
Communication Complexity 19 Aug, 2011 (@ TIFR)

5. Applications to streaming

Lecturer: Prahladh Harsha Scribe: Girish Varma

In this lecture, we will see applications of communication complexity to proving lower
bounds for streaming algorithms. Towards the end of the lecture, we will introduce combi-
natorial auctions, and we will see applications of communication complexity to auctions in
the next lecture. The references for this lecture include Lecture 7 of Troy Lee’s course on
communication complexity [Lee10], Lecture 9 of Piotr Indyk’s course on streaming [Ind07]
and the chapter on combinatorial auctions by Blumrosen and Nisan [BN07] in the book
Algorithmic Game Theory.

5.1 Streaming Algorithms

Streaming algorithms are algorithms that work on input data having very large size. The
input data is so large that the algorithm can make only one or a few passes over the input,
while using very small space. For this reason, the input data is often referred to as a data
steam. If the input is y1y2 . . . yn where each yi ∈ [m], an “ideal” streaming algorithm will
use only O(poly(logm, log n)) space (i.e, just polynomially larger space than required to
store the address or identity of any element in the stream). Such restricted algorithms are
needed for example in a router to collect some statistics about the data packets that flow
through it.

A theoretical study of streaming algorithms was initiated by the seminal paper of Alon,
Matias and Szegedy [AMS99]. In this paper, they gave streaming algorithms for computing
frequency moments of data streams and also proved nearly matching lower bounds for the
problem.

Definition 5.1 (Frequency Moments). Given a data stream y1, y2, . . . , yn where each yi ∈
[m], the frequency of i ∈ [m] in the stream is xi = |{j | yj = i}|. The vector x =
(x1, x2, . . . , xm) is called the frequency vector. The pth frequency moment of the input is
defined as follows:

Fp =

|{i | xi 6= 0}| if p = 0

maxi xi if p =∞
‖x‖pp =

∑
xpi otherwise.

F0 is the number of distinct elements in the stream while F1 is the number of elements
(with repetition). Clearly, F1 = n and can be computed using O(log n) space. It is easy
to see that F0 can be computed exactly using m bits of space. In fact, all the moments
can be computed using m log n space by keeping track of the frequency vector x. Using
tools such as pairwise independence, Alon, Matias and Szegedy showed that F0 can be
approximated by a randomized streaming algorithm that uses at most O(logm, log n) space
(c.f., [AMS99, Proposition 2.3]). Alon, Matias, Szegedy [AMS99] (with improvements due

5-1

to Saks and Sun [SS02]; Bar-Yossef, Jayram, Kumar and Sivakumar [BJKS04]; and Indyk
and Woodruff [IW05]) proved the following theorem about how well small-space algorithms
can approximate the frequency moments.

Theorem 5.2.

1. For p ∈ [0, 2], there is a randomized streaming algorithm that (1 + ε)-approximates Fp

in space O(poly(logm, log n)).

2. For p > 2, any randomized streaming algorithm that (1 + ε)-approximates Fp requires
Ω(m1−2/p) space.1

3. For p > 2, there is a randomized streaming algorithm that (1 + ε)-approximates Fp in
space O(m1−2/p).2

All of the lower bounds mentioned in the above theorem are proved via communica-
tion complexity, which we illustrate in this lecture. To begin with, we will show that
any algorithm that computes F∞ exactly requires linear space by reducing the problem to
disjointness.

Theorem 5.3. Any randomized streaming algorithm that computes F∞ requires Ω(m) space.

Proof. Using a streaming algorithm for computing F∞ using space C, we will come up with
a protocol for disjointness with communication complexity C. Since we know that any
randomized protocol for computing disjointness requires Ω(m) space, the theorem follows.

Suppose Alice, Bob are given inputs X = {a1, a2, . . . ak}, Y = {b1, b2, . . . bk′} ⊆ [m]
respectively. Alice and Bob will then simulate the streaming algorithm on the data stream
a1a2 · · · akb1b2 · · · bk′ . Note Alice has only the first half of the stream, while Bob has only
the second half. Alice runs the streaming algorithm on her part (a1a2 · · · ak) and passes the
snapshot of the memory used at this point to Bob, which is of size at most C. Bob will
continue running the algorithm till the end of the input. Observe that F∞ for this stream
is either 1 or 2 depending on whether the sets are disjoint or not. Thus, Alice and Bob can
determine if the sets are disjoint using the output of the algorithm.

