
Limits of Approximation Algorithms 11 Feb, 2010 (TIFR)

Lec. 3: MAXCUT and Introduction to Inapproximability

Lecturer: Prahladh Harsha Scribe: Bodhayan Roy

In the first part of today’s lecture, we will see the application semi-definite programming
(SDP) towards approximation algorithms. More specifically, we will look at the MAXCUT
problem and then design LP-based and SDP-based approximation algorithms for the same.
In the second part of today’s lecture, we will begin the discussion of inapproximability
problems, introduce GAP problems and show how GAP problems capture the hardness of
approximation. We will conclude by stating the PCP theorem in terms of NP-hardness of
GAP problems.

The references for this lecture include Lecture 2 of the DIMACS tutorial on Lim-
its of a pproximation [HC09], Lectures 7 and 8 of Sudan’s course on inapproximability
at MIT [Sud99], and Lecture 1 from a course on PCPs theorem at the University of
Chicago [Har07]. In fact, parts of these scribe notes are abstracted from the scribe notes
for Lecture 2 of the DIMACS tutorial (scribed by Darakhshan Mir) and Lecture 1 from the
PCP course at the Univ. of Chicago (scribed by Josh Grochow).

3.1 MAXCUT

The MAXCUT problem is defined as follows:

Definition 3.1.1 (MAXCUT).

Input: An undirected graph G = (V,E)

Output: A cut (S, S), where S ⊆ V

Objective: Maximize the number of edges across the cut. More formally, maximize |E(S, S)|
where

E(S, S) = {(u, v) | u ∈ S, v ∈ S}

We observed in last lecture a simple greedy 2-approximation algorithm for MAXCUT.

Greedy algorithm: Start with any partition of V into S and S. If a vertex contributes
more edges to the cut when moved from S to S or vice-versa, then move it. Each such step
increases the cut by at least one edge and since the cut size is at most (|E|), this process
terminates in E steps. Furthermore, for each vertex, more than half of the edges incident
to it are in the cut. Hence, at least half of all the edges in the graph are in the cut. Thus,
we get a 2-approximation algorithm.

We can also emulate the randomized rounding technique from last time (applied to
MAXSAT) to get an alternate 2-approximation algorithm.
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Randomized rounding: For each u ∈ V , flip a coin, if heads (H), u ∈ S, else if tails
(T), u /∈ S. It is easy to see from below that each edge is cut with probability 1/2.

Pr[(u, v) ∈ E(S, S)] =
1

2
× 1

2
+

1

2
× 1

2
=

1

2

Thus, the expected size of the cut E
[
|E(S, S)|

]
=
∑

(u,v)∈E Pr[(u, v) ∈ E(S, (S))] = |E|/2.
This gives us a 2-approximation algorithm. Note that this is a randomized algorithm and
the above analysis only shows that the expected size of the cut is |E|/2. But, we could
repeat this experiment several times and choose the largest cut. By Markov’s inequality,
this cut will be close to expected value with high probability.

3.1.1 LP-based approximation for MAXCUT

We will now design a LP-based approximation algorithm for MAXCUT. Recall from last
time, that we gave a LP-based algorithm from MAXSAT that achieved 1

1− 1
e

approxima-

tion. Combining this with the vanilla randomized rounding algorithm, we obtaine 4
3 -

approximation for MAXCUT. Let us see, if we can achieve a similar improvement for
MAXCUT. For this, we first design an integer program for MAXCUT and then relax it
to get a LP.

Integer Program Version Define variables xu, u ∈ V and euv, (u, v) ∈ E as follows
which are supposed to imply the following.

euv ←−

{
1 if (u, v) is in cut

2 otherwise
.

xu ←−

{
1 if u ∈ S
0 otherwise

MAXCUT can now be phrased as the following integer program.

Maximize
∑

(u,v)∈E

euv

subject to euv ≤
{
xu + xv
2− (xu + xv)

, ∀(u, v) ∈ E

xu ∈ {0, 1}, ∀u ∈ V
euv ∈ {0, 1}, ∀(u, v) ∈ E

Notice that euv 6= 0 ⇐⇒ xu 6= xv.
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LP relaxation for MAXCUT: We now relax euv ∈ {0, 1} to 0 ≤ euv ≤ 1 and xuv ∈
{0, 1} to 0 ≤ xuv ≤ 1 to obtain the following LP relation.

