
Limits of Approximation Algorithms 25 Feb, 2010 (TIFR)

Lec. 5: 2-query PCPs and BLR-Linearity Testing

Lecturer: Prahladh Harsha Scribe: Girish Varma

In today’s lecture, we will see PCPs that require only 2 queries (however over a large
alphabet). This will lead us to the gap problem Label-Cover, which is the starting point
of almost all tight hardness results.

In the second half od today’s lecture, we will see some of the first local testing results,
linearity testing, which eventually then led to the PCP Theorem.

5.1 2-query PCPs

In the previous lectures, we saw the following form of the PCP Theorem.

Theorem 5.1.1 (PCP Theorem).

∃ constant Q, NP ⊆ PCP1,1/2[O(log n), Q]

or equivalently, ∃α > 1 such that it is NP-Hard to approximate MAX3SAT to factor α.

Today we will ask the question how small can the query complexity Q be made? For
this, we first generalize our notion of PCPs to include proofs over non-binary alphabets.

Definition 5.1.2. PCPΣ
c,s[r,Q] is the class of languages that have restricted verifiers that

uses r random bits, Q queries to the proof π, which is a string over Σ, with

Completeness ∀x ∈ L, ∃π, Pr[V π(x) accepts] ≥ c.

Soundness ie. ∀x /∈ L, ∀π, Pr[vπ(x) accepts] ≤ s.

When Σ = {0, 1}, we will not mention it.

Remark 5.1.3. • If the proof is over a binary alphabet and we have perfect complete-
ness (i.e., c = 1) then Q ≥ 3 unless P 6= NP. Suppose we had a 2-query PCP over
binary alphabet for a language L with c = 1, then L ≤p 2SAT: for each input x and
random coin toss R, the action of the verifier is a 2-ary Boolean function that can be
encoded as a 2CNF formula ϕR. Let ϕ =

∧
R ϕR. Clearly x ∈ L iff ϕ ∈ 2SAT. Since

2SAT ∈ P, we have PCP
{0,1}
1,s [O(log n), 2] ⊆ P .

• PCPΣ
c,s[r, q] ⊆ PCPc,s[r, q log |Σ|]. This is done by encoding the the alphabet Σ in the

binary alphabet {0, 1} using log |Σ| bits for each symbol in Σ. The query complexity
thus increases to q · log |Σ|.

We will now show that we can reduce the query complexity to 2 if we allow for a large
alphabet.

Theorem 5.1.4. PCPΣ
c,1−ε[r, q] ⊆ PCPΣq

c,1−ε/q[r + log q, 2].

5-1

Proof. Suppose L ∈ PCPΣ
c,s[r, q], then L has a (r, q, poly(n), poly(n))-restricted verifier V .

On input x and a proof π : [m]→ Σ, V

1. randomly tosses some coins R

2. generates queries i1, i2, . . . iq

3. reads πi1 , πi2 , . . . πiq

4. Accepts if the predicate Px,R(πi1 , πi2 , . . . , πiq) is satisified.

Now consider the following proof system with a verifier V ′. The proof will consist of a pair
π1 : [m]q → Σq and π2 : [m]→ Σ . On input x and the proof π1, π2, V ′

1. randomly tosses some coins R′. We will view R′ as (R, q)

2. generates queries i1, i2, . . . iq

3. randomly picks j ∈ [q]

4. reads π1(i1, i2, . . . , iq) and π2(ij)

5. Computes the predicate

Px,R′(π1(i1, i2, . . . , iq)) = Px,R(π1(i1, i2, . . . , iq)1, π1(i1, i2, . . . , iq)2, . . . , π1(i1, i2, . . . , iq)q).

6. checks if π2(ij) is same as jth symbol of π1(i1, i2, . . . , iq)

7. Accepts if the predicate in step 5 and the check in 6 are true.

If x ∈ L, then there is a proof π that V accepts with probability ≥ c. We can easily
construct a proof π1(i1, i2, . . . , iq) = π(i1)π(i2) . . . π(iq) and π2 = π that V ′ will accept with
probability ≥ c.

If x /∈ L, then for any proof π2 = π, V rejects with probability at least ε. In other
words, at least ε-fraction of the predicates Px,R(πi1 , . . . , πiq) are rejected. But π1 need not
be an exact expansion of π2(ie π1(i1, i2, . . . , iq) 6= π(i1)π(i2) . . . π(iq)). We must thus have
that either π1(i1, i2, . . . , iq) = π(i1)π(i2) . . . π(iq) in which case step 5 rejects or at least
one of the symbols π1(i1, . . . , iq)j must disargree with the corresponding symbol π2(ij) in
which case step 6 rejects with probability at least 1/q. Hence, the overall test rejects with
probability at least ε/q, completeing the soundness analysis.

