
Limits of Approximation Algorithms 26 May, 2010 (IMSc)

Lec. 13: Approximation Algorithms for Unique Games

Lecturer: Prahladh Harsha Scribe: Prajakta Nimbhorkar

In the last lecture, we proved an inapproximability result for the MAX-CUT problem.
We also introduced the unique label cover problem and Khot’s unique games conjecture.

Today, we will see how well unique games can be approximated. In particular, we will
see Trevisan’s algorithm for approximating unique games on low-diameter graphs [Tre08].
We will then briefly discuss the algorithm of Arora et al. for approximating unique games
on expanders [AKK+08], and a recent sub-exponential time algorithm for unique games on
general graphs due to Arora et al [ABS10]. The references for this lecture include the above
cited papers and Lecture 8 of the DIMACS tutorial on Limits of approximation [HC09].

13.1 Recap: Unique Games and the Unique Games Conjec-
ture

An instance of unique games consists of a bipartite graph G = (U, V,E), a label set [m],
and a set of permutations π = {πe|e ∈ E} on the label set. Thus ∀e = (u, v) ∈ E
π(u,v) : [m] → [m] is a permutation on [m]. The desired output consists of a labeling
A : U ∪ V → [m] that maximizes the number of satisfied edges. An edge e = (u, v) is said
to be satisfied if label(v) = π(u,v)(label(u)). It can be seen that, if all the edges can be
satisfied, it is trivial to find such a labeling: pick a vertex u and choose its label arbitrarily.
This gives unique labels to vertices which are reachable from u in G. Cycle through all the
m labels for u.

Therefore, given m, and completeness and soundness parameters 1−ε and δ respectively,
a gap-version of unique label cover GAP1−ε,δULC(m) is defined as follows:

Y ES = {(G, π)|∃ labeling A such that the number of edges satisfied ≥ (1− ε)|E|}
NO = {(G, π)|∀ labelings A the number of edges satisfied ≤ δ|E|}

The goal is to distinguish between the Y ES and NO instances.

Unique Games Conjecture ([Kho02]). For all ε, δ, there exists m such that gap1−ε,δULC(m)
does not have a polynomial-time algorithm.

13.2 Approximation Algorithms for Unique Games

The purpose behind designing approximation algorithms is to refute UGC. Thus, for some
ε, δ, and for each m, we want an algorithm A such that, if the input ULC instance is (1−ε)-
satisfiable, then A outputs a labeling that satisfies at least δ|E| edges. Thus A works on
highly satisfiable instances and it separates YES and NO instances. (Recall that complete
satisfiability is trivial.)
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We consider a special case viz. MAX-CUT, where the label set has size m = 2. Thus
the instance consists of a graph G = (V,E), and the promise that it either has a cut that
contains at least (1 − ε)-fraction of edges or all the cuts in G contain less than δ-fraction
of edges. We have seen a randomized algorithm for MAX-CUT that puts the vertices
into one of the two partitions with equal probability and gives 1/2 + ε-approximation.
Goemans-Williamson’s algorithm gives αgw ≈ 0.87856 approximation. The question is to
determine whether we can do better when we have the above promise. We will see that
Goemans-Williamson’s algorithm works better on large cuts.

Lemma 13.2.1. There exist constants ε0 ∈ (0, 1) and c such that for all ε < ε0 if
MAX-CUT(G) ≥ (1 − ε)|E|, then Goemans-Williamson’s algorithm outputs a cut that
contains at least (1− Ω(

√
ε))|E| edges.

Proof. Recall that the algorithm involves solving the following SDP relaxation:

Maximize Z =
1

2
E[1− 〈vi, vj〉]

such that ∀i‖vi‖2 = 1

where vi ∈ Rn. If MAX-CUT(G) ≥ (1 − ε)|E| then Z ≥ (1 − ε). We show that the
Goemans-Williamson’s rounding gives a solution that satisfies the condition in the lemma.
Recall that the rounding involves picking a random hyperplane passing through origin and
partitioning the vectors in the solution depending on which side of the hyperplane they lie.
This gives that

E[cutGW (G)] = E
[cos−1(〈vi, vj〉)

π

]
Let xe =

1−〈vi,vj〉
2 and y = h(x) = cos−1(ρ)

π , where ρ = 〈vi, vj〉. Consider the function h as
defined above. It is easy to check there exist constants ε′0 ∈ (0, 1) and c such that for all
ε < ε0 if x ≥ 1 − ε, then y = h(x) ≥ 1 − c

√
ε. Thus, if each of the xe’s in the expectation

satisfied xe ≥ 1− ε, we would be done.
However, we only have the promise that E[xe] ≥ 1−ε. If the function h were convex, we

could get E[h(xe)] ≥ h(E[xe]) which gives the desired bound. Unfortunately this is not the
case. So let h̃ be the largest convex function under h. It is easy to check that there exists an
ε′′0 such that for all x ≥ 1−ε′′0, we have h(x) = h̃(x) (see Figure 13.2). Let ε0 = min{ε′0, ε′′0}.
We then have

E[cut] = E[h(xe)] ≥ E[h̃(xe)] ≥ h̃(E[xe]) = h(E[xe])

where the last equality holds because h and h̃ are equal in the large-cut region, that is, the
region close to 1 (see Figure 13.2).

