
Limits of Approximation Algorithms 25 Mar, 2010 (TIFR)

Lec. 8: Low degree testing (Part II)

Lecturer: Prahladh Harsha Scribe: Nutan Limaye

In this lecture1, we will continue the discussion on low-degree testing and prove the
soundness of the plane-point test of Raz and Safra [RS97]. For the proof of the Raz-Safra
low-degree test theorem, we will follow the presentation along the lines of that by Moshkovitz
and Raz [MR08].

8.1 Recap from last lecture

Plane-Point Test

Inputs: f : Fm → F,A : Sm2 → P2
d .

1. Pick a plane at random, s ∈ Sm2 .

2. Query the plane oracle at this plane.

3. Pick a point x at random from s.

4. Accept if f(x) = A(s)(x)

Our main goal was to prove the following soundness of the above test.

Theorem 8.1.1 (Soundness of Plane-point test).

(decoding version) There exists ε0 = poly
(
md
|F|

)
such that for all functions f : Fm →

F, if there exists a plane oracle A for which

Pr
s∈Sm2 ,x∈s

[A(s)(x) = f(x)] ≥ δ

then there exists a degree d polynomial Q such that Prx∈Fm [Q(x) = f(x)] ≥ δ − ε0.

or equivalently

(list-decoding version) There exists ε0 = poly
(
md
|F|

)
. Let f : Fm → F be a function

and A : Sm2 → P2
d a planes oracle. For every δ > ε0 there exist t ≤ O(1/δ) polynomials

Q1, . . . , Qt : Fm → F such that

Pr
s∈Sm2 ,x∈s

[
A(s)(x) = f(x) and 6 ∃i ∈ [t], Qi|s ≡ A(s)

]
≤ δ.

1Prahladh: These notes are far more detailed than the lecture it corresponds to. Thanks to the scribe
Nutan for filling in all the missing details in the lecture.
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We also need to prove the equivalence between the two versions. In the last lecture, we
showed that to prove the above theorem, it suffices to prove the following.

Theorem 8.1.2. There exists ε0 = poly
(
d
|F|

)
such that for all functions f : F3 → F,

if there exists a planes oracle A : S32 → P2
d for which

Pr
s∈S32 ,x∈s

[A(s)(x) = f(x)] ≥ δ

then there exists a degree d polynomial Q such that Prx∈Fm [Q(x) = f(x)] ≥ δ2 − ε0.

As mentioned in last lecture, the above theorem falls short in the following aspect: the
agreement is only δ2 instead of δ. For the purpose of this lecture, we will gloss over this
shortcoming (this is however fixed in the appendix).

8.2 Properties of the plane oracle

The plane oracleA is said to be consistent on two intersecting planes s1, s2 if the polynomials
given by the oracle for the two planes when restricted to the line s1 ∩ s2 are the same. We
denote it by A(s1) ≡ A(s2).

Let A be a fixed oracle. Consider the following graph GA: the vertex set, VA, consists
of planes S32 and edge set is given by EA = {(s1, s2) | A is consistent on s1, s2}. We first
observe that if a pair of vertices is not an edge in the graph, then the number of common
neighbors between these two vertices is small.

Claim 8.2.1 (Non-edges have few neighbours). For every non-edge (s1, s2) /∈ E,

Pr
s3

[(s1, s3) ∈ E and (s2, s3) ∈ E] ≤ d+ 1

|F|
.

Proof. Since (s1, s2) /∈ E, we have A(s1)(l) 6= A(s2)(l) where l denotes the line s1 ∩ s2. .
We will say that the plane s3 is unlucky if l ∈ s3 or s3 is parallel to l. This means that
the normal vector of s3 is perpendicular to l. This happens with probability at most 1/q,
where q denotes |F|. Otherwise s3 interests l in a point. We call such an s3 lucky. With
probability at least 1 − d/q, this point is an point of disagreement between A(s1)(l) and
A(s2)(l) by Shwartz-Zippel. Hence, Pr [(s1, s3) ∈ E and (s2, s3) ∈ E | s3 is lucky] ≤ d/q.
Therefore we have the claim.

