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Many  combinatorial optimization problems call for the optimization of a  linear function 
over a  certain polytope. Typically, these polytopes have  an  exponential  number  of facets. W e  
explore the problem of finding small l inear programming formulations when  one  may use any  
new variables and  constraints. W e  show that expressing the matching and  the Traveling 
Salesman Problem by a  symmetric linear program requires exponential  size. W e  relate the 
minimum size needed  by a  LP to express a  polytope to a  combinatorial parameter,  point out 
some connect ions with communicat ion complexity theory, and  examine the vertex packing 
polytope for some classes of graphs. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

Many combinatorial optimization problems call for the optimization of a  linear 
function c’x over a  discrete set S of solution vectors. For example, in the case of 
the Traveling Salesman Problem (TSP), x = (xv) is an  (:)-dimensional variable vec- 
tor whose coordinates corespond to the edges of the complete graph K,, on  n  nodes, 
c is the vector of inter-city distances, and  S c (0, 1  }(;) is the set of characteristic 
vectors of the tours of n  cities (considered as subsets of the edges of K,). In the case 
of the weighted (perfect) matching problem, S is the set of characteristic vectors 
of the perfect matchings of K,, (n even). These problems are equivalent to: 
m in(max)c’x subject to x E convex hull(S). The  convex hull of the solutions is a  
polytope, which takes its name from the corresponding problem: the TSP (resp. 
matching) polytope. Analogous polytopes have been  defined and  studied extensively 
for other common problems: (weighted) bipartite perfect matching (assignment 
polytope), maximum independent set and  clique problem (vertex-packing and clique 
polytopes), etc. 

Optimizing a  linear function over a  polytope is a  linear programming problem. 
Typically, however, polytopes associated with most combinatorial problems (the 
assignment polytope is one  of the exceptions) have an  exponential number  of facets. 
Thus any linear programming formulation in the variables x that defines the 
polytope has exponential size, and  one  cannot apply an  LP algorithm directly. 
However, it may be  possible (and in some cases true) that the size can be  drastically 
reduced if extra variables and  constraints are used. 
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Let P be a polytope in the set of variables (coordinates) x. We say that a set of 
linear constraints C(x, y) in the variables x plus new variables y expresses P if the 
projection of the feasible space of C(x, y) on x is equal to P; i.e., P = {x : there is 
a y such that (x, y) satisfies C}. Equivalently, C expresses the polytope P iff 
optimizing any linear function c’x over P is equivalent to optimizing c’x subject to 
C. We are interested in the question of whether particular polytopes can be 
expressed by small LP’s. 

Since linear programming is in P, if one could construct a small (polynomial size 
LP expressing the polytope of an NP-complete problem, such as the TSP, then it 
would follow that P = NP. Actually, if anybody believes that P = NP, it is a 
reasonable approach to try to prove it using linear programming, given the fact 
that the polynomial algorithms for LP are quite hard and that for a long time 
linear programming was thought to be outside P. In fact, a recent report was 
claiming a proof of P = NP this way [SW]. The proposed LP for the TSP polytope 
had n8 (ni” in a revision) variables and constraints. With LP’s of this size, it is hard 
to tell what they do or do not express, and clearly, some methodology is needed. 

Besides ruling out a possible approach to P = NP, there are several reasons for 
examining the question of the LP size. There are some problems which we know 
now to be theoretically in P, but the only method known uses Khachian’s ellipsoid 
algorithm. The ellipsoid algorithm for LP has the advantage that it does not require 
a complete listing of all the (often exponentially many) constraints. It suffices to 
have a separation algorithm: a polynomial time algorithm which, given a point, 
decides whether it is feasible and, if it is not, produces a violated constraint. Given 
the impracticality of the ellipsoid algorithm, it would be desirable to replace it with 
simplex or Karmakar’s algorithm; however, these algorithms need a complete 
listing of the constraints. 

Another use of separation algorithms is in procedures for the TSP based on the 
polyhedral approach [GP]. Recent progress in this area has increased dramaticaly 
the size of instances that can be solved optimally in reasonable time [PRi]. The 
programs are based on a sophisticated combination of branch-and-bound and cut- 
ting planes. For cutting planes they use some known simple and “well-behaved” 
classes of facets. Expressing these facts with a small LP would not imply anything 
unexpected in theory (such as P = NP), but would permit one to shorcut the 
repeated generation of cutting planes and solution of the resulting linear programs 
by solving a single LP. 

