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Lecture 7: Expander Constructions (Zig-Zag Expanders)

Lecturer: Cynthia Dwork Scribe: Geir Helleloid

7.1 Lecture Outline

In this lecture we will see three explicit constructions of expanders. By an “explicit con-
struction”, we mean a construction with the following three properties:

1. We can build the entire N -vertex graph in poly(N) time.

2. From a vertex v, we can find the i-th neighbor in poly(log N, log D) time where D is
the degree of the graph.

3. Given vertices u and v, we can determine if they are adjacent in poly(log N) time.

The first two constructions will be presented without proof, but we will see the proof in the
case of the zig-zag construction.

1. The first construction is due to Margulis and Gaber-Galil.

2. The second construction is due to Lubotsky, Phillips, and Sarnak, and achieves opti-
mal spectral expansion λ ≈ 2/

√
d.

3. The third construction is due to Reingold, Vadhan, and Wigderson. These so-called
zig-zag expanders are built via repeated applications of two basic operations that
jointly increase the number of nodes but keep the degree and expansion λ small.
These operations are graph squaring and the zig-zag product. The proof that these
graphs are expanders will use the tensor product of two vectors.

7.2 The First Two Constructions

Construction 7.1 (Margulis [Mar]) Fix a positive integer M and let [M ] = {1, 2, . . . ,M}.
Define the bipartite graph G = (V,E) as follows. Let V = [M ]2∪ [M ]2, where vertices in the
first partite set are denoted (x, y)1 and vertices in the second partite set are denoted (x, y)2.
From each vertex (x, y)1, put in edges to (x, y)2, (x, x + y)2, (x, x + y + 1)2, (x + y, y)2, and
(x + y + 1, y)2, where all arithmetic is done modulo M . Then G is an expander. The proof
uses Fourier analysis.

Construction 7.2 (Lubotsky-Phillips-Sarnak [LPS]) Fix primes q and p such that
q ≡ 1 (mod 4) and p ≡ 1 (mod q). Let i be an integer such that i2 ≡ −1 (mod q). Define
the graph G = (V,E) as follows. Let V = GF (q) ∪ {∞}. Put an edge between (z, z′) if

z′ =
(a0 + ia1)z + (a2 + ia3)

(−a2 + ia3)z + (a0 − ia1)
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for some a0, a1, a2, a3 ∈ N such that a2
0 +a2

1 +a2
2 +a2

3 = p. It can be shown that the number
of integral solutions to a2

0 + a2
1 + a2

2 + a2
3 = p is p + 1. Hence, G has degree d = p + 1. It

can further be shown that the spectral expansion of G is at most λ(G) ≤ 2
√

d− 1/d, which
is optimal. Families of graphs with such optimal spectral expansion are called Ramanujan
graphs.

7.3 The Zig-Zag Product

In this section, we define the zig-zag product of two graphs. We will use this product in
Sections 7.4 and 7.5 to construct expander graphs and prove their spectral properties. This
construction is due to Reingold, Vadhan and Wigderson [RVW]. For convenience, we say
that G is an (N, d, λ)-expander if G has N vertices, degree d, and spectral expansion λ.

To construct the zig-zag product, we begin with an (N1, d1, λ1)-expander G and a
(d1, d2, λ2)-expander H. Assume that V (H) = [d1] = {1, 2, . . . , d1}. Each vertex in G
has d1 neighbors, and we can label them as the 1st, 2nd, . . . , and d1-th neighbors of v. De-
fine a matching RotG on V (G)× V (H) by RotG(u, i) = (v, j) where v is the i-th neighbor
of u and u is the i-th neighbor of v. This is the rotation map associated to G.

One intuitive way to approach the zig-zag product is to suppose that we want to con-
struct a random walk on V (G)×V (H). Starting at (u, i), what can we do? We can choose a
random neighbor i′ of i in H, and use that to pick a random neighbor v of u in G. Since this
isn’t quite reversible, we need to end by choosing another random neighbor of our current
vertex in H. This attempts to motivate the following definition.

The zig-zag product of G and H is denoted G z©H. The vertex set of G z©H is V (G)×
V (H), so the vertices of G z©H are pairs (v, i) with v ∈ V (G) and i ∈ V (H). Put an edge
between (u, i) and (v, j) if and only if there exist i′, j′ ∈ V (H) such that (i, i′) and (j, j′)
are edges of H and RotG(u, i′) = (v, j′). (See Figure 1)

(u,i)

(u,i’) (v,j’)

(v,j)

u−cloud 
v−cloud 

zig−zag edge

Figure 1: Zig-Zag Product

More formally,

Definition 7.1. The zig-zag product between rotation map representations of two graphs
G, a (N,D1, λ1)-graph and H, a (D1, D2, λ2)-graph, is a rotation map representation of a
graph, denoted by G z©H. The graph G z©H and its rotation map are defined as below.
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1. G z©H has ND1 vertices.

