & Fortnow 1991; Lund et al. 1992). Let R be a commutative ring
with identity. A function f̂ : Rn → R is said to extend a Boolean function
f : {0, 1}n → {0, 1} if f̂ and f agree on {0, 1}n; that is, if for every x ∈ {0, 1}n
we have f̂(x) = f(x). We refer to f̂ as a degree-d extension of f over R if
it can be computed by an n-variate polynomial p(X1, . . . , Xn) over R, whose
degree in each variable is bounded by d. The polynomial p will be referred to
as a polynomial representation of f . In typical applications of polynomial rep-
resentations in complexity theory, R is taken to be either the ring of integers
or a finite field. Note that a representation over the integers gives rise to a
representation of the same degree over an arbitrary finite field by reducing the
coefficients modulo the characteristic of the field.

We consider the computational complexity of evaluating a low-degree rep-
resentation at a given point in Rn. Specifically, given a function f and a degree
bound d, how easy is the “computationally easiest” extension meeting the de-
gree constraint?

In the case d = 1, any function f admits a unique extension over R, called
the multi-linear extension, which can be computed in EXPTIMEf,R. But if
the function f is “easy” (say, in AC0) can anything better be said about the
computational complexity of its multi-linear extension? Also, if we relax the
degree bound to d > 1, does this allow for more computationally efficient
extensions? As we shall see, it is not hard to answer these questions in a way
that establishes some weak tradeoff between time and degree.

Towards a more concrete study of the time-degree tradeoff question we
formulate the following complexity measure and complexity class.

Definition 5.1. Given a Boolean function f : {0, 1}n → {0, 1}, a bound d
on the degree (in each variable) and a prime power q, define TDd,q(f) to be
the minimal integer s such that there is a size-s algebraic circuit (over the
basis {+, ∗}) evaluating some degree-d extension of f over F = GF(q). Given
functions d(n), s(n), and q(n) (where q returns a prime power), define the



26 Harsha et al. cc 16 (2007)

class T Dd,s,q to be the class of functions f : {0, 1}∗ → {0, 1} such that for
every n we have TDd(n),q(n)(fn) ≤ s(n), and furthermore a corresponding circuit
of size s(n) (including a description of q(n)) can be uniformly generated in time
poly(s(n)).

We first argue that if the degree bound d is as large as the formula size of f ,
then the time complexity of the extension is bounded by the formula size.

Claim 5.2. Suppose f : {0, 1}n → {0, 1} can be computed by a Boolean
formula ϕ of size �. Then, for every q, TD�,q(f) = O(�).

Proof. A degree-� extension as required is obtained by the straightforward
arithmetization ϕ. Specifically, recursively define a polynomial pϕ(X1, . . . , Xn)
representing the formula ϕ(x1, . . . , xn) as follows: If ϕ = xi then pϕ = Xi;
if ϕ = ¬ϕ′ then pϕ = 1 − pϕ′ ; if ϕ = ϕ1 ∧ ϕ2 then pϕ = pϕ1 · pϕ2 ; and
if ϕ = ϕ1 ∨ ϕ2 then pϕ = 1 − (1 − pϕ1)(1 − pϕ2). It is easy to verify that pϕ

indeed represents ϕ, the degree of pϕ in each variable (in fact, even the total
degree) is bounded by the size of ϕ, and pϕ can be computed by an arithmetic
circuit (in fact, even a formula) of size O(�). �

Note, however, that if ϕ is a circuit (rather than a formula), then the
degree of the polynomial pϕ produced by the above arithmetization method
might become exponential in |ϕ|.

Claim 5.2 immediately gives the following:

Corollary 5.3. For every f ∈ NC1 there is a polynomial d(n) such that for
all (efficiently computable) q(n) we have f ∈ T Dd,d,q.

We now show that if one insists on a minimal degree extension, then even
for some very easy functions f , evaluating their extension may become hard.
This gives a provable, albeit very weak, tradeoff between time and degree under
a standard complexity assumption.

Claim 5.4. There is an AC0 function f such that if f ∈ T D1,s(n),q(n) for some
polynomial s(n) and q(n) > 2 then NP ⊆ BPP.