There may be reason also to look into problems that already have good algo- 
rithms: It is reported that implementations of Karmakar’s algorithm outperform 
standard procedures for the assignment problem that are based on the Hungarian 
method, already at about 100 nodes [J]. In view of this, it would be especially 
interesting to know whether we can express succinctly also the general (nonbipar- 
tite) matching polytope. 

After giving some background in Section 2, we examine in Section 3 the matching 
and the TSP polytopes. We show that these polytopes cannot be expressed by poly- 
nomial size symmetric LP’s. Informally, “symmetric” means that the nodes of the 
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complete graph are treated the same way; see Section 3 for a formal definition. It 
is not clear what can be gained by treating one node differently than another, but 
of course this still requires a proof. In Section 4 we reduce the minimum size 
necessary to express a polytope to a concrete combinatorial problem and point out 
a relation to communication complexity theory. In Section 5 we examine the vertex 
packing polytopes of classes of graphs on which the optimization problem can be 
solved via the ellipsoid algorithm. For one class of graphs we observe that the 
vertex packing polytope can be expressed by polynomial size LP’s; for the class of 
perfect graphs we use a result from communication complexity to show that their 
polytopes can be expressed by subexponential linear programs. 

2. PRELIMINARIES 

We assume familiarity with the basic notions and results from the theory of 
polyhedra and linear programming [S]. We will be concerned with rational 
polytopes, i.e., polytopes whose vertices have rational coordinates. (In fact, 
polytopes associated with combinatorial optimization problems have usually ver- 
tices with &l coordinates.) The size of a rational number p/q (p, q relatively prime) 
is log(lpl + 1) + log(lql + 1) + 1, the size of a (rational) vector is the sum of the 
sizes of its coordinates. The size of a linear constraint (equation or inequality) is the 
sum of the sizes of its coefficients, and the size of a set of linear constraints ( a linear 
program) is the sum of the sizes of the constraints; i.e., the size of a LP is roughly 
the amount of space (in bits) needed to write it down. 

If the feasible space of a LP in n variables is a polytope P, then the size of every 
vertex of P is within a factor O(n’) of the maximum size of a constraint of the LP. 
Conversely, if P is a polytope in n-dimensional space, then there is a LP whose 
feasible space is P and each of whose constraints has size within a factor 0(n*) of 
the maximum size of a vertex of P (see [S]). Of course, even if the vertices of P 
have polynomial size (as in the case of polytopes associated with combinatorial 
optimization problems), the LP itself may not because it needs too many con- 
straints. 

Let P be a polytope in variables (coordinates) x. If one wants to express the 
polytope P by a Linear Program in the variables x, there is very little flexibility. If 
P is full-dimensional, a nonredundant LP (one in which no constraint can be 
thrown away) must contain exactly one inequality per facet of the polytope; 
furthermore, the inequality for each facet is unique up to scalar multiplication. In 
the case of a lower dimensional polytope, a minimal LP must contain as many 
equations as the deficit from full dimension (the equations describe the affine hull 
of P) and exactly one inequality per facet; inequalities that define the same facet 
may differ more substantially though in this case. 

These facts do not exclude the possibility of finding smaller linear programs 
expressing a polytope by introducing new variables and constraints. We give few 
examples where this is the case. 
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EXAMPLES. Purity polytope. Let PP be the convex hull of the n-dimensional &l 
vectors with an odd number of 1’s. Optimizing over this polytope is a trivial 
problem. This polytope has an exponential number of facets (just cutting off the O-1 
vectors with an even number of l’s requires an exponential number of constraints 
[Je]): for every subset A of (1, . . . . n} with even cardinality, CieA x~-~~~ A xi< 
IAI-1, andO<xi<l for alli. 

Using new variables, we can express this polytope with a small LP. A vector x 
is in PP if it can be written as a convex combination Ckodd CQ y,, where each vector 
y, is in the convex hull of the O-l vectors with k l’s (k odd). It is easy to see that 
the convex hull of the O-1 vectors with k l’s is described by the LP: xi Xi= k, 
0 6 xi d 1 for all i. Thus, the parity polytope is expressed by the LP: 

k;dak=l 

xi= c Zik for all i = 1, . . . . n 
kodd 

c zjk = kM, for all (odd) k 

0 d zjk < ak for all i, k. 