2. G z©H is a D2
2-regular graph.

3. RotG z©H((u, i), (a1, a2)) = ((v, j), (b1, b2)) if the following is satisfied: There exist
i′, j′ ∈ [D2] such that

• RotH(i, a1) = (i′, b2)

• RotG(u, i′) = (v, j′)

• RotH(j′, a2) = (j, b1)

Less formally, let’s explore what this really looks like. First, form an intermediate graph
K by replacing each vertex v of G by a copy Hv of H. For each neighbor w of v in G, choose
a vertex in Hw. Then construct a matching between these d1 vertices and the d1 vertices of
Hv. Of course, the matchings constructed for the vertices in G must be compatible in the
obvious way. We refer to Hv as the cloud corresponding to v.

Now, if there is an edge between (u, i′) and (v, j′) in K (with u 6= v), then in G z©H, all
the neighbors of (u, i′) in Hu are connected to all the neighbors of (v, j′) in Hv. So G z©H is
the edge union of many complete bipartite graphs Kd2,d2 . We can easily calculate the degree
of G z©H: from (u, i), there are d2 choices for (u, i′), then one choice for (v, j′) = RotG(u, i′),
and finally d2 choices for (v, j). Thus the degree of G z©H is d2.

Intuitively, why should G z©H have good expansion when G and H do? If we are given
a distribution that is mixed on the G component, then the rapid mixing on H suggests that
the distribution will rapidly mix on G z©H. Similarly, given a distribution that is mixed on
the H component, then the rapid mixing on G suggests that the distribution will rapidly
mix on G z©H. So we might hope that every distribution mixes rapidly on G z©H.

7.4 The Zig-Zag Expander Construction

Using both the zig-zag product and graph squaring, we can demonstrate the zig-zag con-
struction of expanders. Recall that the square of G is denoted G2; it has the same vertex
set as G, and (x, y) ∈ E(G2) if and only if there exists a path of length two from x to y in
G. If G is an (N, d, λ)-expander, then G2 is an (N, d2, λ2)-expander. In the next section we
will show that λ(G z©H) ≤ λ(G) + λ(H) + λ(H2). Assuming this result, we can state and
prove the zig-zag construction of expanders.

Theorem 7.2. Let H be a (d4, d, λ0)-expander for some λ0 ≤ 1/51. Define G1 = H2 and
Gt+1 = G2

t z©H for t ≥ 1. Then for all t, Gt is a (d4t, d2, λ)-expander with λ ≤ 2/5.

Proof. The proof is by induction on t. When t = 1, based on what we know about the
square of a graph, we see that G1 is a (d4, d2, λ2

0)-expander where λ2
0 ≤ 1/25.

Now assume that Gt−1 is a (d4(t−1), d2, λ)-expander with λ ≤ 2/5. It is clear that Gt

has d4t nodes since the number of nodes in the zig-zag product of two graphs is the product
of the number of nodes in each of the two graphs. Also Gt has degree d2, since the degree
of a zig-zag product is the degree of the second factor.

1Since H is a fixed-size graph, such an expander graph can be found by brute-force search.
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Finally,

λ(Gt) ≤ λ(G2
t−1) + λ(H) + λ(H2)

≤
(

2
5

)2

+
1
5

+
1
25

=
2
5
.

7.5 Spectral Property of the Zig-Zag Product

It remains to give an upper bound for the spectral expansion of a zig-zag product.

Theorem 7.3. Suppose G is an (N1, d1, λ1)-expander and H is a (d1, d2, λ2)-expander.
Then G z©H is an (N1d1, d

2
2, f(λ1, λ2))-expander, where f(λ1, λ2) ≤ λ1 + λ2 + λ2

2.

Proof. Recall that given vectors x ∈ RN1 and y ∈ RN2 , their tensor product is given by
x⊗ y = (xi · yj) ∈ RN1N2 . Let M be the normalized adjacency matrix of G z©H. Then

λ(G z©H) = max
α⊥1N1d1

| 〈Mα,α〉 |
| 〈α, α〉 |

.

So we need to show that for all α ∈ RN1d1 , if α ⊥ 1N1d1 , then | 〈Mα,α〉 | ≤ f(λ1, λ2)| 〈α, α〉 |.
Let α ∈ RN1d1 such that α ⊥ 1N1d1 . For all v ∈ [N1], define αv ∈ Rd1 by (αv)k = αvk.