We will now show that any graph that has the above property (very few common
neighbors between endpoints of a non-edge) can be decomposed into a union of cliques by
throwing very few edges.

Lemma 8.2.2 (Decomposition of consistency graph into cliques). Let G be a graph such
that between any two vertices that do not share an edge, the number of common neighbors
is ε|V |, then the vertex set of G can be partitioned, V = ∪iVi, such that
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• For all i, either |Vi| = 1 or Vi is a clique and |Vi| > 2
√
ε|V |

• Pr(u,v)∈V 2 [(u, v) /∈ E or ∃i : (u, v) ∈ Vi] ≥ 1− 5
√
ε

Proof. Keep applying one of the following two steps to the graph G till neither of them can
be applied any more:
I1: If a vertex v has degree less than 2

√
ε|V | then delete all the edges out of v.

I2: Else consider the BFS tree rooted at v and remove all the edges between the first and
the second layer in the tree.

The step I1 gives rise to singletons. These singletons are never reconsidered by the
algorithm. The step I2 partitions the graph and reduces the number of non-edges by at
least 1. When none of them can be applied anymore each resulting component of the graph
has no non-edges to be removed, i.e. they are either singletons or cliques. Now let’s bound
the number of edges removed in the process:

The number of edges removed by I1 is ≤ 2
√
ε|V |2 (for each vertex at most 2

√
ε|V | edges

are removed.)
The number of edges removed in I2: Let v1, . . . , vl be the sequence of vertices on which

step I2 is performed. Consider any v = vi for some i ∈ [l]. Let N(v) and N2(v) denote the
vertices in the layers 1 and 2 respectively, in the BFS tree of v. Step I2 removes all edges
between N(v) and N2(v). Notice that steps I1 and I2 keep splitting the graph into disjoint
components and a pair of vertices that are removed in one stage are never considered again
later. For this reason,

∑l
i=1 |N(vi)| · |N2(vi)| ≤ |V |2. For each u ∈ N2(v) such that (v, u)

is not an edge, there are at most ε|V | vertices in N(v) adjacent to u (hypothesis).

Number of edges removed in I2 ≤
l∑

i=1

|N2(vi)| · ε|V |

≤
l∑

i=1

|N2(vi)| · ε
|N(vi)|

2
√
ε

as |N(vi)| > 2
√
ε|V |

=

√
ε

2

l∑
i=1

|N(vi)| · |N2(vi)|

≤
√
ε

2
|V |2

Thus the total number of edges removed is at most 5/2
√
ε|V |2. The lemma follows as we

are considering all pairs of vertices (i.e., both (u, v) and (v, u)).

At this point, we have decomposed the consistency graph corresponding to A into cliques
which explains almost all the consistency between a random pair of planes in A. Consider
any clique in GA. All the planes in this clique are mutually consistent, i.e., they are
pairwise consistent with each other. Intuitively, if the clique is large enough, this must be
because there is a global polynomial from which all plane polynomials arise. This intuition
is formalized in the following lemma.
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Lemma 8.2.3 (Large cliques =⇒ global polynomial). Let U ⊆ V be a clique in GA and
|U | ≥ 2d+1

q |V |. Then there exists a polynomial Q of degree at most d, such that for all
s ∈ U , A(s) ≡ Q|s.

We do not have time to prove the above lemma, it follows from a simple interpolation
(see Appendix A for details). The number of large cliques is small. Therefore, we will
get a small list of polynomials, each polynomial explaining the agreement for one clique.
Thus combining Lemma 8.2.2 and Lemma 8.2.3, we get the following theorem (list decoding
version).