The first two sets of constraints say that x can be written as a convex combination 
c kodd uk yk of vectors yk= (zlkbkt .%kiak, . . . ), and the last two sets of constraints 
say that yk is in the convex hull of the &l vectors with k 1’s. Clearly, for any 
symmetric Boolean function f, one can construct similarly a small LP that expresses 
the convex hull of the O-l vectors that make f true. 

Spanning tree polytope. This is the convex hull of the characteristic vectors of 
the spanning trees of the complete graph K,,. It is described by the LP: 

Cxq=n-l 

&xij< ISI - I(“ for all subsets S of nodes 

O<x# for all i, j. 
The spanning tree polytope can be expressed by the following polynomial size LP 

from CM] (after some obvious simplifications). Introduce an auxiliary variable ilkV 
for every ordered triple of nodes k, i, j = 1, . . . . n with i #j. The constraints are 

Cxg=n-l 
i, i 

Akij + lkji > Xv for all 1 < i,j, k<n with i#j 

c&j<1 for all 1 <i, k<n with i# k 

O<xy<l for all i, j 

A,,=0 and ;1,,>0 for all k, i, j. 
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Martin obtained this LP by applying duality to a linear program for the separation 
problem for the facets of the spanning tree polytope. He presents in [M] a techni- 
que by which an LP (of a certain type) for the separation problem of a polytope 
can be transformed to an LP that expresses the polytope, and he gives some more 
examples. 

There are many other problems that can be expressed by polynomial size LP’s 
[MRC] shows how to do this for problems that can be solved by dynamic 
programming. For some problems it is very easy to find simple, small LP’s if one 
uses auxiliary variables, but it is much harder (and requires exponential size) to 
describe them by an LP that uses only the original variables [BP]. 

It is not known if there are small LP’s for matching, and of course for 
NP-complete problems such as the TSP. Can it be the case that for all polynomial 
optimization problems (e.g., matching) one can find a small LP, and that, therefore, 
proving that the TSP polytope cannot be expressed by a small LP would entail 
P # NP? After all, we know that linear programming is P-complete [DLR, V]; that 
is, any problem in P can be written in some sense as a LP. We do not know the 
answer, but we suspect that it is negative. Linear programming is complete for 
decision problems in P; the P = NP? question is equivalent to a weaker requirement 
of the LP (than that expressing the TSP polytope), in some sense reflecting the 
difference between decision and optimization problems. Say that a polytope Q  in 
variables zii (1 < i, j< n) is a Hamilton circuit (HC) polytope if it includes the 
characteristic vectors of Hamiltonian graphs and excludes non-Hamiltonian (con- 
sidered again as subsets of the edges of the complete graph). For example, if an LP 
expresses the TSP polytope in variables xii, then the polytope obtained by adding 
constraints xii<zii and then projecting the feasible space on z is a HC polytope. 

PROPOSITION. NP has polynomial size circuits (resp. P = NP) if and only if (for 
every n) there is a polynomial size LP (resp., that can be constructed efficiently) 
which expresses a HC polytope. 

Proof: The one direction follows from the fact that linear programming is in P. 
The other direction follows Valiant’s proof that linear programming is complete for 
P under p-projections [V]. Suppose that NP has polynomial size circuits and take 
such a circuit for the Hamilton circuit problem with inputs zii, 1 < i, j< n. 
Introduce a variable for every gate. For a gate g = lu, include constraints 
O<g=l-u<l; for a gate g=ur\v, include constraints O<g<u<l, 
O<g<v<l, g>u+v-1; for a gate g=u v v, include constraints O<u<g<l, 
0 < v < g < 1, g < u + v. Finally, if g is the output gate, include the equation g = 1. 
As in [V], it is easy to see that if the variables zii have values 0 and 1, then all other 
variables are also forced to have value 0 or 1 equal to the truth value of the corre- 
sponding gate; the final equation is satisfied iff the graph is Hamiltonian. Thus, the 
projection of the LP on the variables z includes the Hamiltonian graphs and 
excludes the nonHamiltonian. i 
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Of course, the same observation applies to all decision problems. If n E { 0, 1) * is 
a decision problem (language) in P, then for every n we can construct a polynomial 
size LP that expresses a polytope which includes the &l vectors of length n that 
are in Z7, and excludes those that are not in Z7. Note the importance of allowing 
new variables here. Without new variables, linear programming is extremely weak 
for decision problems; even such trivial problems as parity require exponential size. 
With new variables, linear programming achieves the full power of P-time decision 
algorithms. 

