
Limits of Approximation Algorithms 18 Mar, 2010 (TIFR)

Lec. 7: Low degree testing (Part I)

Lecturer: Prahladh Harsha Scribe: Nutan Limaye

In this lecture1, we will give a local algorithm to test whether a given function is close to
a low degree polynomial, i.e. check whether the function f : Fm → F (given as a truth-table)
is close to the evaluation of some multi-variate polynomial of low degree without reading all
of f . This problem is refered to as the “low-degree testing”. The main references for this
lecture include Lecture 14 from Sudan’s course on inapproximability at MIT [Sud99] and
the papers by Raz and Safra [RS97] and Moshkovitz and Raz [MR08] on the plane-point
low-degree test.

Recap from last lecture: In the last lecture, we showed that the Walsh-Hadamard code
has excellent locally checkable properties using the Fourier analysis of linearity test. Recall
that the Walsh-Hadamard code is a [k, 2k, 2k−1]2 code. The disadvantage of this code is
that the rate of the code is inverse-exponential, it blows up the message exponentially! In
fact, using the local checkability of the WH-code, we constructed the following PCP for NP:
NP ⊆ PCP1,1/2(O(n2), 14). Recall that we intend to eventually prove the following PCP
theorem: NP ⊆ PCP1,1/2(O(log n), O(1)). A possible starting point would be to show that
some code with not-too-bad-a-rate (inverse polynomial is fine) is locally checkable. The
low-degree testing algorithm we will discuss today will show that the Reed-Muller code
is in fact one such code: it has inverse-polynomial rate and is locally checkable. In later
lectures, we will then prove the PCP theorem using the local checkability of Reed-Muller
codes.

Low Degree Test: Let F is a finite field and |F| = q and d < q. A function f : Fm → F
is said to be a degree d polynomial if it can be expressed as follows2.

f(x1, . . . , xm) =
∑

i1+...+ik≤d
ai1...imx

i1
1 . . . x

im
m , ∀(x1, . . . , xm) ∈ Fm.

Let us denote the set of all m-variate degree-d polynomial by Pmd . The main problem in
“low-degree testing” is as follows:

Given a function f : Fm → F (as a table of values), check whether f is a low-degree
polynomial or far from being low-degree (i.e., if f ∈ Pmd or δ(f, P ) is large for all
P ∈ Pmd ) by querying f at as few points as possible.

Here, “farness” or its complement “closeness” is measured in terms of the Hamming dis-
tance, i.e. two functions f, g : X → Y are said to be δ-close to each other if Prx∈X [f(x) 6= g(x)] ≤

1Prahladh: These notes are far more detailed than the lecture it corresponds to. Thanks to the scribe
Nutan for filling in all the missing details in the lecture.

2Here we do not distinguish between the formal representation of the function as a polynomial and the
evaluation of the function.
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δ. And a function f is said to be δ-close to a family of functions S, if there exists a function
g ∈ S such that f is δ-close to g.

We would like to design a low-degree test which has the following properties.

Completeness: If f is a low degree polynomial, then test accepts with probability 1.

Soundness: There exists δ0 ∈ (0, 1) such that if Pr [Test Rejects] ≤ δ ≤ δ0 then f is
O(δ)-close to a low degree polynomial.

We would like to ask how large can δ0 be?
The crucial property that has led to the local checkability of Reed-Muller codes is the

following.

The restriction of a degree d polynomial to lower dimensional spaces is also a degree
d polynomial. In other words, if f ∈ Pmd and s is a k-dimensional affine subspace of
Fm, then f|s ∈ Pkd .

7.1 History of the Low-degree Test

In this section, we will briefly go over the history of the low-degree testing problem. There
is a long history of low degree testing. In fact, the history of the low-degree test not
surprisingly mirrors the history of PCPs: each time a better low degree test was proved, it
resulted in an improved probabilistic proof system.

7.1.1 Axis parallel test

1. Pick a random axis parallel line l. (i.e. pick an index i ∈R [m] and then pick
x1, x2, . . . xi−1, xi+1, . . . , xm randomly from F.)

2. Query f on l. (i.e. query f on (x1, . . . , xi−1, xi, xi+1, xm) for all xi ∈ F.)

3. Accept if f|l is a univariate degree d polynomial.

This axis parallel test was proposed by Babai, Fortnow and Lund [BFL91]. They used this
test to prove MIP = NEXP . In terms of the parameters mentioned earlier, they obtained
δ0 = O(1/md). Later Arora and Safra [AS98] improved the parameter by removing the
dependence on the degree and got δ0 = O(1/m). The dependence on m is unavoidable:
consider a function which is low-degree along all but one axis. The test will fail only if the
function is queried along that axes which happens with probability 1/m. Polishchuk and
Spielman [PS94] then further improved the parameters for the axis parallel test and gave a
very clean analysis using resultants.