Proof. Let f be a universal function for 3CNF formulas. Specifically, f has
m =

(
2n
3

)
variables g = (g1, . . . , gm), which represent a 3CNF formula on n

variables by indicating which clauses are included in the formula, and n vari-
ables z = (z1, . . . , zn), representing an assignment to the formula. The output
of f(g; z) is g(z), the value of the formula represented by g on the assignment
represented by z. The function f can be computed in AC0.



cc 16 (2007) Communication vs. computation 27

Let p(X1, . . . , Xk) denote the (unique) multi-linear extension of f , where
k = m + n. The polynomial p can be written as

(5.5) p(X1, . . . , Xk) =
∑

a:f(a)=1

k∏

i=1

Lai
(Xi)

where Lb(Xi) is defined as Xi if b = 1 and as 1−Xi if b = 0.
Using a polynomial-size arithmetic circuit computing p over F = GF(q),

one can efficiently solve the unique-3SAT problem, i.e., distinguish between
an unsatisfiable 3CNF formula ϕ and one which is satisfied by exactly one
assignment. This is done by computing p(ϕ; α, α, . . . , α) where α is an arbitrary
element of F \ {0, 1}, and comparing the result to 0. Indeed, in the multi-
linear extension (5.5), when restricted to ϕ, each nonzero term corresponds to
a satisfying assignment of ϕ. Such a term evaluates to αw(1−α)(n−w) �= 0, where
w is the Hamming weight of the satisfying assignment. The claim then follows
from the fact that efficiently solving Unique-3SAT implies NP ⊆ BPP (Valiant
& Vazirani 1986). �

There are various questions one could ask regarding time-degree tradeoffs.
In particular, one could try to improve the degree bounds � and 1 in Claims 5.2
and 5.4 respectively, ideally closing the gap between the two. For concreteness,
we would like to highlight the following special cases of the general question.

Question 5.6. Does every f ∈ P admit polynomials d(n), s(n) such that
f ∈ T Ds,d,q for every efficiently computable and polynomially bounded q(n)?
Does the above hold with d(n) = O(nc), for some constant c independent of f?

Note that when q(n) < d(n), the degree restriction becomes trivial. On the
other hand, we do not want q(n) to be too large, as this would make a positive
answer to the question very unlikely. Indeed, if q is exponential in the size of
the minimal circuit C computing a degree-d extension f̂ over GF(q), then the
degree of C, viewed as a formal polynomial, is also bounded by d. (This is not
necessarily true when q is smaller.) It follows from Valiant et al. (1983) that
if f̂ is computed by a polynomial-size arithmetic circuit having a polynomially
bounded degree, then f̂ is in arithmetic NC2.

5.2. Time vs. communication in multi-party simultaneous messages
protocols. We begin by presenting a solution to the riddle from the Intro-
duction. We then extend the riddle to a more general problem which might
exhibit a time-communication tradeoff, and relate it to the time-degree problem
described above.



28 Harsha et al. cc 16 (2007)

Solving the riddle. Let si denote the sum of the entries in the ith row
of M . We show how k = n + 1 players can communicate PS(M) =

∏n
i=1 si to

the referee by each sending a single, efficiently computable element of F . (The
same solution will work for any larger number of players.) The high-level idea
is to first convert the “additive” representation of si to a degree-1 polynomial
representation over a sufficiently large extension field, then make each player
locally multiply its values of the n polynomials (one for each si), and finally
project down to the original field. The protocol’s outline is described below.

1. Each entry of M is lifted to an extension field F ′ of F such that |F ′| ≥
k +1. (This is only a conceptual step and requires no action, since F is a
subfield of F ′.) Let {α1, . . . , αk} be some fixed canonical ordering of the
nonzero elements of F ′.