This may not be the case for optimization problems. That is, solving an optimiza- 
tion problem by expressing it as a small LP may be a restriction in the model of 
computation, as, for example, monotone Boolean circuits form a restriction for 
(monotone) decision problems. Even so, it is a natural restriction (many optimiza- 
tion problems are solved by formulating them as linear programs), and it has some 
power. For example, in the case of the bipartite perfect matching problem, the 
corresponding decision problem requires superpolynomial size for monotone 
circuits [R], while the optimization problem is very easy for linear programming, 
even without using new variables: the convex hull of the perfect matchings of the 
complete bipartite graph K,,, with n nodes on each side is described by the 
LP xj xii = 1 for all i = 1, . . . . n; xi xii = 1 for all j = 1, . . . . n; xij > 0 for all i, j. 

3. THE MATCHING AND THE TSP POLYTOPES 

Although we usually speak of the TSP (or matching) polytope, there is one for 
every size n. Thus also, when we say that an LP expresses such a polytope, we 
mean again one LP for every n. 

A complete description of the matching polytope (in terms of the standard 
variables xii) was found by Edmonds [El: xi xii= 1 for all i; Cics,j6 s xii 2 1 for 
all odd subsets S of nodes; and xii 3 0. 

A complete description of the TSP polytope is not known (and probably will 
never be). This polytope has many complex facets [GP, PW, PY]. However, 
several simple and useful classes of facets have been identified and are used in pro- 
cedures for the TSP. First are the obvious constraints: 0 < xii < 1, xi xii = 2 for all 
i. Another easy class are the subtour elimination constraints (SECs): Cis s, j 6 s xij > 2 
for all nonempty proper subsets S of nodes. Next come the 2-matching constraints: 
If F is a set of 2k + 1 edges and S a set of nodes that contains exactly one node 
from every edge of F, then xi, je s xii + Cci, j, E F x. < (SI + k. These are followed by ti, 
further generalizations, comb constraints and clique-tree inequalities. We will not 
define these constraints here; see [GP] for a comprehensive treatment. 

The subtour elimination constraints can be easily expressed by a polynomial size 
LP. One way is based on the separation algorithm for these constraints. Viewing 
the x0’s as capacities on the edges, the SECs state that the minimum cut in the 
graph has capacity at least 2. From the max flow-min cut theorem, this can be 
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expressed in the obvious way introducing appropriate flow variables and con- 
straints. A different and less obvious way uses a small portion of the LP described 
in [SW]. Introduce variables vii and yliik with the following intended meaning for 
a Hamilton tour: Orient the tour in one of the two ways. Variable uij (where i, j is 
now an ordered pair of nodes) has value 1 if the tour traverses the directed edge 
(i, j), and 0 otherwise; yrijk is 1 if the directed edge (i, j) is the kth edge of the tour 
starting from node r, and 0 otherwise. Some constraints that are clearly consistent 
with this interpretation are: xii= vii + 0,; for all i, j; cj uji = xi uij = 1 for all i; 
C, yrijk = vii for all i, j, k; Ck yrOk = vii for all i, j, r; Cj yriik =Ci y,ji,k+, = 
xi yj+ _ k for all r, j, k; yrijk > 0 for all r, i, j, k. It is not clear what these variables 
and constraints accomplish exactly, but it can be shown that they too imply the 
SEC’s (and in fact make deeper cuts). Although both of these LP’s have polynomial 
size, they are rather large. It would be of interest if there are alternative smaller 
LP’s as the SCs provide usually good lower bounds, within a few percentage points 
of the true integer optimum [J]. 

The constraints of the matchig polytope look similar to the SECs, apart from the 
parity of S. In fact, their separation algorithm is a minor modification of the one 
for the SECs (the proof is nontrivial-see [PRa]). The same is true of the 
%-matching constraints, the next set of facets of the TSP. Despite this similarity, 
these constraints are apparently harder to express. 