Lemma 8.2.4. There exists δ0 = O
(√

d
q

)
such that for all δ > δ0, there exists a list of

4/δ polynomials Q1, Q2, . . . , Q4/δ, each of degree at most d such that

Pr
s1,s2

[
(s1, s2) /∈ EA or ∃i : Qi|s1

≡ A(s1) and Qi|s2
≡ A(s2)

]
≥ 1− δ

Proof. Let δ0 = max
{√

ε
4 ,

4(2d+1)
q

}
and δ > δ0. Let a clique be called small if it has less

than δ
4 |V | number of vertices. The number of edges in any small clique is therefore upper

bounded by δ
4 |V |

2. Therefore we have,

Pr
(s1,s2)

[(s1, s2) belong to a small clique] ≤ δ

4
(8.2.1)

Let L1, L2, . . . , Lt be large cliques. As the number of vertices in each large clique is > δ
4 |V |,

the number of such large cliques t ≤ 4
δ . We have from Lemma 8.2.2 and (8.2.1) that

Pr
(s1.s2)

[(s1, s2) /∈ EA or ∃i : (s1, s2) ∈ Li] ≥ 1− 5
√
ε− δ

4
≥ 1− δ,

since δ ≥
√
ε/4. Using Lemma 8.2.3, if δ

4 ≥
2d+1
|F| then for each large clique L there is an

associated polynomial Q of degree ≤ d such that for for all s ∈ L, we have Q|s ≡ A(s).
Therefore, the statement

Pr
(s1.s2)

[(s1, s2) /∈ EA or ∃i : (s1, s2) ∈ Li] ≥ 1− δ

can be rewritten as

Pr
(s1.s2)

[
(s1, s2) /∈ EA or ∃i : Qi|s1

≡ A(s1) and Qi|s2
≡ A(s2)

]
≥ 1− δ,

where Qi is the polynomial of degree d associated with the large clique Li.

8.3 Analysis of the plane-point test

The analysis from the previous section says that most of the agreement of the plane oracle
is explained by few polynomials. But this tells us nothing about the point oracle. In this
section, we will show the soundness of the plane-point test. More precisely, we will show
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the following. Let A be a plane oracle and f a point-oracle satisifying the plane-point test
with probability at least γ, ie., Pr[A(s)(x) = f(x)] ≥ γ. Then, there exists a degree d
polynomial Q such that Pr[f(x) = Q(x)] ≥ γ2 − ε0.

A plane oracle A is said to be α-good, if Prs1,s2 [A(s1) ≡ A(s2)] ≥ α.

Lemma 8.3.1 (If the plane-point test passes with good probability then there exists a good
planes oracle.). For any plane oracle A

Pr
x

[A(s)(x) = f(x)] ≥ γ ⇒ A is (γ2 − d/q − 1/q)-good

Proof. Let H = (UH ∪ VH , EH) be a bipartite graph where UH consists of points from Fm
and VH consists of set of all planes. Let (x, s) be an edge if x ∈ s. Note that this graph is
regular on both the partitions. Let an edge be called good if the plane-point test passes on
this edge, i.e. A(s)(x) = f(x). There are at least γ fraction of good edges. For a fixed xi,
let γi denote Prs [A(s)(xi) = f(xi)]. Therefore, we know that 1

|UH |
∑qm

i=1 γi = γ.

E
x∈UH

[ Pr
s1,s2∈VH

[A(s1)(x) = f(x) = A(s2)(x)]] =
1

|UH |
∑
i

γ2i

But sum of squares is at least as large as square of the sums. Therefore,

E
x∈UH

[ Pr
s1,s2∈VH

[A(s1)(x) = f(x) = A(s2)(x)]] ≥ γ2

It may happen that A(s1) 6≡ A(s2) but A(s1)(x) = f(x) = A(s2)(x). However, due to
Swartz-Zippel this will happen with very small probability. Therefore, we have

E
x∈UH

[ Pr
s1,s2∈VH

[A(s1) ≡ A(s2)]] ≥ γ2 −
d

q

Also, with probability 1/q, the two planes may be non-intersecting. Therefore,

Pr
s1,s2∈VH

[A(s1) ≡ A(s2)]] ≥ γ2 −
d

q
− 1

q

Note that, the goodness of the plane oracle A directly translates to many edges in the
graph GA. Intuitively, more edges in GA means more large cliques, which in turn means
fewer polynomials explaining the edges/agreement due to Lemma 8.2.4.