Thus Goemans-Williamson’s algorithm can find a cut of size at least 1 − c
√
ε if there

is a cut of size at least 1 − ε. We know that ∀ρ, ε GAP 1−ρ
2
−ε′, cos

−1(ρ)
π

+ε′
- MAX-CUT is

UG-hard, whereas here we have a polynomial-time algorithm for GAP1−ε,1−c
√
ε. Thus a

slight improvement over Goemans-Williamson’s algorithm implies refutation of the unique
games conjecture.
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Figure 1: Plot of h(x) = cos−1(1−2x)
π and h̃(x), the largest convex function less than or

equal to h, pointwise

13.3 Trevisan’s Algorithm for Approximating Unique Games

Now we will see Trevisan’s algorithm for approximating unique games [Tre08]. This algo-
rithm gives a constant fraction approximation for sub-constant values of ε. It works by
solving and rounding an SDP relation of unique games.

SDP relaxation for unique games: The SDP consists of variables vi for each vertex v
in the unique games instance and for each label i ∈ [m]. A variable vi = 1 if the vertex v is
labelled i. The integer program is given by

Maximize
∑

e=(u,v)∈E

∑
i∈[m]

uivπe(i)

subject to vi ∈ {0, 1}
∀v ∀i 6= j ∈ [m] vivj = 0∑
i∈[m]

vi = 1
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The corresponding SDP relaxation is

Maximize
∑

e=(u,v)∈E

∑
i∈[m]

〈ui, vπe(i)〉

subject to ∀v ∀i 6= j 〈vi, vj〉 = 0

∀v ∀i 6= j ∈ [m] 〈vi, vj〉 = 0

∀v
∑
i∈[m]

‖vi‖2 = 1

∀u, v, i, j 〈ui, vj〉 ≥ 0

Thus for each vertex, we have m mutually orthogonal vectors, such that their squared `2
norms sum up to 1.

Note that we can tighten the above SDP by adding any constraint as long as the feasible
solutions of the integer program satisfy them. Trevisan, in particular, adds the triangle
inequalities which can be easily verified for the feasible integer solutions.

‖wh − ui‖2 ≤ ‖wh − vj‖2 + ‖vj − ui‖2

‖vj − ui‖2 ≥ ‖vj‖2 − ‖ui‖2

for each u, v, w, i, j, h.
Using the identity ‖a− b‖2 = ‖a‖2 + ‖b‖2 − 2〈a, b〉, the objective function becomes∑

e=(u,v)∈E

(
1− 1

2

∑
i∈[m]

‖ui − vπe(i)‖
2
)

13.3.1 Rounding the SDP

We now need to round the SDP to get an integral solution. Observe that
∑

i ‖ui‖2 = 1,
i.e., the squared `2 norms of ui’s define a probability distribution on the set of labels for
u. This gives one natural rounding algorithm: for each vertex u picking label i for u with
probability ‖ui‖2.

However, the above rounding procedure ignores possible correlations between edges.
For instance, suppose an edge e = (u, v) contributes 1 to the SDP solution, or equivalently
ui = vπe(i) for all i. Note that this means, that the set of vectors is the same for u and v,
however in a permuted order. Thus, if we had chosen the label i for u (this happens with
probability ‖ui‖2), it makes sense to choose label j for v such that ui = vj as this would
ensure that j = πe(i) and edge e is satisfied.

Let us see how we can generalize this idea even when the edge e = (u, v) ∈ E contributes
1 − ε to SDP solution. In this case, we have that

∑
i∈[m] ‖ui − vπe(i)‖2 ≤ 2ε. In this case,

even though the bundle of vectors for u and v are not the same, the two bundles are “close”.
Thus, if we pick a vector ui for u, we would like to pick the vector vj for v such that ‖ui−vj‖2
is minimized. More formally, we do the following.

Edge-level rounding for edge e = (u, v)

1. For u, pick i with probability ‖ui‖2 and label u with i.
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2. For v, (u, v) ∈ E, pick j such that ‖vj − ui‖2 is minimized. Label v by j (Break ties
arbitrarily.)

However, we need to prove that this satisfies πe. This is shown by the following claim.