A permutation (relabelling) rt of the nodes of the complete graph also induces a 
permutation of the edges and their corresponding variables: xii is mapped to 
Ox,+). It also maps one perfect matching (or tour) into another, and induces a 
rotation of the coordinates that leaves the matching and the TSP polytopes 
invariant. We say that a polytope P(x, y) over variables x = (xii) and new vaiables 
y is symmetric if every permutation rr of the nodes can be also extended to the new 
variables y so that P remains invariant. A LP (set of linear constraints) is called 
symmetric if its feasible space is. Clearly, if a set of constaints “looks” symmetric 
(permutation of the variables gives the same LP) then so is its feasible space, but 
not conversely; a LP that does not look symmetric may describe a symmetric 
polytope. 

The assumption of symmetry is a natural one when one tries to construct a linear 
program. First, as we observed in the previous section, one can construct a small 
LP for any polytope with O-l vertices which is invariant under all permutations of 
variables (i.e., whose vertices are the Gl vectors that make a symmetric Boolean 
functionftrue); clearly, this LP is “symmetric,” in the sense that every permutation 
19 the original variables can be extended to the new variables. With a small sym- 
metric LP we can distinguish those bipartite graphs that have a perfect matching 
from those that do not: simply add constraints xii< zij to the LP expressing the 
bipartite perfect matching polytope (see end of Section 2) and consider the projec- 
tion on z. The linear program of the previous section for the spanning tree 
polytope, and the LP’s for the subtour elimination constraints that we described 
earlier, are obviously symmetric and so is the full linear program for the TSP 
proposed in [SW]. 
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THEOREM 1. The matching polytope cannot be expressed by a symmetric LP of 
subexponential size. 

Proof The lower bound of the theorem applies to the number of variables and 
constraints of the LP; that is, we will ignore the sizes of the coefficients. Before 
going into the details of the proof, we give first a brief, informal outline. The proof 
consists of the following four steps. 

1. Transform to a symmetric LP in standard form (equality constraints plus 
nonnegativity of variables). 

2. Show that every variable of the LP “depends” on “few” nodes. (We will 
define formally the terms later, as we go along.) 

3. Reduce to an LP with a specific set of variables, which is at least as power- 
ful. 

4. Show that this LP does not work. 

Step 1. Let P be a symmetric polytope in the variables x = (xv) and new 
variables y. We will use the shorthand z for the vector [X,] of all the variables. 
A minimal LP description of P consists of a set of equality constraints AZ = b 
describing the afhne hull of P, and a set of inequality constraints ciz G d,; i = 1, . . . . r, 
one for every facet of P. Take such a minimal LP description where the c;s are in 
the linear space parallel to the afhne hull of P (i.e., they are orthogonal to the rows 
of A) and are normalized in the L, metric, llcill = 1. Note that these conditions 
determine uniquely the inequality constraints (the c,‘s and d;s) [S]. Add now slack 
variables ui, . . . . u,, and consider the Linear Program L’: AZ = 6, ciz + ui = di, ui 2 0 
for i = 1, . . . . r. We claim that L’ is also symmetric. To see this, it suffices to show 
that every permutation g of the variables z which leaves P invariant can be extended 
to the new variables u so that it leaves also the feasible space of L’ invariant. Let 
g be a permutation of z such that g(P) = P. Then, (1) g maps the afline hull of P 
onto itself, and (2) permutes the facets of P. Extend g to the slack variables ui by 
letting it permute them the same way as it permutes the corresponding facets. Note 
that g maps the hyperplane ciz = di into the hyperplane g(c,)z = di, where g(ci) is 
the vector obtained from ci by permuting its coordinates according to g. Clearly, 
g(c,) is also normalized and in the linear space parallel to the affme hull of 
g(P) = P. From the uniqueness of the inequalities in the LP description we con- 
clude that, if g maps the ith facet of P into the jth facet, then we must have 
g(c,) = cj and di = d,. It follows that the extension of g leaves also the feasible space 
of L’ invariant. 