7.1.2 Random line test

This test was proposed by Gemmel, Lipton, Rubinfeld, Sudan, and Wigderson [GLR+91]
to get around the 1/m barrier.
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1. Choose a random line l
(i.e., choose two random points a, b ∈ Fm and set l = {a+ tb|t ∈ F}.)

2. Query f along l.

3. Accept if f|l is a univariate, degree d polynomial (i.,e f|l ∈ P
1
d).

This got around the 1/m barrier as the line chosen was a random line not necessarily an
axis-parallel line. This test was analyzed by Rubinfeld and Sudan [RS96] and Arora, Lund,
Motwani, Sudan, and Szegedy [ALM+98] which eventually led to the PCP Theorem. Their
analyses gave the following soundness

There exists δ0 = O(1) such that if Pr [Test Rejects] ≤ δ ≤ δ0 then f is O(δ)-close to
degree d polynomial.

The above theorem shows that if the line-test accepts the function with probability
close to 1, then it must be the case that the function is very close to some (in fact unique)
low-degree polynomial. Arora and Sudan [AS03] considerably improved this analysis and
showed that even if the line-test passes with non-trivial probability, then it must be the
case that the function has non-trivial agreement with some low-degree polynomial (not
necessarily a unique one in this case).

There exists ε0 = poly
(
m, d, 1

|F|

)
such that if Pr

[
f ∈ P1

d

]
≥ δ, then there exists a

degree d polynomial P such that agr(f, P ) ≥ δ − ε0.

where agreement agr(f, g) between two functions f, g : X → Y is defined as the fraction
of points f and g agree on, i.e., Prx∈X [f(x) = g(x)]. In fact, they proved the following even
stronger statement

Theorem 7.1.1 (Line-Test [AS03]). There exists ε0 = poly
(
m, d, 1

|F|

)
such that for all

f : Fm → F,
E
l

[
agr(f|l ,P

1
d)
]
≥ δ =⇒ agr(f,Pmd ) ≥ δ − ε0.

where agreement agr(f,G) between a function f and a set of functions G is defined as
the maximum agreement between f and elements of G (i.e, maxg∈G agr(f, g)).

7.1.3 The plane-test

Raz and Safra [RS97] suggested another low-degree test which is the plane analogue of the
above line-test.
Plane-Test

1. Pick a random plane s.

2. Query f along s.

3. Accept if f|s is a bivariate degree d polynomial (i.e, f ∈ P2
d).
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It is easy to see that the completeness for this test is 1. As in the case of the Arora-Sudan
analysis, Raz and Safra (independently and almost simultaneoulsy with Arora and Sudan)
showed that

There exists ε0 = poly
(
m, d, 1

|F|

)
such that if Pr

[
f ∈ P2

d

]
≥ δ, then there exists a

degree d polynomial Q such that agr(f,Q) ≥ δ − ε0.

The Raz-Safra analysis is simpler than the Arora-Sudan analysis and we will use their
version of the low-degree test. Our main goal is to prove the following theorem, which is a
slightly stronger statement than the above mentioned soundness statement.

Theorem 7.1.2 (Soundness of the Plane-Test [RS97]). There exists ε0 =

poly
(
m, d, 1

|F|

)
such that for all f : Fm → F,

E
s - plane

[
agr(f|s ,P

2
d)
]
≥ δ =⇒ agr(f,Pmd ) ≥ δ − ε0.

In other words, if Es− plane

[
agr(f|s ,P2

d)
]
≥ δ (i.,e if locally the function f agrees with a

degree d polynomial) then there is a global agreement in the sense that there exists Q ∈ Pmd
such that agr(f,Q) ≥ δ − ε0.

7.2 The Plane-Point Test

In order to analyse the soundness of the plane-test, it will be convenient for us to work
with a slightly different test, which we will call the “plane-point Test”. Before describing
this new test, we introduce some notation. Let Smk be the set of all affine subspaces of
dimension k in Fm. Recall that Pmd is the set of all m-variate degree d polynomials. This
new test has two inputs: the point oracle f : Fm → F as before and an additional plane
oracle A : Sm2 → P 2

d . The plane oracle is supposed to give for every plane s in Fm, the
degree d bivariate polynomial which corresponds to the restriction of f to the plane s 3.

Plane-Point Test

Inputs: f : Fm → F,A : Sm2 → P2
d .

1. Pick a plane at random, s ∈ Sm2 .

2. Query the plane oracle at this plane.

3. Pick a point x at random from s.

3It is to be noted that all works on low-degree tests actually deal with tests of this form (i.e, one point
oracle and an additional oracle). We took a slightly different presentation as that seemed more natural in
the context of this course..
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4. Accept if f(x) = A(s)(x)

The following lemma lets us move from the plane-test to the plane-point test and vice-
versa.