Given f and A, let Q1, . . . , Q4/δ be the list of degree d polynomials that explains the
success of the planes oracle A as in Lemma 8.2.4. Pick a point x at random and pick two
planes s1, s2 passing through it at random. Consider the following events.

X : A(s1)(x) = f(x) = A(s2)(x)
E : There exists an i ∈ [4/δ] such that Qi|s1

≡ A(s1) and Qi|s2
≡ A(s2)

C : (s1, s2) ∈ EA.

We are interested in the probability of the event X∧E. We know that Prx,s1,s2 [X] ≥ γ2
(Lemma 8.3.1). And we also know that Pr [¬C ∧ E] ≥ 1− δ (Lemma 8.2.4).
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Prx,s1,s2 [X ∧ ¬E] = Prx,s1,s2 [C ∧X ∧ ¬E] + Prx,s1,s2 [¬C ∧X ∧ ¬E]

≤ Prx,s1,s2 [C ∧ ¬E] + Prx,s1,s2 [¬C ∧X]

≤ δ + Prx,s1,s2 [X|¬C]

≤ δ + d+1
q

(the last step: (s1, s2) not an edge but still X happen for two reasons; (1) s1 and s2
are parallel which happens with probability at most 1/q and (2) s1 and s2 intersect on a
line they disagree but x happens to be a point of agreeement on this line which occurs with
probability at most d/q by Schwartz-Zippel. )

Therefore,
Pr

x,s1,s2
[X ∧ E] ≥ γ2 − 2δ (8.3.1)

We have shown that there is a short list of polynomials which “explains” the success
of the low-degree test. However, this is not the “explanantion” we had sought after as
stated in Theorem 8.1.1. What we will now show is that the above explanation actually
implies a list-decoding explanation of the right form for a related lines-oracle Ã and not the
planes oracle A. We will then use the equivalence between the list-decoding version and
the decoding version of the low-degree test soundness to obtain a single polynomial that
explains the success of the plane-point test. The lines-oracle Ã is constructed as follows.
The lines-oracle Ã as expected uses the planes-oracle A as sub-oracle. A point to be noted
is that the lines-oracle Ã is randomized.

Lines-Oracle Ã

Input: a line l ∈ S31 .

1. Randomly choose two planes s1, s2 such that l = s1 ∩ s2.
2. If there exists a i ∈ [4/δ] such that Qi|s1

≡ A(s1) and Qi|s2
≡ A(s2) then output

the polynomial Qi restricted on l.

3. Else output ⊥.

Now for this lines-oracle Ã it is easy to see that the list of polynomials Q1, . . . , Q4/δ

completely explain the success of the lines-point test (in fact with probability 1).

Pr
l,x,Ã

[
Ã(l)(x) 6= f(x) or ∃i : Qi|l ≡ Ã(l)

]
= 1

This happens since if there does not exist a polynomial Qi such that Ã(l) ≡ Qi|l , then the

lines-oracle Ã returns ⊥ and hence the lines-point test “Ã(l)(x) = f(x)” fails.
Thus, the lines-oracle Ã satisfies the list-decoding version of the low-degree test theorem

and hence by equivalence to the standard version, we have that it satisfies the standard
version, ie., if the lines-point test “Ã(l)(x) = f(x)” passes with significant probability, then
there exists a low-degree polynomial that explains the points oracle. Thus, to show there
exists a low-degree polynomial that explains the points oracle, it suffices to prove two things:
(1) the list-decoding version implies the standard version of the low-degree test and (2) the
lines-point test “Ã(l)(x) = f(x)” passes with significant probability.
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Proposition 8.3.2 (list-decoding to decoding). Let f : Fm → F be a function and A :
Smk → P2

d (possibly randomized) such that

Pr
s,x

[A(s)(x) = f(x)] ≥ γ

where the probability is also taken over the randomness of the oracle A. Furthermore suppose
that for some δ ≥ poly(d/q) that there exist t ≤ O(1/δ) polynomials Q1, . . . , Qt : Fm → F
that explains almost all the success of the low-degree test, i.e.,

Pr
s∈Sm2 ,x∈s

[
A(s)(x) = f(x) and 6 ∃i ∈ [t], Qi|s ≡ A(s)

]
≤ δ.