Clearly, the size of L’ is linear in the size of any LP description of P, and the pro- 
jection of L’ on x is equal to the projection of P. The linear program L’ is not quite 
in standard form because not all of the variables are constrained to be nonnegative. 
Although it is not important for the rest of the proof, it will simplify the notation 
to have all the variables constrained. Regarding the variables x, we may assume 
that they are nonnegative in any feasible solution of L’, because otherwise the 
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projection on x would not equal the matching polytope. Thus, we may add the 
constraints x > 0 to L’ without changing the feasible space. We can take care of the 
variables y in the standard way: use variables y + and y -, replace y in all the con- 
straints with y+ --y-, and add the constraints y + > 0, y - > 0. It is straightforward 
to verify that the new LP is also symmetric and has the same projection on x. 

Step 2. We assume from now on that our symmetric LP is in standard form: 
AZ = b; z > 0, where z = [ ;I. We will argue in the rest of the proof that the LP can- 
not express the matching polytope unless it has an exponential number of variables. 
More precisely, we will suppose from now on that the LP has at most (;) variables, 
for an integer k < n/4, and prove that they are not enough. 

We may assume that for every perfect matching A4 of the complete graph, there 
is a feasible solution whose projection on x is the characteristic vector of M. Sup- 
pose that {z*(M)} is a family of such solutions, one for each perfect matching M. 
We say that a variable zi depends on a set S of nodes with respect to the family 
{z*(M)} of solutions if for all permutations rc of the nodes that fix the nodes of S 
and for all perfect matchings A4, we have zF(M)=z*(n(M)), where X(M) is the 
perfect matching ([~(a), n(b) 1 [a, b] EM}. In other words, if we take any perfect 
matching M and permute the labels of the nodes outside S to obtain another 
matching n(M), the value of zi is not affected. For example, the variable xii depends 
on the nodes i and j. We shall use the symmetry assumption in this step to show 
that we can choose a family {z*(M)} of solutions, one for each perfect matching, 
so that every variable depends on at most k nodes (with respect to these solutions). 

Let G be the set of permutations g of the variables x, y which (1) leave the 
feasible space invariant, and (2) extend some permutation rc of the nodes (i.e., 
g(xV) = x,(~),(~)). It is easy to see that G is a group, every permutation g in G 
extends a unique permutation 7t of the nodes, and there is a natural homeomor- 
phism from G to S,, the symmetric group of permutations of the n nodes. By our 
hypothesis that the LP is symmetric, the homeomorphism maps G onto S,. We 
choose the family of solutions corresponding to perfect matchings as follows. First, 
take any particular perfect matching M,,, and let z(M,,) be any feasible solution 
whose projection on x is the characteristic vector of M,. Let Go = { ge GI g extends 
a permutation rc such that n(M,,) = M,). Define z*(M,,) =CgEGO g(z(MO))/lG,J. 
Note that for every g E G,,, the vector g(z(M,)) is a feasible solution (since g E G), 
and its x-projection is also equal to the characteristic vector of M,, (since g extends 
a rr with rc(M,) = M,). Therefore, the same properties are true of their convex com- 
bination z*(M,). For any other perfect matching M, take a permutation 7 such that 
7(M,) = A4 (obviously, there is such a z), take a f~ G that extends 7 (there is one 
by the symmetry of the LP), and define z*(M)=f(z*(M,)). 

CLAIM 1. For any perfect matching M, any permutation TC of the nodes, and any 
extension g in G ofq we have z*(n(M)) =g(z*(M)). 

Proof We will prove first the claim for the case that M is M, (the perfect 
matching we picked initially), and rc maps M, to itself. In this case, the right-hand 
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side is g(z*(M,,))=C,.., g(h(z(M,))/IGJ. Since n: maps M, to itself, g is in G,. 
Also, it is easy to see that G, is a group. Thus, as h ranges over all member of GO, 
so does g .h. Therefore, the right-hand side is equal to ChtGo h(z(M,))/IG,I = 
z*(M,), the left-hand side in this case. 