Maximize
∑

(u,v)∈E

euv

subject to euv ≤
{
xu + xv
2− (xu + xv)

, ∀(u, v) ∈ E

xu ∈ [0, 1], ∀u ∈ V
euv ∈ [0, 1], ∀(u, v) ∈ E

We can now solve the above LP using an LP-solver. Every solution to the Integer
Program is also a solution to the Linear Program. So the objective function will only rise.
If OPTLP is the optimal solution to the LP, then:

OPTLP ≥ MAXCUT(G)

Rounding the LP solution: We now round the LP-solution to obtain an integral solu-
tion as follows: for each u ∈ V , flip a coin with Heads with proability xu and Tails with
1 − xu. If Heads then set u ∈ S, and if Tails set u ∈ S. The expected number of edges in
such a cut, E[|E(S, S̄)|] can be then calculated as follows:

E[|E(S, S̄)|] =
∑

(u,v)∈E

Pr[(u, v) is in the cut]

=
∑

(u,v)∈E

xu(1− xv) + xv(1− xu)

On the other hand, the LP-optimal solution is given by

OPTLP =
∑

(u,v)∈E

euv =
∑

(u,v)∈E

min{xu + xv, 2− (xu + xv)}

But for all xu, xv ∈ [0, 1], we have

xu(1− xv) + xv(1− xu) ≥ 2 min{(xu + xv), 2− (xu + xv)}.

Thus

E
[
|E(S, S)|

]
≥ 1

2
OPTLP ≥

1

2
MAXCUT(G).

We thus, have a 1/2-approximation algorithm for MAXCUT using randomized rounding
of the LP-relaxation of the problem. Actually, it is to be noted that the LP-relaxation
is pretty stupid, the optimal to the LP is the trivial solution xi = 1/2 for all i, which in
turn leads to OPTLP = |E|. But we do mention this example as it naturally leads to the
following more powerful SDP relaxation.
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3.1.2 Semi-definite programming (SDP)

Recall from last lecture the definition of LP.

Maximize
∑
i

cixi

subject to
∑
i

a
(k)
i xi ≤ b(k), k = 1, . . . ,m

x1, . . . , xn ∈ R

It is known that LPs can be solved in time polynomial in n, m and l, where l = # bits

required to represent the elements ci, a
(k)
i , b(k).

Semi-definite programs are a special case of LPs in which the vector of variables x, now
thought of as a matrix is further constrained to be a positive semi-definite matrix. Instead
of defining a positive semi-definite matrix, we instead adopt the following (equivalent) al-
ternative definition of SDPs in terms of vector dot-products. An SDP is of the following
form.

Maximize
∑
ij

ci,j〈vi,vj〉

subject to
∑
i,j

a
(k)
ij 〈vi,vj〉 ≤ b

(k), k = 1, . . . ,m

v1, . . . ,vn ∈ Rn

Thus, SDPs are LPs in which the variables are constrained to arise as the dot products of
vectors. Note that SDPs can in principle have irrational solutions. Hence, one can expect to
solve them optimally. However, it is known how to obtain arbitrarily good approximations
of the SDPs. More precisely, It is known that a SDPs can be solved within accuracy ε in
time polynomial in n, m, l and 1/ε where l = # bits required to represent the elements

of a
(k)
ij , b

(k), cij . As in the case of LPs, we will use these SDP-solvers as black-boxes while
designing approximation algorithms.

3.1.3 SDP-based approximation for MAXCUT

We will now sketch a 0.878-approximation to MAXCUT due to Goemans and Williamson [GW95].
The main idea is to relax the integer problem defined above using vector valued variables.
For this we first introduce semi-definite programming.

Maximize
∑

(u,v)∈E

(1− 〈xu,xv〉)
2

subject to 〈xu,xu〉 = 1, ∀i

Denote the optimal to the above SDP by OPTSDP. We first observe that the SDP is in fact
a relaxation of the integral problem. Let x0 be any vector of unit length, i.e., 〈x0,x0〉 = 1.
Consider the optimal cut S that achieves MAXCUT. Now define,

xu =

{
x0 if i ∈ S
−x0 if i /∈ S,∀i.

3-4



Consider the quantity (1−〈xu,xv〉)
2 . This is 0 if the vectors xu and xv lie on the same side,

and equals 1 if they lie on opposite sides. Thus, OPTSDP ≥ MAXCUT.
How do we round the SDP solution to obtain an integral solution. The novel rounding

due to Goemans and Williamson is as follows: The SDP solution produces n = |V | vectors
xu, u ∈ V . Now pick a random hyperplane passing through the origin of the sphere and
partition vectors according to which side tof the hyperplane they lie. Let (S, S̄) be the cut
obtained by the above rounding scheme. It is easy to see that

E[|E(S, S̄)|] =
∑

(u,v)∈E

Pr[(u, v) ∈ cut]

=
∑

(u,v)∈E

Pr[xu,xv lie on opposite sides of the hyperplane]

Let θuv be the angle between vectors xu and xv. Then the probability that they are cut is
proportional to θuv, in fact exactly θuv/π. Thus,

E[|E(S, S̄)|] =
∑

(uv)∈E

θuv
π

Let us know express OPTSDP in terms of the θuv’s. Since θuv = cos−1(〈xu,xv〉), we have

OPTSDP =
∑

(u,v)∈E

(1− cos θuv)

2

By a “miracle of nature”(Mathematica?) Goemans and Williamson observed that

θ

π
≥ (0.878 . . .)× 1− cos θ

2
, ∀θ ∈ [0, π]

Hence,
E[|E(S, S̄)|]

OPTSDP
≥ 0.87856 . . . .