Then, there exists i ∈ [t], such that Prx
[
f(x) = Qi(x)

]
≥ γ − δ − poly

(
d
q

)
.

We will defer the proof of this proposition to the next section and complete the analysis
of the plane-point test assuming it.

Since, the plane-point test passes with probability at least γ, we have from Equation 8.3.1
that Pr[X ∧E] ≥ γ2−2δ which when written in the language of the line-oracle Ã translates
to the following.

Ẽ
A

[
E
l

[
Pr
x∈l

[
Ã(l)(x) = f(x)

]]]
≥ γ2 − 2δ (8.3.2)

And now assuming Proposition 8.3.2 holds, we get a polynomial Q of degree d such that it
agrees with f(x) with probability at least γ2−2δ−poly(d/q) = γ2−ε0, where ε0 = poly(d/q).
This completes the proof of Theorem 8.1.2

8.4 List decoding version to standard version

In this section, we prove the list-decoding version of the low-degree test implies the standard
version (i.e., Proposition 8.3.2). The converse is also true (see Appendix B.1 for details).

Note that this proposition works for both planes (Sm2 ) as well as lines Sm1 ).

Proof of Proposition 8.3.2. Suppose we are given a oracle Ã (possibly randomized) and
points-oracle f such that there exists a list of functions Q1, . . . , Qt : Fm → F such that

Pr
s,x,Ã

[
Ã(s)(x) 6= f(x) or ∃i : Qi|s ≡ Ã(s)

]
≥ 1− δ

Assume for the sake of contradiction,

∀i ∈ t : Pr
x

[f(x) = Q(x)] < γ − δ − 2ε

where ε is a parameter to be decided.
Now we will prove that

Ẽ
A

[
E
s

[
Pr
x∈s

[
Ã(s)(x) = f(x)

]]]
< γ

which will prove the proposition.
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Let for each i ∈ [t], Ti := {x | Qi(x) = f(x)}. By assumption |Ti|/qm ≤ γ − δ − 2ε for
all i.

The points in random s are pairwise independent. Applying Chebyshev’s inequality, we
get

Pr
s

[
|s ∩ Ti|
|s|

≥ |Ti|/qm + ε

]
≤ 1/q2.

In other words, s is a good sampler of the space Fm. We now apply union bound,

Pr
s

[
∃i ∈ [t] :

|s ∩ Ti|
|s|

≥ γ − δ − ε
]
≤ t/q2.

Choose ε such that t/q2 ≤ ε. This occurs if ε ≥ poly(d/q) for some fixed polynomial since
t = 4/δ and δ = poly(d/q).

Now consider picking a random s and a random point x ∈ s. Consider the following
events based on s and x.

B : l is a bad sampler, i.e., ∃i ∈ [t] : |l∩Ti||l| ≥ γ − δ − ε.
C : Ã is consistent with the point oracle, i.e. Ã(s)(x) = f(x).

E : There exists a function Qi that explains Ã(s), i.e. ∃i : Qi|s ≡ Ã(s).

We have that Prs [B] ≤ ε and PrÃ,s,x [¬C ∨ E] ≥ 1 − δ, i.e. PrÃ,s,x [C ∧ ¬E] < δ. We
wish to bound PrÃ,s,x [C].

PrÃ,s,x [C ∧ E] = PrÃ,s,x [C ∧ E ∧B] + PrÃ,s,x [C ∧ E ∧ ¬B]

≤ Prs [B] + PrÃ,s,x [C|E ∧ ¬B]

≤ ε + γ − δ − ε
≤ γ − δ

Therefore, PrÃ,s,x [C] < γ which is a contradiction.
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A Interpolating cliques to polynomials

Recall that in Section Section 8.2, we defined a graph GA corresponding to a plane-oracle
A. Let A be a fixed oracle. The vertex set, VA, of GA consists of planes S32 and edge set is
given by EA = {(s1, s2) | A is consistent on s1, s2}.