Lemma 7.2.1. Es∈Sm2
[
agr(f|s ,P2

d)
]
≥ δ if and only if there exists an oracle A : Sm2 → P2

d

such that Prs∈Sm2 ,x∈s [A(s)(x) = f(x)] ≥ δ

Proof. The “if” part follows by definition. For the other (“if only”) direction, let us first
show the weaker statement: If Prs∈Sm2

[
f|s ∈ P2

d

]
≥ δ then there exists an oracle A : Sm2 →

P2
d such that Prs∈Sm2 ,x∈s [A(s)(x) = f(x)] ≥ δ

Let a plane s be called good if f|s ∈ P2
d and bad otherwise. For each good plane s, let

A(s) be f|s . For all the bad planes, let A(s) be assigned arbitrarily. With this A, for all
the good planes and for all x, A(s)(x) = f(x). Hence the statement. Now for the stronger
claim, by the definition of agr we have

E
s

[
agr(f|s,P2

d)
]

= E
s

[
max
g∈P2

d

{
agr(f|s, g)

}]
For a fixed plane s let A(s) be the polynomial in P2

d that achieves the maximum.

E
s

[
agr(f|s,P2

d)
]

= E
s

[Prx [f(x) = A(s)(x)]]

= Prs,x [f(x) = A(s)(x)]
Thus, proved.

Given the above lemma, the soundness theorem for the plane-test translates as follows.

Theorem 7.2.2 (Soundness of Plane-point test (equivalent to Theorem 7.1.2)). There

exists ε0 = poly
(
md
|F|

)
such that for all functions f : Fm → F, if there exists a plane

oracle A for which
Pr

s∈Sm2 ,x∈s
[A(s)(x) = f(x)] ≥ δ

then there exists a degree d polynomial Q such that Prx∈Fm [Q(x) = f(x)] ≥ δ − ε0

7.3 List decoding version of low degree test

The conclusion of the low degree test (which we wish to prove) claims that the function f
has δ−ε0 agreement with some low-degree polynomial. Can there be more than polynomial
with which the function has this agreement? In fact, for such low-agreement, there could
be several polynomials with which the function has this agreement. The following lemma
shows that however this list of polynomials with which a function has non-trivial agreement
cannot be too long.

Lemma 7.3.1. Suppose δ ≥ 2
√

d
q . Let f : Fm → F and let P1, . . . , Pt : Fm → F be all the

degree d polynomials that have agreement at least δ then t ≤ 2/δ.
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In other words, f cannot have δ-agreement with too many polynomials as long as δ is
not small.4

In fact, it can be shown that Theorem 7.2.2 has the following equivalent version in terms
of the list of polynomials that agree with f .

Theorem 7.3.2. There exists ε0 = poly
(
md
|F|

)
. Let f : Fm → F be a function and

A : Sm2 → P2
d a planes oracle. For every δ > ε0 there exist t ≤ O(1/δ) polynomials

Q1, . . . , Qt : Fm → F such that

Pr
s∈Sm2 ,x∈s

[
A(s)(x) = f(x) and 6 ∃i ∈ [t], Qi|s ≡ A(s)

]
≤ δ.

In other words, there exist a short list of polynomials which explains all but δ-probability
of the success of the low-degree test. The equivalence between Theorem 7.2.2 and Theo-
rem 7.3.2 follows from the following two propositions, the first of which we prove in class
and the second is defered to the appendix.

Proposition 7.3.3 (list-decoding to decoding). Let f : Fm → F be a function and A :
Sm2 → P2

d (possibly randomized) such that

Pr
s,x

[A(s)(x) = f(x)] ≥ γ

where the probability is also taken over the randomness of the plane oracle A. Furthermore
suppose that for some δ ≥ poly(d/q) that there exist t ≤ O(1/δ) polynomials Q1, . . . , Qt :
Fm → F that explains almost all the success of the low-degree test, i.e.,

Pr
s∈Sm2 ,x∈s

[
A(s)(x) = f(x) and 6 ∃i ∈ [t], Qi|s ≡ A(s)

]
≤ δ.

Then, there exists i ∈ [t], such that Prx
[
f(x) = Qi(x)

]
≥ γ − δ − poly

(
d
q

)
.

Proposition 7.3.4 (decoding to list-decoding). Let d ≤ d′. Let f : Fm → F be a function.
Suppose f satisfies the low-degree test theorem, i.e., there exists some α : [0, 1]→ [0, 1] such
that for every planes oracle A : Sm2 → Pmd , we have

Pr[A(s)(x) = f(x)] ≥ γ =⇒ ∃Q ∈ Pmd′ ,Pr[f(x) = Q(x)] ≥ α(γ).