Also define a linear map C : RN1d1 → RN1 by (Cα)v =
∑d1

k=1 αvk. Then α =
∑

v (ev ⊗ αv).
Furthermore, we can decompose αv into αv = α⊥v + α

‖
v, where α⊥v ⊥ 1d1 . Thus we can

decompose α into α‖ and α⊥ as follows:

α =
∑

v

(ev ⊗ α‖v) +
∑

v

(ev ⊗ α⊥v )

=: α‖ + α⊥.

Note that α‖, if viewed as a distribution on G z©H, is uniform within any given cloud. In
fact,

α‖ =
Cα⊗ 1d1

d1
=

(
total on v1

d1
, . . . ,

total on vi

d1
, . . . ,

total on vN

d1

)
.

Evidently, since the sum of the entries in α‖ equals the sum of the entries in α, namely 0,
we have α‖ ⊥ 1N1d1 and Cα‖ ⊥ 1N1 .

Define B̃ = IN1 ⊗ B, where B is the normalized adjacency matrix for H. Thus B̃ is
a block diagonal square matrix of size N1d1 with blocks B. Furthermore, let Ã be the
permutation matrix corresponding to the RotG mapping. Then M = B̃ÃB̃.

Note that
〈Mα,α〉 =

〈
B̃ÃB̃α, α

〉
=

〈
ÃB̃α, B̃α

〉
,
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since B̃ is a real symmetric matrix and hence self-adjoint. Also B̃α‖ = α‖, since the uniform
distribution on H is invariant under B. Then

B̃α = B̃(α⊥ + α‖) = α‖ + B̃α⊥.

Computing, we find

〈Mα,α〉 =
〈
Ã(α‖ + B̃α⊥), (α‖ + B̃α⊥)

〉
=

〈
Ãα‖, α‖

〉
+

〈
Ãα‖, B̃α⊥

〉
+

〈
ÃB̃α⊥, α‖

〉
+

〈
ÃB̃α⊥, B̃α⊥

〉
| 〈Mα,α〉 | ≤

∣∣∣〈Ãα‖, α‖
〉∣∣∣ + ‖Ãα‖‖ · ‖B̃α⊥‖+ ‖ÃB̃α⊥‖ · ‖α‖‖+ ‖ÃB̃α⊥‖ · ‖B̃α⊥‖

=
∣∣∣〈Ãα‖, α‖

〉∣∣∣ + 2‖α‖‖ · ‖B̃α⊥‖+ ‖B̃α⊥‖2,

where the last line uses the fact that Ã is a permutation and hence ‖Ãx‖ = ‖x‖, for all
x ∈ RN1d1 .

To simplify this expression, we first see that

‖B̃α⊥‖2 = ‖B̃(
∑

v

ev ⊗ α⊥v )‖2

= ‖
∑

v

ev ⊗Bα⊥v ‖2

=
∑

v

‖Bα⊥v ‖2

≤
∑

v

λ2
2‖α⊥v ‖2

≤ λ2
2‖α⊥‖2.

Secondly, we need to bound
∣∣∣〈Ãα‖, α‖

〉∣∣∣. Let A be the normalized adjacency matrix

for G; we want to relate Ã and A. Fix ev ∈ RN1 . Then Aev gives a uniform distribution on
the neighbors of v in G. This means that

Aev = CÃ · ev ⊗ 1d1

d1
.

The tensor product gives a uniform distribution on the cloud corresponding to v, multiplying
by Ã moves the distribution to the neighbors of v, and multiplying by C adds up the
distribution in each cloud.

By linearity, it follows that for all β ∈ RN1 ,

Aβ = CÃ · β ⊗ 1d1

d1
.
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Take β = Cα. Then α‖ = (β ⊗ 1d1)/d1, so we get that CÃα‖ = ACα. Thus〈
Ãα‖, α‖

〉
=

〈
Ãα‖, Cα⊗ 1d1

〉
/d1

=
〈
CÃα‖, Cα

〉
/d1

= 〈ACα,Cα〉 /d1∣∣∣〈Ãα‖, α‖
〉∣∣∣ ≤ λ1 〈Cα,Cα〉 /d1

= λ1 〈Cα⊗ 1d1 , Cα⊗ 1d1〉 /d2
1

= λ1

〈
α‖, α‖

〉
.

Combining the two inequalities, we find

| 〈Mα,α〉 | ≤ λ1‖α‖‖2 + 2λ2‖α‖‖ · ‖α⊥‖+ λ2
2‖α⊥‖2.

Take p = ‖α‖‖/‖α‖ and q = ‖α⊥‖/‖α‖, so that p2 + q2 = 1. Then

| 〈Mα,α〉 |
| 〈α, α〉 |

≤ λ1p
2 + 2λ2pq + λ2

2q
2

= λ1 + λ2 + λ2
2.
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