Claim 13.3.1.
∑

i∈[m] ‖ui − vπe(i)‖2 ≤ 2ε⇒ Pr[label(v) 6= πe(label(u))] ≤ 4ε.

Proof. Note that the randomness is only in Step 1. We define BAD ⊆ [m] such that i ∈BAD
if ∃j 6= πe(i) such that ‖ui − vj‖2 ≤ ‖ui − vπe(i)‖2. We will show that for all i ∈ BAD, we
have ‖ui‖2 ≤ 2‖ui − vπe(i)‖2. Assuming this we can prove the claim as follows.

Pr[label(v) 6= πe(label(u))] =
∑

i∈BAD
‖ui‖2

≤ 2
∑

i∈BAD
‖ui − vπe(i)‖

2 ≤ 4ε

Now to prove the assumption. Denote ui = a, vπe(i) = b1, vj = b2. We have ‖a− b2‖2 ≤
‖a− b1‖2, 〈b1, b2〉 = 0. We want to conclude that ‖a‖2 ≤ 2‖a− b1‖2.

Case 1 : ‖b1‖2 ≤ 1
2‖a‖

2. In this case, the inequality follows since ‖a− b1‖2 ≥ ‖a‖2 − ‖b1‖2.

Case 2 : ‖b2‖2 ≤ 1
2‖a‖

2. In this case, the inequality follows since ‖a− b1‖2 ≥ ‖a− b2‖2.

Case 3 : ‖b1‖2, ‖b2‖2 ≥ 1
2‖a‖

2. As b1, b2 are mutually orthogonal, ‖b1−b2‖2 = ‖b1‖2+‖b2‖2 ≥
‖a‖2. But by traingle inequality, ‖b1 − b2‖2 ≤ ‖a− b1‖2 + ‖a− b2‖2 ≤ 2‖a− b1‖2.

This completes the proof of the claim.

However, the above tells us how to round such that a particular edge is satisfied. We need
a more global rounding procedure. We will first see how the above idea easily generalizes to
low-diameter graphs and then show how any graph can be decomposed to a low-diameter
graph by discarding a small fraction of the edges.

13.3.2 Approximating unique games on low-diameter graphs

Now we will see an approximation algorithm for unique games when the underlying graph
has low-diameter (in fact low-radius) [Tre08]. Assume that there is a vertex r ∈ V such
that for each vertex u, dG(u, r) ≤ d where dG denotes the distance in graph G and d is the
radius of G. The algorithm involves solving the SDP and then using appropriate rounding
scheme to get an approximate solution for unique games instance. The idea is to choose a
randomized rounding scheme for r and propagate it to all the other vertices.

Rounding:

1. Choose label i for r with probability ‖ri‖2.

2. For each v ∈ V , label v with j so as to minimize ‖vj − ri‖2 (breaking ties arbitrarily).

We will now show that for each edge e = (u, v) if the contribution of the edge e to the SDP
solution is large, then the probability that the above rounding satisfies the constraint πe
will also be large.
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Lemma 13.3.2. If each edge contributes 1− ε
8(d+1) to the SDP solution, then Pr(u,v)=e∈E [e is satisfied ] ≥

1− ε.

Proof. Let v0 = r, v1, . . . , vt = u be a path from r to u of length at most d. Define
the permutation πu to be the composition of permutations along the path (i.e., πu =
π(ut−1,ut) ◦ π(ut−2,ut−1) ◦ . . . π(u0,u1) and πv = π(u,v) ◦ πu. Now, clearly edge e is satisfied if
label(u) = πu(label(r)) and label(v) = πv(lable(r)).

For all edges e = (u, v),
∑

i∈[m] ‖ui− vπe(i)‖2 ≤
ε

4(d+1) . Hence, by triangle inequality, we
have

∑
i∈[m]

‖r − uπu(i)‖
2 ≤ ε

4
(13.3.1)

∑
i∈[m]

‖r−vπv(i)‖
2 ≤ ε

4
(13.3.2)

From 13.3.1, Pr[πu(label(r)) 6= label(u)] ≤ ε
2 . From 13.3.2, Pr[πv(label(r)) 6= label(v)] ≤ ε

2 .
Now the lemma follows.

13.3.3 Approximating unique games on general graphs

If G is a general graph (not a low-diameter graph), we decompose it into low-radius compo-
nents without discarding too many edges. In particular, we discard at most O(ε)-fraction
of edges.

Graph decomposition: Given a graph G, it is decomposed into low-radius components
as follows. Each component is created as follows.