Consider now the general case. If M # MO, then let r be the permutation of the 
nodes and f its extension in G that were used in defining z*(M); otherwise 
(M= M,) ‘let t and f be the identity permutations. In either case, 
z*(M) =f(z*(M,)) and M= r(M,). Defining similarly the permutations u and h for 
the perfect matching t(M), we have: z*(n(M)) = h(z*(M,)) and X(M) = o(M,). 
The permutation h - ‘gf of the variables extends the permutation CY ‘ltt of the nodes 
that maps MO to itself. From the first case we have: z*(M,) =h-‘gf(z*(M,)). 
Therefore, z*(n(M)) = h(z*(M,)) = g(f(z*(M,))) =g(z*(M)). 1 

For a variable zi, define H(zi) to be the group of permutations rc of the nodes 
such that for all perfect matchings M, zT(n(M))=z,+(M). In words, a permutation 
z of the nodes is in H(zi) if when we take any perfect matching M and relabel the 
nodes according to rc to obtain another matching n(M), the value of the variable 
zi does not change (with respect to our chosen family of perfect matching solu- 
tions.) It is easy to see that H(zj) is indeed a group. Note that according to the 
definitions, zi depends on a set S of nodes iff H(zi) contains all permutations that 
fix the nodes of S. 

We shall show now that the index of H(zi) in the symmetric group S, is no more 
than the number of variables. Clearly, the number of variables is at least as large 
as the orbit of zi under G, which is equal to the index of the stabilizer of zi in G. 
If a member g of G fixes zi and extends a permutation n of the nodes, then from 
Claim 1 we have that for any perfect matching M, zT(n(M)) is equal to the ith 
component of g(z*(M)), which is simply z,*(M), since g fixes zi. That is, if g E G 
fixes zi and g extends Z, then rc E H(z,). In the homeomorphism from G to S,, the 
stabilizer of zi is mapped into (a possibly proper subgroup of) H(z,). Therefore, the 
index of H(zi) in S, is no larger than the index of the stabilizer of zi in G, which 
in turn is no larger than the number of variables. 

The following claim must be known (and is true for all values of k). 

CLAIM 2. Let H be a group of permutations on a set N of n nodes and suppose 
that its index in S, is at most (i), where k < n/4. Then there is a set S of at most k 
nodes such that H contains all even permutations that fix the nodes of S. 

Proof: Let B, be the largest orbit of H (if H is transitive then B, = N) and B, 
the rest of the nodes. Since 1 HI 2 k!(n -k)!, the number m of nodes of B, is at least 
n-k. The group H is the subdirect product of a group H, acting (transitively) on 
B, with a group H, acting on B,. Suppose that H, is not primitive and take any 
complete system of r blocks of imprimitivity with s nodes each, where sr = m = 1 B, 1 
and s, r >/ 2. Then IHJ < r!(s!)r (H,(. It is easy to see that the right-hand side of this 
inequality is at most 2((n/2)!)2 (achieved when r = 2, s= n/2, and B, is empty). 
Therefore, H, is primitive. 
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Let F be the group of the permutations on B, that combine (in H) with the iden- 
tity on B,. F is a normal subgroup of Hi, it is transitive (because H, is primitive), 
and IHI = ) FI [HJ. As in the case of H, , F must be primitive. The index of a 
primitive subgroup of S,,, is at least (m + i)!, unless it is the symmetric group S, 
itself or the alternating group A, (see [W, Theorem 14.21). It follows that F is S, 
or A,. 1 

Suppose that H(zi) contains all even permutations that fix the nodes of S; 
then we claim that it must also contain all odd permutations. For, suppose there 
is an odd permutation rc which fixes the nodes of S and is not in H(zJ. This 
means that there is a perfect matching M such that z,?(rc(M)) #z*(M). Let t be the 
transposition of two nodes in N-S that are matched in M; clearly, they exist 
because ISI < n/4. Then CJ = x . z is an even permutation which also fixes S, and 
a(M) = n(z(M)) = n(M). Since zT(o(M)) #z,?(M), c should not be in H(zi). 

We conclude that if there are less than (1) var:ables, then every variable depends 
on at most k nodes; in particular, if there is a polynomial number of variables then 
every variable depends on a bounded number of nodes. 

Step 3. We assume from now on that every variable zi depends on (at most) 
k < n/4 nodes (with respect to our chosen set of perfect matching solutions z*(M)). 
We will define a new set of variables wJ, and show that if the matching polytope 
is expressed by our standard form LP AZ = b; z > 0, then it is aso expressed by a 
standard form LP in the variables wJ. 

For every set J of at most k independent edges (i.e., a partial matching) we have 
a variable wJ. The value of the variable for a perfect matching ii4 is defined as 
follows: w;(M) = 1 if JG M, and 0 otherwise. The standard variables xii are 
identified with the variables wJ, where J is a singleton. We show first that, as far 
as the perfect matching solutions {z*(M)} and (w*(M)} are concerned, every z 
variable can be written as a positive combination of some w variables. 