In this section we will prove that the existence of a large clique in GA implies that there
exists a polynomial Q which when restricted to each plane s in the clique agrees with A(s),
i.e. there is a single polynomial that “explains” all the planes in the clique. Moreover, such
a polynomial has “small” degree. We will first use interpolation to show that the polynomial
has degree at most 2d and then use Schwartz-Zippel to further reduce the degree to d.
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Lemma A.1 (Large cliques =⇒ global polynomial). Let U ⊆ V be a clique in GA and
|U | ≥ 2d+1

q |V |. Then there exists a polynomial Q of degree at most 2d, such that for all
s ∈ U , A(s) ≡ Q|s.

Proof. As U is a clique in GA, for all s1, s2 ∈ U , A(s1) ≡ A(s2).
We say that a plane is along a direction v if the normal to the plane is parallel to v.

First, we observe that there exists a direction (say v) along which there are at least 2d+ 1
planes in U . The assumption on the size of the clique implies that there are at least 2d+1

q |V |
many planes. Note that,

|V | = #2-dimensional subspaces × # affine shifts

= (q3−1)(q3−q)
(q2−1)(q2−q) × q

= q(q2 + q + 1)

Therefore, we have that in U there are at least (2d + 1)(q2 + q + 1)-many planes. The

number of directions is equal to the number of 1-dimensional subspaces in F3
q , i.e q3−1

q−1 =

q2+q+1. Hence there is a direction (say v) along which there are at least 2d+1 planes. This
direction could have at most q planes leaving at least (2d+1)(q2+q+1)−q ≥ (d+1)(q2+q)
planes in U in directions other than v which are themselves q2 + q in number. Hence, there
is another direction (say w) along which there are at least d+ 1-many planes.

By a change of axes, we can assume that the direction w is ex and v is ey. Let Sx
(Sy) be the set of planes along the direction ex (ey, respectively). Let Sx = {s0, s1, . . . , sd}
and Sy = {s′0, s′1, . . . , s′t}. From above we know that 2d ≤ t ≤ q − 1. We will first find a
polynomial that agrees with the above (d+ 1) planes in Sx as follows. For all 0 ≤ i ≤ d, let
the plane si be given x = ai and let Pi(y, z) denote A(si). Also, let us define fi(x) for each
i as follows:

fi(x) =

∏
0≤j≤d;j 6=i(x− aj)∏
0≤j≤d;j 6=i(ai − aj)

Now, let Q(x, y, z) =
∑d

i=0 Pi(y, z)fi(x)
Note that Q is a degree 2d polynomial and for all i, 0 ≤ i ≤ d: Q(ai, y, z) = Pi(y, z),

i.e. Q “explains” the (d+ 1) planes in Sx (and Sx is a subset of U).
We will now prove that the same polynomial Q explains all the planes in Sy. Consider

one of the planes in Sy, say s. Let R denote A(s). Recall that R is a degree d polynomial.
Therefore, R restricted to any line l ∈ s is also a degree d polynomial. We partition s into
lines.

s =
⋃
c∈Fq

lz=c

where, lz=c is the line s|z=c
for c ∈ Fq. Now observe that Q restricted to any line lz=c is

a univariate polynomial in x and has degree d. As {s} ∪ Sx ⊆ U , we know that for all
0 ≤ i ≤ d: A(s) ≡ A(si). Therefore R and Q agree on at least d + 1-many points on lz=c
and are each degree at most d when restricted to lz=c. Therefore by Schwartz-Zippel they
must be the same polynomial restricted to lz=c. And hence Q restricted to s is R, i.e. Q
explains s. Thus, Q explains all planes s in Sy. We have now explained all the planes in U
which lie in Sy (ie., have direction along ey). Any other plane s in U (including the ones
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with direction along ex) intersect all the planes in Sy. Thus, for at least (2d+ 1)/q fraction
of points in s, A(s) agrees with Q. Hence, A(s) ≡ Q|s .