A couple of remarks on the proof.

Remark 5.4.

• Multi-pass streaming algorithms: Note that we can do the above reduction even in
case of a streaming algorithm that makes multiple (say k) passes on the input. In this
case, we get a protocol where at most 2kC bits are exchanged. Hence the above proof
rules out even multi-pass streaming algorithms that use small space for this problem.

• Approximation: The proof shows that for every ε > 0, even (2−ε)-approximating F∞
is not possible in o(m) space.

1The original paper of Alon, Matias and Szegedy proved a lower bound of Ω(m1−5/p) which was im-
proved to Ω(m1−2/p) by subsequent works by Saks and Sun [SS02] and Bar-Yossef, Jayram, Kumar and
Sivakumar [BJKS04].

2 The original paper of Alon, Matias and Szegedy gave an algorithm that uses O(m1−1/p) space which
was later improved by Indyk and Woodruff [IW05] to match the lower bound.

5-2

In a later lecture, we will strengthen the above inapproximability result to show the
following.

Theorem 5.5. Any streaming algorithm (even randomized) that c-approximates F∞ re-
quires Ω(m/c2) space.

It is easy to obtain the Ω(m1−2/p)-space lower bound for computing Fp using the above
theorem.

Corollary 5.6. Any streaming algorithm that computes Fp requires Ω(m1−2/p) space.

Proof. The p-norm and ∞-norm satisfy the following inequality

‖x‖∞ ≤ ‖x‖p ≤ m1/p‖x‖∞.

So ‖x‖p is an m1/p-approximation for ‖x‖∞. The lower bound now follows from Theorem 5.5
(since Fp = ‖x‖pp and F∞ = ‖x‖∞).

5.2 Multi-party Communication and Streaming

In this section, we will use the pretext of attempting to prove Theorem 5.5 to introduce
multi-party communication. We won’t prove Theorem 5.5 now, but will instead see how
multi-party communication complexity lower bounds are useful (for instance towards prov-
ing Corollary 5.6).

We extend the communication problem to a multi-party setting. Suppose there are k
parties A1, A2, · · ·Ak, and k inputs x1, x2, . . . xk and we want to compute some function
f(x1, x2, . . . xk). Two commonly considered models in this setting are as follows.

• With respect to the inputs:

– Number in hand (NIH) : Each Ai knows only xi.

– Number on forehead (NOF) : Each Ai knows all xj ’s except xi.

• With respect to communication:

– Blackboard or Broadcast : The message of any Ai is seen by all.

– Message passing : Every message from some Ai is addressed to some other
party Aj .

We will use the following variant of the disjointness problem.

Definition 5.7 (UDISJm,t). UDISJm,t is the promise problem of distinguishing between the
following inputs

YES = {(X1, . . . Xt) | Xi ⊆ [m] and ∀u 6= v, Xu ∩Xv = ∅}
NO = {(X1, . . . Xt) | Xi ⊆ [m] and ∃j ∈ [m], ∀u 6= v, Xu ∩Xv = {j}}

Later in the course, we will see a proof of the following theorem.

5-3

Theorem 5.8 (Gronemeier [Gro09]). The communication complexity of UDISJm,t under
number in hand (NIH) model and broadcast communication is Ω(m/t).

Theorem 5.8 will be proved later in this course. For now, let us see how it implies
Corollary 5.6.

Proof of Corollary 5.6. The reduction is similar to that in the proof of Theorem 5.3, apply-
ing Theorem 5.8 with t = m1/p.

Suppose the input to party i is the set Ai = {ai1, ai2, · · · aiki}. Without loss of generality,
assume that the union of the t sets is exactly m. Given a streaming algorithm for computing
Fp, we will execute a multi-party NIH broadcast protocol by simulating the streaming
algorithm on the the input

a11, a
1
2, · · · , a1k1 , a21, a

2
2, · · · , a2k2 , · · · , at1, a

t
2, · · · , atkt .

This simulation is performed by each party (in sequence) simulating the streaming algorithm
on the part of the data stream it possesses. On completion of its input, the party broadcasts
the state of the streaming algorithm so that the next party can proceed with the simulation.
Observe that the total broadcast is t · S where S is the space of the streaming algorithm.
If the input is a NO instance of UDISJm,t, then Fp of the stream is tp + (m − 1). On the
other hand, if it is a YES instance, then Fp is exactly m. Thus, if tp > 1, then knowing Fp

distinguishes YES and NO instances, and so, by Theorem 5.8, the total broadcast should
be Ω(m/t). Hence for t = m1/p, it follows that m1/p · S = Ω(m/m1/p), yielding the lower
bound of S = Ω(m1−2/p).