2. For each row i, 1 ≤ i ≤ n, define a degree-1 polynomial pi over F ′ by
pi(y) =

∑k
m=1 Mim(1 − y/αm). Define a degree-n polynomial p(y) =

Πn
i=1pi(y). It is easy to verify that: (1) p(0) = PS(M) and (2) p(αj) does

not depend on the jth column of M , and thus can be locally evaluated
by player j. Since k > n and deg p ≤ n, the value PS(M) = p(0) can
be interpolated from the k values p(αj). That is, we can write PS(M) =∑k

j=1 λjp(αj) for some fixed coefficients λj ∈ F ′. Each player j computes
λjp(αj) (which is an element of F ′), projects it down to the original field F
using the projection mapping h : F ′ → F between the vector spaces F ′

and F , and sends the result to the referee.

3. The referee outputs the sum of the k field elements it received.

Thus, we have shown:

Theorem 5.7. The function PS(M) =
∏n

i=1

∑k
j=1 Mij , where k > n, admits a

computationally efficient simultaneous messages protocol in which each player
holds all but one column of M and sends a single field element to the referee.

Tradeoff candidates. Given the easiness of the product-of-sums question,
and motivated by the application in Section 5.3, we would like to consider the
following generalization. Instead of computing the product of the row sums si,
we now allow an arbitrary polynomial-time computable function f(s1, . . . , sn).
(For simplicity, assume that f is a Boolean function and we are promised
that si ∈ {0, 1}.) Note that without any restriction on the time complexity,
one can obtain a communication efficient protocol by combining the previous
protocol with the multi-linear extension of f . However, this protocol is not



cc 16 (2007) Communication vs. computation 29

computationally efficient. This raises the following questions (formulated in
correspondence to Question 5.6):

Question 5.8. Can the generalized communication problem be solved for any
f ∈ FP using k = poly(n) players, efficient communication (a single field
element per player), and polynomial-time computation? Can this be achieved
with k being independent of the (polynomial) time complexity of f?

Claim 5.9. A positive answer to Question 5.6 implies a positive answer to
Question 5.8.

Proof. The solution to the riddle can be generalized to an efficient protocol
for evaluating any (efficiently computable) degree-d polynomial p in the row
sums, using k = dn+1 players. (The only required modification is that player j
now applies p to its n intermediate outputs Pi,j rather than multiply them.) The
claim follows by letting p be the efficient polynomial representation guaranteed
by Question 5.6, over an extension field of size q > k. �

5.3. Time vs. communication and rounds in cryptography. In the
problem of secure multi-party computation (Ben-Or et al. 1988; Chaum et al.
1988; Goldreich et al. 1987; Yao 1986), there are k players who wish to jointly
compute some function f on their inputs without revealing their inputs to each
other. The players are allowed to communicate over secure channels according
to some prescribed protocol. By default, we require that at the end of the
protocol all players learn the value of f , but no individual player can learn any
additional information from the messages it received (other than what follows
from its own input and the value of f). We also assume for simplicity that all
players follow the prescribed protocol, though a similar discussion applies to
the case of malicious players as well.

Standard protocols for this problem (e.g., Ben-Or et al. (1988); Chaum et al.
(1988)) allow to compute an arbitrary function f . Given a circuit representation
for f , their time complexity is proportional to the circuit size and their round
complexity to its depth. It is also known (Beaver et al. 1997) that an arbitrary
function f : {0, 1}n → {0, 1} can be securely computed by k = n/ log n players
(or more) in a constant number of rounds using poly(n) communication. Here
and in the following, the n input bits may be arbitrarily partitioned between the
players. Moreover, in this protocol the (polynomial) amount of communication
does not depend on the hardness of f . However, due to its use of a multi-
linear extension of f , the protocol is not computationally efficient even if f is.



30 Harsha et al. cc 16 (2007)

Thus, we have a natural cryptographic candidate for tradeoffs between time
and communication and rounds.

Question 5.10. Can any polynomial-time computable f : {0, 1}n → {0, 1}
be securely computed by poly(n) players using polynomial computation and
a constant number of rounds? Can the communication complexity be made
independent of the (polynomial) time complexity of f?

While it is possible to directly derive a positive answer to the above question
from a positive answer to Question 5.6, one can in fact make the following
stronger claim.