We have thus used interpolation to show that there exists a polynomial of degree at
most 2d that agrees with the planes in U . However, the restriction of this polynomial to all
planes in U is a degree d polynomial and not a degree 2d polynomial. We will use this fact
to further reduce the degree of Q from 2d to d.

Lemma A.2 (degree reduction). Suppose there exists a polynomial Q of degree D such that

Pr
s∈Sm2

[
Q|s ∈ P2

d

]
>
D

q

then Q is in fact a degree d polynomial.

Proof. Let s be a plane given by a, b, c ∈ Fm consisting of the following points.

s = {a+ bt1 + ct2 | t1, t2 ∈ F}

Let Q=D be the degree D homogeneous part of Q. Q=D 6= 0 by our assumption. Q=D|s
is a bivariate polynomial in t1, t2. The coefficient of tD1 in Q=D|s is Q=D(b), which is an
m-variate polynomial in b of degree D and is not identically zero. Q=D|s is a zero poynomial
if coefficient of each ti1t

j
2 term appearing in Q=D|s is zero. If we have an upper bound for

the probability of one of them being zero, that gives an upper bound for Prs
[
Q=D|s ≡ 0

]
.

Prs
[
Q=D|s ≡ 0

]
≤ Pra,b,c

[
coefficient of tD1 is zero

]
= Prb

[
Q=D(b) ≡ 0

]
≤ D

q

The last inequality is due to Schwartz-Zippel.

B Fixing the parameters: from γ2 to γ

In this section, we will show how we can improve the agreement from γ2 − ε0 to γ − ε′0
(of course for ε′0 ≥ ε0). This will use the equivalence between the standard version of the
low-degree test and the list-decoding version. Recall that we proved in lecture that the
list-decoding version implies the standard version (Proposition 8.3.2). We now show that
the other direction also holds.

B.1 Standard version implies list-decoding version

Proposition B.1 (decoding to list-decoding). Let d ∈ Z≥0. Let f : Fm → F be a function.
Suppose f satisfies the low-degree test theorem, i.e., there exists some α : [0, 1]→ [0, 1] such
that for every planes oracle A : Sm2 → Pmd , we have

Pr[A(s)(x) = f(x)] ≥ γ =⇒ ∃Q ∈ Pmd ,Pr[f(x) = Q(x)] ≥ α(γ).

Then, f also satisfies the list-decoding version. In other words, there exists ε0 = poly(d/q)
such that for all δ > ε0 and δ′ = α(δ − ε0) − ε0 ≥ 2ε0 such that for every planes oracle
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A : Sm2 → Pmd there exists a list of t ≤ 2/δ′ polynomials Q1, . . . , Qt : Fm → F of degree d
such that

Pr
s∈Sm2 ,x∈s

[
A(s)(x) = f(x) and 6 ∃i ∈ [t], Qi|s ≡ A(s)

]
≤ δ.

This was problem 7 in problem set 2. For completeness, we reproduce the proof verbatim
from the paper of Moshkovitz and Raz [MR08]

Proof. Let ε0 =
√
d/q and δ ∈ (ε0, 1). Set δ′ = α(δ − ε0) − ε0 ≥ 2ε0. We will show that

for any function f : Fm → F and planes oracle A : Sm2 → Pmd , there exists a list of at most
t ≤ 2/δ′ polynomials Q1, . . . , Qt : Fm → F of degree at most d such that

Pr
s∈Sm2 ,x∈s

[
A(s)(x) 6= f(x) ∧

(
∃i, Qi|s ≡ A(s)

)]
≥ 1− δ.

Suppose for contradiction that the statement if false.
Let Q1, Q2, . . . , Qt be the list of all degree d polynomials that have at least δ′ agreement

with f . By lemma from last lecture, t ≤ 2/δ′. As we have assumed the statement is false,
it is false in particular for this list of polynomials. Consider the following 3 events for a
random s ∈ Sm2 and x ∈ s.