Then, f also satisfies the list-decoding version. In other words, there exists ε0 = poly(d/q)
such that for all δ > ε0 and δ′ = α(δ−ε0)−ε0 such that for every planes oracle A : Sm2 → Pmd
there exists a list of t ≤ 2/δ′ polynomials Q1, . . . , Qt : Fm → F of degree d′ such that

Pr
s∈Sm2 ,x∈s

[
A(s)(x) = f(x) and 6 ∃i ∈ [t], Qi|s ≡ A(s)

]
≤ δ.

4This lemma is Problem 4 in the 2nd problem set. For completeness, we present a proof in the appendix.
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7.4 What we will prove in lecture

In the rest of today’s and next lecture, we will prove the above theorem (ie., Theorem 7.2.2
and its equivalent list-decoding version Theorem 7.3.2) for the case when m = 3. In other
words, we will prove the soundness of the plane-point test for planes in a cube. Observe
that planes are 2=(3-1)-dimensional affine subspaces in F3. One can then check that the
argument for planes-point test soundness actually generalizes to any ((m− 1)-dimensional
affine subspance point test in Fm giving us the following theorem.

Theorem 7.4.1. There exists ε0 = poly
(
md
|F|

)
such that for all functions f : Fm → F, if

there exists a (m− 1)-dimensional affine space oracle oracle A : Smm−1 → P
m−1
d for which

Pr
s∈Smm−1,x∈s

[A(s)(x) = f(x)] ≥ δ

then there exists a degree d polynomial Q such that Prx∈Fm [Q(x) = f(x)] ≥ δ − ε0. Or
equivalently

E
s∈Smm−1

[
agr(f|s ,P

m−1
d )

]
≥ δ =⇒ agr(f,Pmd ) ≥ δ − ε0.

Theorem 7.2.2 follows from Theorem 7.4.1 by the following bootstrapping argument.

agr(f,Pmd ) ≥ E
s1∈Smm−1

[
agr(f|s1 ,P

m−1
d )

]
− ε0

≥ E
s1∈Smm−1

[
E

s2∈Smm−2

[
agr
((
f|s1
)
|s2
,Pm−2d

)]
− ε0

]
− ε0

= E
s1∈Smm−1

[
E

s2∈Smm−2

[
agr(f|s2 ,P

m−2
d )

]
− ε0

]
− ε0

...

≥ E
s1∈Smm−1

[
E

s2∈Smm−2

[
. . . E

sm−2∈Sm2

[
agr(f|sm−2

,P2
d)
]]]
− (m− 2)ε0

= E
s∈Sm2

[
agr(f|s,P2

d)
]
− (m− 2)ε0

Thus, it suffices to prove the soundness of the (m − 1)-dimensional space point test to
prove the soundness of the plane-point test. We will assume that m = 3 for the rest of the
lecture. It can be checked that the same proof generalizes to larger m. Even for m = 3,
we will only be able to prove a weaker version of Theorem 7.4.1 in these two lectures. The
polynomial Q that we will come up with will have the agreement δ2− ε0 instead of δ− ε05.
More precisely, we will prove the following theorem next week.

5For details on how to get around this (i.,e δ2 → δ), see Appendix of the next lecture.
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Theorem 7.4.2. There exists ε0 = poly
(
d
|F|

)
such that for all functions f : F3 → F,

if there exists a planes oracle oracle A : S32 → P2
d for which

Pr
s∈S32 ,x∈s

[A(s)(x) = f(x)] ≥ δ

then there exists a degree d polynomial Q such that Prx∈Fm [Q(x) = f(x)] ≥ δ2 − ε0.
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A Proof of Lemma 7.3.1

Lemma 7.3.1 (Restated) Suppose δ ≥ 2
√

d
q . Let f : Fm → F and let P1, . . . , Pt : Fm → F

be all the degree d polynomials that have agreement at least δ then t ≤ 2/δ.

Proof of Lemma 7.3.1. Let Ai be {x | f(x) = Pi(x)}. We have that for each i ∈ [t] |Ai| ≥
δqm. Any two distinct degree d polynomials can agree on at most d

q fraction of points by

Schwartz-Zippel, i.e. |Ai ∩Aj | ≤ d
q q
m for all i 6= j and i, j ∈ [t].

∪iAi ⊆ Fm

by inclusion-exclusion: ∑
i

Ai −
∑
i 6=j
|Ai ∩Aj | ≤ qm

tδqm −
(
t
2

)
d

q
qm ≤ qm

Assume for the sake of contradiction that t = 2
δ + ε. Therefore, tδqm is at least 2qm. Also,(

t
2

)
d
q q
m is at most qm as long as δ ≥ 2

√
d
q , which is a contradiction.
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