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Communication Complexity 16 Sep, 2011 (@ IMSc)

6(b). Combinatorial Optimization via LPs

Lecturer: Prahladh Harsha Scribe: Yadu Vasudev

In this lecture, we look at Yannakakis’[Yan91] approach to relating the minimum size of
LPs for polytopes to a combinatorial parameter and some connections to communication
complexity.

6(b).1 Introduction

The flavor of a combinatorial optimization problem is to maximize an objective function

over a set of valid points. In the case of TSP, the valid set of points S ⊆ {0, 1}(
n
2) is the set

of valid tours on the graph and the objective function is the minimum weight tour. In the
cases that we will be interested in, the objective function will be linear.

To make the problem amenable to linear programming, we look at the convex hull of S,
which we will denote by conv(S). The caveat here is that the polytope thus formed will have
large number of facets and thus will be exponentially big to even represent. The question
that we will be addressing in this lecture is, for what sets S will the polytope corresponding
to conv(S) have a small number of facets? We note that even if conv(S) has exponentially
many facets, it can still have an efficient LP based algorithm as long as there is a seperation
oracle.

Definition 6(b).1. For a polytope P in Rn, we say that the polytope P ′ in Rn+m expresses
P if and only if P = {x ∈ Rn | ∃y ∈ Rm, (x, y) ∈ P ′}.

Hence, given a polytope with a large number of facets in Rn if we are able to construct
a polytope P ′ in Rn+m with a only a polynomial number of facets which expresses P , then
we can apply the techniques of LP to this new polytope to get the optimum.

6(b).1.1 Parity polytope

As an example, lets look at the parity polytope PP = conv({x ∈ {0, 1}n | x has an even number of 1s}).
The parity polytope is thus given by the following constraints.∑

i∈S
xi −

∑
i/∈S

xi ≤ |S| − 1, ∀ even sized sets S

0 ≤ xi ≤ 1, ∀i ∈ [n]

(6(b).1.1)

This polytope has 2n many constraints, one for each subset of [n]. We now construct a
polytope with larger number of variables but only polynomially many constraints. Observe
that PP = conv(

⋃
k odd conv({x ∈ {0, 1}n | number of ones in x is k})). This gives us a
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new polytope with a few extra variables∑
k

αk = 1

xi =
∑
k odd

zik∑
i

zik = kαk

(6(b).1.2)

This construction of the new polytope works for any symmetric function. Thus we have the
following corollary.

Corollary 6(b).2. For any symmetric function f , there exists a polynomial sized polytope
P ′f which expresses the polytope Pf = conv({x ∈ {0, 1}n | f(x) = 1})

In the rest of the lecture, we look at what other predicates have this property. To that
end, we will look at a combinatorial parameter related to the polytope.

6(b).2 The slack matrix

Consider a polytope P given by the system of inequalities Cx ≤ d. The slack matrix SM
of this polytope P is an M ×N matrix where M is the number of constraints of the matrix
and N , the number of extreme points. We will denote the ith constraint by ci and the jth

extreme point by uj . The (i, j)th entry of the slack matrix is given by SMi,j = di−〈ci, uj〉.
Thus SMi,j ≥ 0 for all i, j.

Definition 6(b).3. The smallest m such that there exist non-negative matrices F, V ,M×m
and m×N respectively such that SM = FV is the positive rank of SM .

We will denote it by rank+(SM). We now state the theorem due to Yannakakis [Yan91]
which characterizes the expressibility of a polytope with another with larger number of
variables but lesser contraints.

Theorem 6(b).4. A polytope P with n variables is expressible by a polytope P ′ with O(n+
m∗) number of constraints if and only if m∗ = rank+(SM).

Proof. (⇐) Let P be given by the set of inequalities Cx ≤ d where C is an M × n matrix
and d is an n× 1 matrix. Since rank+(SM) = m∗, there exists F, V such that SM = FV .
We will denote the ith row of F by Fi and the jth columns of V by Vj . Then,

SMi,j = 〈Fi, Vj〉 = di − 〈ci, uj〉.

Define the polytope P ′ to be given by the constraints

Cx+ Fy = d ; y ≥ 0.

Every extreme point uj in the polytope P has a correspondig point (uj , vj) in P ′. The
number of constraints defining the polytope P ′ is O(n+m∗) since there are only so many
variables and all the constraints are equality constraints.
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(⇒) Let the polytope P ′ express P with O(m∗ + n) constraints and variables. We will
assume that P ′ is described by the polytope

C ′x+D′y ≤ d′

x ≥ 0

y ≥ 0

(6(b).2.1)

We will add a few new variables to convert all the inequalities to equalities. The new
constraints are given by

Rx+ Sy = t (6(b).2.2)

Since P ′ expresses P , for each vertex uj of P , there exists a yj which satisfies (6(b).2.2).
For every constraint Cix, there is a vector µi such that µiR = Ci, µit = di and µiS =
Fi ≥ 0. Thus for the solution (uj , yj) corresponding to the vertex uj , Ciu

j + Fiy
j =

µi [R S]
[
uj yj

]T
= µit = di. Thus, the (i, j)th entry of the slack matrix is Fiy

j . Hence, we
can factorize SM = FV where the rows of F are the vectors Fi and the columns of V are
the vectors yj .