Claim 5.11. Any solution to Question 5.8 in which the referee outputs the sum
of the k field elements it receives implies a positive answer to Question 5.10.

Proof. Let k be the (polynomial) number of players guaranteed by the
solution to Question 5.8, and fix an arbitrary finite field F (say, F = GF(2)).
We describe a secure protocol for f involving n + 3k + 2 players, which are
partitioned into 3 disjoint sets. Players Pi, 1 ≤ i ≤ n, each hold a single input
bit to f . Players Qj, 1 ≤ j ≤ k and players R1, R2 hold no input.

The protocol proceeds as follows. Each player Pi randomly breaks each of
its inputs xi into k additive shares r1, . . . , rk (i.e., the rj are random subject to∑

rj = xi where summation is taken over F ), and sends each share rj to all the
Q players except Qj . The Q players now apply the time-efficient multi-party
communication protocol for f , but instead of sending the answer to the referee
they break it into two random additive shares and send each share to a different
R player. Finally, each R player adds up the k values it received and sends
the sum to all players. The output is the sum of the two values sent by the R
players. �

Remark 5.12. In the computational setting for secure computation, where
the information-theoretic privacy requirement is relaxed to hold against compu-
tationally-bounded players (under cryptographic assumptions), the answer to
the first part of Question 5.10 is affirmative (Beaver et al. 1990; Yao 1986).
However, the second part of this question is open in this setting as well. Thus,
the tradeoff questions in this section are well motivated also when restricting
the attention to the computational model.



cc 16 (2007) Communication vs. computation 31

Acknowledgements

A preliminary version of this paper appeared in Proc. 31st International Col-
loquium of Automata, Languages and Programming (ICALP), 2004 (Harsha,
Ishai, Kilian, Nissim & Venkatesh 2004). This Research was done while the
first, third and fourth authors were at the NEC Laboratories, America and
the fifth author was at MPI for Informatik, Germany. For the second author,
research was supported in part by the Sidney Goldstein Research Fund.

References

L. Babai & L. Fortnow (1991). Arithmetization: A New Method in Structural
Complexity Theory. Computational Complexity 1(1), 41–66.

L. Babai, A. Gál, P. G. Kimmel & S. V. Lokam (2003). Communication Com-
plexity of Simultaneous Messages. SIAM Journal of Computing 33(1), 137–166.
(Preliminary Version in 12th STACS, 1995).

P. Beame, M. Tompa & P. Yan (1994). Communication-Space Tradeoffs for Un-
restricted Protocols. SIAM Journal of Computing 23(3), 652–661. (Preliminary
Version in 31st FOCS, 1990).

D. Beaver, J. Feigenbaum, J. Kilian & P. Rogaway (1997). Locally Random
Reductions: Improvements and Applications. Journal of Cryptology 10(1), 17–36.
(Preliminary Version in 10th CRYPTO, 1990).

D. Beaver, S. Micali & P. Rogaway (1990). The Round Complexity of Secure
Protocols (Extended Abstract). In Proc. 22nd ACM Symp. on Theory of Computing,
503–513. Baltimore, Maryland.

M. Ben-Or, S. Goldwasser & A. Wigderson (1988). Completeness Theo-
rems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Ab-
stract). In Proc. 20th ACM Symp. on Theory of Computing, 1–10. White Plains, New
York.

R. Canetti & O. Goldreich (1993). Bounds on Tradeoffs Between Randomness
and Communication Complexity. Computational Complexity 3(2), 141–167. (Pre-
liminary Version in 31st FOCS, 1990).

A. K. Chandra, M. L. Furst & R. J. Lipton (1983). Multi-party protocols. In
Proc. 15th ACM Symp. on Theory of Computing, 94–99. Boston, Massachusetts.

D. Chaum, C. Crépeau & I. Damg̊ard (1988). Multiparty unconditionally secure
protocols (extended abstract). In Proc. 20th ACM Symp. on Theory of Computing,
11–19. Chicago, Illinois.