Corollary 5.1.5. ∃ constant Q, NP ⊆ PCP1,1/2[O(log n), Q] ⊆ PCP {0,1}
Q

1,1− 1
2Q

[O(log n), 2].

Suppose we want to decrease the error probability of soundness s, then we repeat the
PCP, say some t times and reject if at least one of them rejects. This gives us that
PCPΣ

1,s[O(log n), 2] ⊆ PCPΣ
1,st [O(t log n), 2t]. But this increases the number of queries.

What if we ask all the t queries together? In other words, we still ask only 2 queries but
club all the t repetitions together. On the face of it, it is not at all clear that the error
drops if one repeats in such a parallel fashion. Surprisingly, Feige and KIlian [FK00] and
then Raz [Raz98] showed that the error does drop exponentially in t even in this case.

5-2

Theorem 5.1.6 (Parallel Repitition). ∀s ∈ (0, 1), ∃cs ∈ (0, s), PCPΣ
1,s[r, 2] ⊆ PCPΣt

1,cts
[rt, 2].

Corollary 5.1.7. ∀ε > 0, ∃ an alphabet Σ such that

NP ⊆ PCPΣ
1,ε[O(log n · log(1/ε)), 2]

where such that |Σ| = poly(1/ε).

5.1.1 LABEL-COVER

We saw that there are PCP proof systems for languages in NP, in which the verifier makes
only 2 queries. Furthermore, observe that the check made by the verifier is in the form of a
projection from the first answer to the second. It will be more convenient to abstract these
2-query PCPs in terms of a graph problem, which we call Label-Cover.

Definition 5.1.8 (Label-Cover). An instance I of the Label-Cover problem is specified
by a quadruple (G,Σ1,Σ2, F) where G = (L,R,E) is a bipartite graph, Σ1 and Σ2 are
two finite sized alphabets and Π = {πe : Σ1 → Σ2|e ∈ E}, is a set of functions (also called
projections), one for each edge (u, v) ∈ E.

A labeling A : L → Σ1, B : R → Σ2, is said to satisfy an edge (u, v) iff π(u,v)(A(u)) =
B(v). The value of an instance is the maximal fraction of edges satisfied by any such
labeling.

For any δ ∈ (0, 1), the gap problem gapε-LC is the promise problem of deciding if a
given instance has value 1 or at most ε. More precisely, the YES and NO of gapε-LC are
given as follows.

YES =
{
I : ∃ (A : L→ Σ1, B : R→ Σ2) such that ∀(u, v) ∈ E, π(u,v)(A(u)) = B(v)

}
NO =

{
I : ∀ (A : L→ Σ1, B : R→ Σ2) ,

∣∣{(u, v) ∈ E : π(u,v)(A(u)) =, B(v)}
∣∣ ≤ ε|E|}

Thus, an equivalent formulation of Corollary 5.1.7 is the following.

Corollary 5.1.9. ∀ε > 0, there exist alphabets Σ1,Σ2 with |Σ1|, |Σ2| = poly(1/ε) such that
gapε-LC is NP-hard.

5.2 Linearity Testing

We will now see a randomized test for checking whether a function between two groups is
linear (ie a homomorphism).

Definition 5.2.1 (Linear function). Gven two Abelian groups G,H, the function f : G→ H
is said to be linear iff

∀x, y ∈ G, f(x+ y) = f(x) + f(y).

(Observe that the first + is performed according to group G while the second is performed
according to H.

5-3

A naive test for checking for linearity is to randomly pick x, y ∈ G and check if f(x+y) =
f(x)+f(y). Blum, Luby and Rubinfield [BLR93] showed that this check is actually a “good”
one.

BLR-Testf : “ 1. Choose y, z ∈R G independently

2. Query f(y), f(z), and f(y + z)

3. Accept if f(y) + f(z) = f(y + z). ′′

We will prove that this test is “good”. Before stating the result we need some definitions.

Definition 5.2.2 (Local consistency). Local consistency of f ∈ HG denoted by ε(f) is
defined as

ε(f) = Pr
x,y

[f(x) + f(y) 6= f(x+ y)]

It is clear that, if f is linear then the naive check is true with probability 1 (ie. ε(f) = 0).

Definition 5.2.3 (Hamming distance). For f, g ∈ HG, the Hamming distance δ(f, g) is
defined as

δ(f, g) = Pr
x∈G

[f(x) 6= g(x)]

For f ∈ HG and S ⊆ HG,
δ(f, S) = min

g∈S
δ(f, g)

Definition 5.2.4 (Global Consistency). Let L ⊂ HG be the set of all linear functions
(homomorphisms) from G to H. Then the global consistency of f ∈ HG denoted by δ(f)
is defined as

δ(f) = δ(f, L)

It is clear that δ(f) = 0 ⇒ ε(f) = 0. To show that the test is “good” is equivalent to
proving a result of the following type: δ(f) is “large” implies ε(f) is “large”. We will first
show that a general result of this nature is impossible if ε(f) is not too small.