Theorem 3.1.2. ∀ε > 0, MAXCUT is
(

1
0.87856... + ε

)
-approximable.

3.2 Limits of Approximation – Introduction

We saw in the last few lectures, that combinatorial optimization problems, even though
of similar hardness with respect to finding the optimal solution (in the sense that they all
were all NP-complete) displayed an entire spectrum of hardness with respect to finding
approximate solutions. For instance, we observed the following behavior.

FPTAS: The class of problems that were (1 + ε)-approximable in time poly(n, 1/ε) for
every ε > 0, eg: KNAPSACK.

PTAS: The class of problems that were (1 + ε)-approximable in time polyε(n) for every

ε > 0, eg: MIN-MAKESPAN is (1 + ε)-approximable in time polyn
1
ε .
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APX: The class of problems that allowed for constant factor approximation, eg: VERTEX-
COVER, MAXSAT, MAXCUT.

log-APX: The class of problems that allowed for logarithmic factor approximation, eg:
SET COVER.

poly-APX: And finally, the set of problems that allowed for only polynomial factor ap-
proximation, eg: COLOURING, CLIQUE.

Clearly, FPTAS ⊆ PTAS ⊆ APX ⊆ log-APX ⊆ poly-APX. Why do problems display
such a rich variety when it comes to how well they can be approximated? Does the fact
that there exists a good approximation for one problem imply a good approximation for
another. Like optimization problems, do approximation problems have their own hierarchy
of hardness? The complexity of approximation was not well understood. In fact, even in
the algorithmic world, approximation algorithms was not a major topic till the 80’s. For
instance, the 1985 book Combinatorial Optimization: Annotated Bibliographies did not have
a chapter on approximation problems.

The situation changed dramatically with the paper of Papadimitriou and Yannakakis,
“Optimization, Approximation and Complexity Classes” [PY91] in 1988 which initated the
study of approximation problems from a complexity standpoint. They extended the notion
of reductions to define approximation preserving reductions and defined a new class of
approximation problems called MAX-SNP for which MAXSAT was the typical complete
problem in the sense that if it had a PTAS, then the entire class of MAX-SNP had PTAS.
Several other constant-factor approximable problems in APX were also shown to be MAX-
SNP complete. However, even then, the assumption “hard to approximate” was considered
to be a much stronger hypothesis than “hard to compute exactly” (ie., NP 6= P). The
seminal paper of Feige, Goldwasser, Lovász, Safra and Szegedy [FGL+96] in 1992 which
established the dramatic connection between the ongoing work in probabilistic proof systems
and hardness of approximation showed that for some problems these two assumptions might
in fact be equivalent! This led to the birth of the field – limits of approximability.

3.2.1 GAP problems

How does one study the hardness of approximation problems? For this, it is instructive
to recall how the hardness of optimization problems was studied in the theory of NP-
completeness. For instance, suppose we wished to study the hardness of problems such
as:

• MAXCLIQUE: Given a graph G, output the vertices in its largest clique.

• 3CNF satisfiability: Given a 3CNF Boolean formula, output a satisfying assignment if
one exists. A related problem is that of MAX3SAT : Given a 3CNF Boolean formula,
output an assignment which satisfies the maximum number of clauses.

• 3-COLOR: Given a graph G, color the vertices with 3 colors such that no edge is
monochromatic if such a coloring exists.
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• SET COVERING PROBLEM: Given a collection of sets S1, S2, . . . , Sm that cover a
universe U = {1, 2, . . . , n}, find the smallest sub-collection of sets Si1 , Si2 , . . . that
also cover the universe

• ...

Rather than studying these problems directly, it is often convenient to study polynomially
equivalent decision problems, i.e. computational problems whose output is always a simple
“yes” or “no.” For example, the decision problem equivalents of the above problems are:

• CLIQUE = {〈G, k〉|graph G has a clique of size ≥ k}

• 3SAT = {ϕ|ϕ is satisfiable}

• SET-COVER = {〈U ; {S1, . . . , Sm}, k〉|∃1 ≤ i1 ≤ i2 ≤ . . . , ik ≤ m, such that
⋃m
j=1 Sij =

U}

• ...