• C : A(s)(x) = f(x)

• P : ∃i ∈ [t], f(x) = Qi(x)

• S : ∃i ∈ [t],A(s) ≡ Qi|s
From the assumption, we have that Pr[C ∧ S̄] > δ. Now suppose S does not happen,

ie., for all i we have A(s) 6≡ Qi|s . In this, case by Schwartz-Zippel, it cannot be the case

that A(s)(x) = f(x) and f(x) agrees with one of the polynomials Qi at x with probability
larger than td/q. Hence,

Pr[C ∧ P̄ |¬S] ≤ td

q
≤ 2

δ

′
· ε20 ≤

1

ε
· ε20 ≤ ε0.

Construct a new oracle f ′ : Fm → F as follows: let Q′ be an arbitrary polynomial of
degree exactly d+1. Set f ′(x) to be Q′(x) on all points x that satisfy P and f(x) otherwise.
We now have

Pr
[
A(s)(x) = f ′(x)

]
≥ Pr[

[
A(s)(x) = f(x) ∧ f(x) = f ′(x)

]
≥ Pr [C ∧ ¬P ]

≥ Pr [C ∧ ¬P ∧ ¬S]

= Pr[C∧ 6= S]− Pr[C ∧ P∧ 6= S]

> δ − Pr[C ∧ P | 6= S]

≥ δ − ε0
We now apply the standard version of the low-degree test theorem to the points oracle f ′

and plane oracle A to conclude that there exists a polynomial Q of degree at most d such
that Pr[f ′(x) = Q(x)] ≥ α(δ− ε0). Note that Q and Q′ are distinct polynomials and hence,

Pr[f ′(x) = Q(x) ∧ f ′(x) 6= f(x)] ≤ Pr[Q′(x) = Q(x)] ≤ d+ 1

q
≤ ε0.
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Therefore,

Pr[f(x) = Q(x) = f ′(x)] = Pr[f ′(x) = Q(x)]− Pr[f ′(x) = Q(x) ∧ f ′(x) 6= f(x)]

≥ f(δ − ε0)− ε0 = δ′.

Hence, f and Q agree on at least δ′-fraction of points, which implies that Q is identical
to one of the polynomials Qi in the list. Suppose Q ≡ Qi. Now consider any point
x such that f(x) = Qi(x), by definition at this point f ′(x) = Q′(x). Hence, we have
that f(x) = Qi(x) = f ′(x) implies Q′(x) = Qi(x). However, this leads to the following
contradiction.

δ′ ≤ Pr[f(x) = Qi(x) = f ′(x)] ≤ Pr[Q′(x) = Qi(x)] ≤ ε0,

which completes the proof of the proposition.

B.2 γ2 −→ γ

We now return to our original goal of improving the agreement from γ2 − ε0 to γ − ε′0.
Fix a point oracle f : Fm → F. By Theorem 8.1.2, we know that f satisfies the standard

version of the low-degree test theorem. In other words for all planes-oracle A such that
Prs∈Sm2 ,x∈s [A(s)(x) = f(x)] ≥ γ, we know that there is a degree d polynomial Q such that
Prx [Q(x) = f(x)] ≥ γ2 − ε0. Hence, by Proposition B.1, f also satisfies the list-decoding
version. More precisely, there exists a µ0 = poly(d/q) such that for all δ > µ0, and planes
oracle A, there exists a list of t ≤ O(1/δ2) polynomails Q1, . . . , Qt such that

Pr
s∈Sm2 ,x∈s

[
A(s)(x) 6= f(x) ∨ ∃i : Qi|s ≡ A(s)

]
≥ 1− δ

Now suppose we are given a planes oracle A such that Pr[A(s)(x) = f(x)] ≥ γ. We can
now use the other direction (Proposition 8.3.2: list-decoding to standard) to conclude that
there exists a j ∈ [t] such that Prs

[
(Qj(x) = f(x)

]
≥ γ − µ0 − poly(d/q) = γ − ε′0. Thus,

proved.
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