Consider the function f : Z/3nZ→ Z/3nZ defined as follows:

f(x) =

0 if x ≡ 0 (mod 3)

1 if x ≡ 1 (mod 3)

3n− 1 if x ≡ −1 (mod 3)

It can be shown that though for this f , ε(f) = 2/9, δ(f) = 2/3. Thus, even though δ(f)
is very large, ε(f) is not all that large. This counterexample was given by Coppersmith.
We will now give an analysis of the test (also due to Coppersmith) which shows that this
is basically the worst example. and also showed the following

Claim 5.2.5. Suppose ε(f) < 2/9 then δ(f) ≤ 2ε(f).

5-4

Proof. Let ϕ : G→ H be defined as

ϕ(x) = pluralityy{f(x+ y)− f(y)},

with ties being broken arbibtrarily. We will show that ϕ has the following properties, which
clearly implies the claim.

1. δ(f, ϕ) ≤ 2ε(f)

2. ∀x,Pry[ϕ(x) = f(x + y) − f(y)] ≥ 2/3. Thus, even though ϕ(x) was defined as the
plurality, it is actually a 2/3-majority.

3. ϕ is linear

1. Proof of “δ(f, ϕ) ≤ 2ε(f)”

Let BAD = {x ∈ G : Pry[f(x) 6= f(x + y) − f(y)] ≥ 1/2}. If x /∈ BAD, then
f(x) = ϕ(x). Hence, δ(f, ϕ) ≤ |BAD|/|G|. Now

ε(f) = Pr
x,y

[f(x) 6= f(x+ y)− f(y)]

≥ Pr [x ∈ BAD] · Pr [f(x) 6= f(x+ y)− f(y)|x ∈ BAD]

≥ |BAD|
2|G|

2. Proof of “∀x, Pry[ϕ(x) = f(x+ y)− f(y)] ≥ 2/3”

Fix any x, consider the following the collision probability

Pr
y1,y2

[f(x+ y1)− f(y1) = f(x+ y2)− f(y2)]

= Pr
y1,y2

[f(x+ y1) + f(y2) = f(x+ y2) + f(y1)]

≥ Pr
y1,y2

[f(x+ y1) + f(y2) = f(x+ y1 + y2) = f(x+ y2) + f(y1)]

≥ 1− 2ε(f) > 5/9

For h ∈ H, let ph = Pry[f(x + y)− f(y) = h]. Clearly, pmax = max ph = Pry[ϕ(x) =
f(x+ y)− f(y)]. Since the ph’s are a probability distribution, we have

∑
h∈H ph = 1.

From the above argument wrt. to the collision probability we have
∑

h∈H p
2
h > 5/9.

Then the following is true

pmax = pmax ·
∑

ph ≥
∑
h∈H

p2
h > 5/9

p2
max + (1− pmax)2 ≥

∑
h∈H

p2
h > 5/9

2p2
max − 2pmax + 4/9 > 0

pmax > 2/3

So for at least 2/3 fraction of the y’s f(x+ y)− f(y) is the same and hence equal to
ϕ(x).

5-5

3. ϕ is linear.
From 2, we have that

ϕ(x) = f(y)− f(y − x) for all but < 1/3 fraction of y’s

ϕ(z) = f(y + z)− f(y) for all but < 1/3 fraction of y’s

ϕ(x+ z) = f(y + z)− f(y − x) for all but < 1/3 fraction of y’s

Therefore ∃y such that all the above 3 equations are satisfied. Hence

∀x, z ∈ H, ϕ(x) + ϕ(z) = ϕ(x+ z)

References

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. J. Computer and System Sciences, 47(3):549–595,
December 1993. (Preliminary Version in 22nd STOC, 1990). doi:10.1016/0022-0000(93)
90044-W.

[FK00] Uriel Feige and Joe Kilian. Two-prover protocols – low error at affordable rates.
SIAM J. Computing, 30(1):324–346, 2000. (Preliminary Version in 26th STOC, 1994).
doi:10.1137/S0097539797325375.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. Computing, 27(3):763–803, June 1998.
(Preliminary Version in 27th STOC, 1995). doi:10.1137/S0097539795280895.

5-6

http://dx.doi.org/10.1016/0022-0000(93)90044-W
http://dx.doi.org/10.1016/0022-0000(93)90044-W
http://dx.doi.org/10.1137/S0097539797325375
http://dx.doi.org/10.1137/S0097539795280895

	2-query PCPs
	LABEL-COVER

	Linearity Testing