As in the case of computational problems, it would be nice if we could capture the
hardness of the approximation problems via decision problems. The analogue of decision
problems for approximation algorithms are known as gap problems. Gap problems are
promise-problems.

Definition 3.2.1 (promise problems). A promise problem Π ⊆ Σ∗ is specified by a pair of
sets (YES,NO) such that YES,NO ⊆ Σ∗ and YES ∩ NO = ∅.

Whereas a decision problem specifies a set of “yes” instances – and thus implicitly
specifies that all other instances are “no” instances – a promise problem explicitly specifies
both the “yes” instances YES and the “no” instances NO. Obviously we require YES∩NO =
∅, but – unlike in decision problems – we do not require that YES∪NO covers all instances
of the problem. The instances neither in YES nor NO are called don’t-care instances. An
algorithm is said to solve a promise problem (YES,NO) if it outputs “yes” on all x ∈ YES
and “no” on all x ∈ NO, and we don’t care what the algorithm says on other instances
x. Thus, if an algorithm solves a gap problem and outputs “yes” on input x, all we can
conclude in general is that x /∈ NO, since x might be a “don’t care” instance.

Gap problems are best described by example. For instance, the gap problem correspond-
ing to the 1/α-approximating MAX3SAT, called gapα-MAX3SAT (for α ≤ 1) is defined as
follows. gapα-MAX3SAT is a promise problem whose (YES,NO) are as follows:

YES = {〈ϕ, k〉|there is an assignment satisfying ≥ k clauses of ϕ}
NO = {〈ϕ, k〉|every assignment satisfies ≤ αk clauses of ϕ}

where ϕ is a 3CNF formula and k any positive integer.
As promised, approximation problems are polynomially equivalent to gap problems. We

show this in the case of MAX3SAT below.

Proposition 3.2.2. For any 0 < α < 1, 1/α-approximating MAX3SAT is polynomially
equivalent to solving gapα-MAX3SAT.
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Proof. (⇒) Suppose there is an α-approximation algorithm A to MAX3SAT. Then, consider
the following algorithm B for gapα-MAX3SAT.

B : “On input 〈ϕ, k〉
1. Run A on ϕ and let k′ = A(ϕ).

2. Accept iff k′ ≥ αk. ”

B solves gapα-MAX3SAT: For if k′ ≥ αk, then there must be some assignment satisfying at
least αk clauses, so ϕ /∈ NO and the algorithm outputs “yes.” Conversely, if αk > k′, then
since k′ ≥ αOPT (ϕ) it is the case that k > OPT (ϕ), so there is no assignment satisfying
at least k clauses. Thus ϕ /∈ YES and the algorithm outputs “no.”

(⇐) Suppose instead there is an algorithm B that solves gapα-MAX3SAT. Then

A : “On input ϕ

1. Let m be the number of clauses of ϕ.

2. Run B on 〈ϕ, 1〉, 〈ϕ, 2〉, 〈ϕ, 3〉, . . . , 〈ϕ,m〉.
3. Let the largest k such that B accepted 〈ϕ, k〉
4. Output αk ”

is an 1/α-approximation to MAX3SAT. For if B rejects 〈ϕ, k + 1〉, we know it is not a
YES instance, so ϕ cannot have any assignment satisfying strictly more than k clauses, i.e.
k ≥ OPT (ϕ), or, multiplying both sides by α, αk ≥ αOPT (ϕ). But since B accepted 〈ϕ, k〉,
there must be some assignment to ϕ satisfying at least αk clauses, i.e. OPT (x) ≥ αk. Thus
OPT (x) ≥ αk ≥ αOPT (x).

Thus, to show that approximating MAX3SAT is hard, it suffices (and is necessary) to
show that gapα-MAX3SAT is hard. And this is precisely what the PCP Theorem demon-
strates.

3.2.2 The PCP Theorem

One formulation of the PCP Theorem states that gapα-MAX3SAT is NP-hard for some
α ∈ (0, 1).

Theorem 3.2.3 (PCP Theorem [AS98, ALM+98]). There exists 0 < α < 1 such that
3SAT is polynomial time reducible to gapα-MAX3SAT, i.e. there is some polynomial time
reduction R : {3CNF} → {3CNF} × N, such that

ψ ∈ 3SAT ⇒ R(ψ) = 〈ϕ, k〉 ∈ YES

ψ /∈ 3SAT ⇒ R(ψ) = 〈ϕ, k〉 ∈ NO.

Or equivalently, gapα-MAX3SAT is NP-hard.

An immediate corollary of the above theorem is the following hardness of approximation
fo MAX3SAT.

Corollary 3.2.4. There exists β > 1 such that β-approximating MAX3SAT is NP-hard.
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