5.3 Combinatorial Auctions

Consider an auction with m indivisible items and n bidders. Each bidder i, has a private
valuation for any subset of the items (vi : 2[m] → R+), satisfying monotonicity property
(i.e. S ⊆ T ⇒ vi(S) ≤ vi(T) and vi(∅) = 0). The auction is supposed to give an allocation
(S1, S2, . . . Sn, Si’s disjoint) of sets of items to bidders and a corresponding set of proces
(P1, . . . , Pn).. There can be various goals for an allocation mechanism.

• Society’s point of view: Maximize social welfare of the allocation (i.e.
∑

i∈n vi(Si)).

• Bidder’s point of view: Maximize utility (i.e.
∑

i∈[n] vi(Si)− Pi).

• Auctioneer’s point of view: Maximize revenue (i.e.
∑

i∈[n] Pi)

Observe that even expressing the input requires exponential space (the valuation func-
tion requires 2m space). A simple case is the single-minded bidder: a bidder is interested
in a particular bundle S and nothing else. Hence, the valuation for a single minded bidder
can be easily expressed by a tuple (S∗, v∗) and his valuation function v is then defined as
follows.

v(S) =

{
v∗ if S∗ ⊆ S

0 otherwise.

5-4

Even for the simple case of single-minded bidders, it can be shown that maximizing social
welfare is NP-hard. Thus, the task of allocation is an intractable problem. One may then
ask if the problem is intractable due to computational reasons or is it hard for even more
fundamental reasons. We will show (not surprisingly, using communication complexity)
that even if the auctioneer and the bidders are allowed to do unbounded computation, they
will need to communicate exponentially many messages if they have to maximize social
welfare.

References

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approxi-
mating the frequency moments. J. Computer and System Sciences, 58(1):137–147, 1999.
(Preliminary Version in 28th STOC, 1996). doi:10.1006/jcss.1997.1545.

[BJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An informa-
tion statistics approach to data stream and communication complexity. J. Computer and
System Sciences, 68(4):702–732, June 2004. (Preliminary Version in 43rd FOCS, 2002).
doi:10.1016/j.jcss.2003.11.006.

[BN07] Liad Blumrosen and Noam Nisan. Combinatorial auctions. In Noam Nisan, Tim
Roughgarden, Éva Tardos, and Vijay V. Vazirani, eds., Algorithmic Game Theory,
chapter 11, pages 267–300. Cambridge University Press, 2007.

[Gro09] Andre Gronemeier. Asymptotically optimal lower bounds on the NIH-multi-party in-
formation complexity of the AND-function and disjointness. In Susanne Albers and
Jean-Yves Marion, eds., Proc. 26th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS), volume 3 of LIPIcs, pages 505–516. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2009. doi:10.4230/LIPIcs.STACS.2009.1846.

[Ind07] Piotr Indyk. 6.895: Sketching, Streaming and Sub-linear space algorithms, 2007. A
course offered at MIT (Fall 2007).

[IW05] Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency
moments of data streams. In Proc. 37th ACM Symp. on Theory of Computing (STOC),
pages 202–208. 2005. doi:10.1145/1060590.1060621.

[Lee10] Troy Lee. 16:198:671 Communication Complexity , 2010. A course offered at Rutgers
University (Spring 2010).

[SS02] Michael E. Saks and Xiaodong Sun. Space lower bounds for distance approximation
in the data stream model. In Proc. 34th ACM Symp. on Theory of Computing (STOC),
pages 360–369. 2002. doi:10.1145/509907.509963.

5-5

http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1016/j.jcss.2003.11.006
http://www.cambridge.org/journals/nisan/downloads/Nisan_Non-printable.pdf
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1846
http://stellar.mit.edu/S/course/6/fa07/6.895/index.html
http://dx.doi.org/10.1145/1060590.1060621
http://www.research.rutgers.edu/~troyjlee/cc.html
http://dx.doi.org/10.1145/509907.509963

	Streaming Algorithms
	Multi-party Communication and Streaming
	Combinatorial Auctions