6(b).2.1 The spanning tree polytope

For a graph G(V,E), the spanning tree is a tree on the vertices V of G that covers all the
vertices. The spanning tree polytope ST (G) is given by∑

i,j∈S
xij ≤ |S| − 1, ∀ sets S ⊆ V

∑
i,j

xij = n− 1

0 ≤ xij ≤ 1

(6(b).2.3)

This polytope has exponentially many facets, one for each subset of vertices. The slack
matrix for this polytope has rows indexed by the subsets of the vertex set and the columns
indexed by the trees in the graph. SM(S, T ) is the number of nodes in S whose parent in
T is not in S. This is explained by the following diagram.

This gives us the following decomposition of the slack matrix into F and V where the
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columns of F and the rows of V are indexed by 3-tuples (k, i, j). For the matrix F ,

F (S, (k, i, j)) =

{
1 if k, i ∈ S, j /∈ S
0 otherwise

(6(b).2.4)

and

V ((k, i, j), T ) =

{
1 if j is the parent of i at the tree rooted at k.

0 otherwise
(6(b).2.5)

Thus, the slack matrix for the spanning tree polytope has positive rank O(n3). This gives
us the polytope ST ′(G) which has only polynomially many facets.

xij = λkij + λkji

λkkj = 0∑
j

λkij = 1, ∀i 6= k ∈ [n]

λkij ≥ 0

0 ≤ xij ≤ 1

(6(b).2.6)

where for a tree T , λkij is 1 if T is rooted at k and j is the parent of i in T .

6(b).3 Connection to communication complexity

Consider the following communication game. For a polytope P , Alice is given a constraint
defining the polytope and Bob is given a vertex of the polytope. Alice and Bob should
output a 1 if the constraint given to Alice is not tight for the vertex given to Bob. The
communication matrix for this game MSM is same to the slack matrix for the polytope SM
for entries which are zero. All non-zero entries in the slack matrix are replaced by 1s in the
communication matrix.

Let F, V be the non-negative matrices such that SM = FV . Let rank+(SM) = m∗.
We will now see a connection between the communication complexity of this game and the
positive rank of the slack matrix.

Claim 6(b).5. SMij ≥ 0 if and only if ∃ k ∈ [m∗] such that Fik > 0 and Vkj > 0.

This is true since both F and V are non-negative matrices and the only way for SMij > 0
is when Fik > 0 and Vkj > 0. As a corollary we get

Corollary 6(b).6. N(MSM ) ≤ O(logm∗)

The converse direction does not hold in the case of non-deterministic protocols whereas
for deterministic communication complexity, we have the following observation.

Observation 6(b).7. Let f : {0, 1}n × {0, 1}n → {0, 1} be such that D(f) ≤ c. Then
rank+(Mf ) ≤ 2c.
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Proof. Consider the following matrices F and V . The rows of F are indexed by the inputs
to Alice and the columns are indexed by the accepting transcripts. The rows of V are
indexed by the accepting transcripts for Bob and the columns are indexed by his inputs.
An entry F (x, τ) is 1 if the transcript τ is consistent with the input x and zero otherwise.
Similarly for V (τ, y). By the construction we can see that Mf = FV . Thus rank+(Mf ) ≤ 2c

if D(f) ≤ c.

6(b).3.1 Vertex packing polytope

For a graph G(V,E), the vertex packing polytope V P (G) is given by

V P (G) = conv(
{
x ∈ {0, 1}|V (G)| | x is the characteristic vector of an independent set in G

}
).

A complete description of this polytope, identifying the various facets is not known. The
set
{
x ∈ {0, 1}|V (G)| | x is the characteristic vector of an independent set in G

}
can be de-

cribed by the integer linear program

xi + xj ≤ 1, (i, j) ∈ E
xi ∈ {0, 1}

(6(b).3.1)

Notice that just relaxing the condition x1 ∈ {0, 1} to 0 ≤ xi ≤ 1 does not give the convex
hull of the set. This can be seen by looking atG = K3, the complete graph on 3 vertices. The
independent set for G is the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, but (1/2, 1/2, 1/2) satisfies the
relaxation we mentioned earlier even though it is not in the convext hull of the independent
sets. As far as expressing the vertex packing poytope by polytopes with polynomially many
facets is concerned, we can observe the following fact.

Observation 6(b).8. If for all graphs G, V P (G) is expressible by polynomial sized poly-
topes, then NP ⊆ P/poly.

We could modify (6(b).3.1) to get the following polytope

xi + xj ≤ 1, (i, j) ∈ E∑
i∈K

xi ≤ 1, for all cliques K

0 ≤ xi ≤ 1

(6(b).3.2)

This exactly characterizes the independent sets for a large class of graphs known as
perfect graphs. G is a perfect graph if any induced subgraph H satisfy the condition that
χ(H) is the size of the larges clique in H. Comparability graph of a poset is an example
of a perfect graph. The comparability graph G(V,E) of a poset (P,≤) has V = P and
(i, j) ∈ E if either i ≤ j or j ≤ i.

The slack matrix, SM for this polytope has its rows indexed by the cliques in the
graph and the columns indexed by the independent sets. SM(C, I) = 1 if the clique C
and the independent set I intersect and is zero otherwise. This also corresponds to the
communication problem clique-independent set CLISG, where Alice is given a clique C
from G and Bob is given an independent set I. At the end of the protocol they have to
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answer if there is a vertex that is present in both the clique and the independent set. The
communication matrix of this problem is same as the slack matrix of (6(b).3.2).

The non-deterministic complexity of the clique-independent set problem is open. It is
known that D(CLISG) = O(log2 n) (refer problem 4 in problem set 1). Thus there exists a
polytope P ′ with O(nlogn) constraints that expresses V P (G) for perfect graphs.
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