1. Start with a vertex u.

2. Define G0 = {u} ∪N(u). The idea is to expand by one BFS layer at a time and look
at the number of newly added edges.

3. Fix some α > 1. While E(Gi ∪N(Gi)) > αE(Gi), Gi+1 = Gi ∪N(Gi), i← i+ 1.

4. Output Gi

Thus a component is expanded as long as more than a constant fraction of new edges are
added. If the radius of the component is d, then the number of edges in the component is
at least αd. Since, this can be at most |E|, we must have d ≤ log |E|

logα . Thus, the radius of

the component is at most log |E|
logα ≈ O(log n) for constant α.

Let Ei be the number of edges cut while forming ith component and Fi be the number of
edges in the component. We must have (Ei+Fi) ≤ αFi. Hence, the component has at least
Fi ≥ Ei

α−1 edges. The total number of edges is |E| ≥
∑
Fi which by the above argument is

at least 1
α−1

∑
iEi. Thus, the number of edges cut is at most |E|

1/(α−1) . We choose α = 1+ε′.

Thus we have decomposition of graph into components of radius log |E|
log(1+ε′) = O( log |E|ε′ ), with

at most ε′|E| inter-component edges.
Now the algorithm is given in the following steps: (Assume SDP solution ≥ (1− η)|E|.)
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1. Remove all the edges that contribute < (1 − 3η
ε ) to the SDP solution. (There are at

most ε
3 |E| such edges.)

2. Decompose the graph into components of radius O( lognε ) by discarding at most ε
3 |E|

edges.

3. Run Trevisan’s algorithm.

The algorithm works if 1− 3η
ε ≥ 1− ε

8(d+1) ≥ 1− ε2

C logn . Thus, if the unique label cover

instance is (1 − η)-satisfiable, we can find labeling that satisfies (1 − ε)-fraction of edges,

where η = cε3

logn for some constant c. Note that for expanders, we get cε2

logn .

13.4 Approximating unique games on expanders

There are better approximations known for unique games, when the underlying graph is an
expander [AKK+08, KT07, Kol10]. We give an overview of these results.

Lemma 13.4.1 ([AKK+08]). If a ULC instance (G, π) is (1 − ε)-satisfiable, and G has
spectral expansion λ, then there is a polynomial-time algorithm that finds a labeling satisfying
(1− Õ( ελ))-fraction of edges.

Let λ2 be the second eigenvalue of the Laplacian of G. Then λ2 = minx⊥1
‖xTLx‖
‖xT x‖ ,

where L is the Laplacian matrix of G. Let v1, . . . , vn be the vertices in G. Associate
vectors z1, . . . , zn ∈ Rn respectively with each of the vertices. It is known that λ2 =

minz1,...,zn∈Rn
E(i,j)∈E [‖zi−zj‖2]
E(i,j)∈V 2 [‖zi−zj‖2] . We will use this characterization of λ2.

The algorithm consists of solving an SDP and then rounding the solution to get labels
for the vertices. The SDP is same as in the previous section, with the exception that only
the triangle inequalities 〈ui, vj〉 ≥ 0 are used.

We describe the rounding here. Given a set of vectors for u, v, we want to determine
a permutation σuv : [m] → [m] that minimizes ρuv =

∑
i∈[m] ‖ui − vσuv(i)‖2. This is the

best permutation that aligns the uis and vjs. This is a simple minimum weight bipartite
matching problem, and hence can be exactly solved. The rounding procedure thus has
following steps:

1. Pick u ∈ V at random. Label u by i with probability ‖ui‖2.

2. For each v ∈ V , label v by σuv(i).

The analysis involves showing that the SDP solution is large if and only if Ee=(u,v)∈E [
∑

i∈[m] ‖ui−
vπe(i)‖2] ≤ ε.

Improvements and generalizations:

1. [KT07, Kol10]: This is a generalization of the algorithm of [AKK+08] to the case when
there are k eigenvalues of (the normalized adjacency matrix of )G that lie between 1
and some constant λ. Note that k = 1 in the above algorithm. Define rank∗λ(G) =
number of eigenvalues of G between 1 and λ. If k = nε, [Kol10] gives a sub-exponential
time algorithm.
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2. [ABS10]: A few weeks ago, Arora, Barak and Steurer gave a sub-exponential time
algorithm for UG building on the above ideas. This paper describes a way to decom-
pose a graph into components, where each component has rank∗λ = nε, by discarding
at most an ε-fraction of edges. The algorithm is iterative, where an SDP for the
i + 1st largest eigenvalue is written from the solution of the SDP for the ith largest
eigenvalue. The result is given in the following lemma:

Lemma 13.4.2 ([ABS10]). If G is (1 − ε)-satisfiable, then the algorithm finds a
labeling that satisfies at least 1

2 -fraction of edges. Moreover, the algorithm runs in
time 2n

ε
.
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