32 Harsha et al. cc 16 (2007)

B. Chor & O. Goldreich (1988). Unbiased Bits from Sources of Weak Randomness
and Probabilistic Communication Complexity. SIAM Journal of Computing 17(2),
230–261. (Preliminary Version in 26th FOCS, 1985).

P. Duris, Z. Galil & G. Schnitger (1987). Lower bounds on communication
complexity. Information and Computation 73(1), 1–22.

O. Goldreich (2001). The Foundations of Cryptography: Volume 1, Basic Tools.
Cambridge University Press, Cambridge, U.K.

O. Goldreich & L. A. Levin (1989). A hard-core predicate for all one-way func-
tions. In Proc. 21st ACM Symp. on Theory of Computing, 25–32. Seattle, Washing-
ton.

O. Goldreich, S. Micali & A. Wigderson (1987). How to play any mental game
or a completeness theorem for protocols with honest majority. In Proc. 19th ACM
Symp. on Theory of Computing, 218–229. New York City, NY.

P. Harsha, Y. Ishai, J. Kilian, K. Nissim & S. Venkatesh (2004). Com-
munication vs. Computation. In Proc. 31st International Colloquium of Automata,
Languages and Programming (ICALP), J. D́ıaz, J. Karhumäki, A. Lepistö &
D. Sannella, editors, volume 3142 of Lecture Notes in Computer Science, 745–756.
Springer-Verlag, Turku, Finland.

J. Håstad, A. W. Schrift & A. Shamir (1993). The Discrete Logarithm Modulo
a Composite Hides O(n) Bits. Journal of Computer and System Sciences 47(3),
376–404. (Preliminary Version in 22nd STOC, 1990).

E. Kushilevitz & N. Nisan (1997). Communication Complexity. Cambridge Uni-
versity Press.

C. Lund, L. Fortnow, H. J. Karloff & N. Nisan (1992). Algebraic Methods
for Interactive Proof Systems. Journal of the ACM 39(4), 859–868. (Preliminary
Version in 31st FOCS, 1990).

N. Nisan & A. Wigderson (1993). Rounds in Communication Complexity Re-
visited. SIAM Journal of Computing 22(1), 211–219. (Preliminary Version in 23rd
STOC, 1991).

C. H. Papadimitriou & M. Sipser (1984). Communication complexity. Journal of
Computer and System Sciences 28(2), 260–269. (Preliminary Version in 14th STOC,
1982).

A. W. Schrift & A. Shamir (1990). The discrete log is very discreet. In Proc.
22nd ACM Symp. on Theory of Computing, 405–415. Baltimore, Maryland.



cc 16 (2007) Communication vs. computation 33

L. G. Valiant, S. Skyum, S. Berkowitz & C. Rackoff (1983). Fast Parallel
Computation of Polynomials Using Few Processors. SIAM Journal of Computing
12(4), 641–644.

L. G. Valiant & V. V. Vazirani (1986). NP is as Easy as Detecting Unique
Solutions. Theoretical Computer Science 47(3), 85–93. (Preliminary Version in 17th
STOC, 1985).

A. C. Yao (1979). Some complexity questions related to distributive computing
(preliminary report). In Proc. 11th ACM Symp. on Theory of Computing, 209–213.
Atlanta, Georgia.

A. C. Yao (1986). How to generate and exchange secrets? (extended abstract).
In Proc. 27th IEEE Symp. on Foundations of Comp. Science, 162–167. Toronto,
Ontario, Canada.

Manuscript received 28 February 2005

Prahladh Harsha

Toyota Technological Institute
Chicago 60637, USA
prahladh@tti-c.org

Yuval Ishai

Computer Science Department
Technion, Haifa 32000, Israel
yuvali@cs.technion.ac.il

Joe Kilian

Computer Science Department
Rutgers University
New Jersey, 08854, USA
jkilian@cs.rutgers.edu

Kobbi Nissim

Department of Computer Science
Ben-Gurion University
Beer Sheva 84105, Israel
kobbi@cs.bgu.ac.il

S. Venkatesh

Computer Science Department
University of Victoria
Victoria, BC V8W 3P6, Canada
venkat@cs.uvic.ca



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00417
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