CLAIM 3. There is a nonnegative matrix B such that for all perfect matchings M, 
z*(M) = Bw*(M). 

Proof: Let Vi be the set of (at most k) nodes on which variable zi depends. 
Suppose that M, and M, are two perfect matchings which agree on the edges that 
cover Vi (i.e., the nodes of Vi have the same mates in M, and M,). Then, clearly, 
there is a permutation rc which fixes the nodes of Vi and maps Ml to M,. 
Therefore, zT(M,) = z,*(n(M,)) = z,f+(M,). 

A row of B corresponds to a variable zi, and a column corresponds to a variable 
wJ. The row of B that corresponds to a standard variable xii has 0 everywhere, 
except for the column that corresponds to the w, variable identified with xij (i.e., 
with J= { [i j] } ), where it has a 1. In general, the entry B, corresponding to 
variables zi and wJ is defined as follows: If J covers Vi and is minimal with respect 
to this property (i.e., every edge of J is incident to a node of Vi), then we take 
any perfect matching M containing J and we let B,= z:(M); by our previous 

51114313-4 
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observation, this value does not depend on the choice of M. In the contrary case, 
i.e., .Z does not cover minimally Vi, we let B, = 0. 

Let M be any perfect matching. Consider a variable zi, and let .Z be the set of 
edges of A4 that are incident to Vi. Since 1 Vi1 <k, also IJl <k, and there is 
a variable wJ. Note that for any other set Z of edges, either Z does not cover 
minimally Vi, in which case B,= 0, or Z is not contained in M, in which case 
w:(M)=O. Therefore, the inner product of the row Bj of B (corresponding to 
variable zi) and w*(M) has at most one nonzero term: the term B,wf(M). Thus, 
z*(M) = Bjw*(M) for every variable zi, proving the claim. 1 

Let (Ll ) be our LP AZ = b; z > 0, and consider the LP (L2): ABw = 6; w > 0. For 
every perfect matching M, since z*(M) is feasible in (Ll), w*(M) is feasible in (L2) 
by Claim 3. Thus, the projection of (L2) on x (i.e., the w-variables identified with 
the standard variables xii) contains the matching polytope. On the other hand, if 
a vector w is feasible in (L2), then Bw is feasible in (Ll) because B is a nonnegative 
matrix. Clearly, the vectors w and Bw have the same projection on x. Thus, the 
projection of (L2) on x is contained in the projection of (Ll). We conclude that, 
if (Ll) expresses the matching polytope, then so does (L2). 

Step 4. Consider now a standard form LP in the variables wJ with 
IJI 6 k <n/4, and suppose that for every perfect matching M the vector w*(M) is 
feasible. Then, any vector w 3 0 which can be written as an afhne combination of 
the w*(M)‘s is a feasible solution as well. 

Partition the nodes into two sets S, and Sz, where IS,1 = 2k+ 1 and 
1 &I = n - (2k + 1); since n > 4k and n is even, also S2 has odd cardinality at least 
2k + 1. We shall construct an afline combination @ of the w*(M)% such that 
(1) G 2 0 and (2) for every edge [i, j] that goes from S, to Sz, the value of the 
corresponding variable xij in 3 is 0. This means that fi is feasible, and its projection 
on x is not in the matching polytope, since it violates the constraint xi, s,, j g s, xii > 1. 

For each odd i= 1, 3, . . . . 2k+ 1, let G(i) be the average of the vectors w*(M), 
where A4 ranges over all perfect matchings with exactly i edges from Si to Sz. Note 
that w(i) is feasible, because it is a convex combination of feasible solutions. Let G 
be the vector @=cc,W(l)+c,G(3)+ ... +czk+i S(2k + 1 ), where the cls satisfy the 
following system (E) of linear equations: 

c,+c,+ ... +Czk+l= 1. (0) 

Forj= 1 to k: 

cj= 0. 0) 

CLAIM 4. The matrix of the linear system (E) is nonsingular, and therefore, (E) 
has a solution. 

Proof For each j = 0 to k, the jth row of the matrix consists of the values of 
a degree j polynomial P,(u) on the k + 1 points u = 1, 3, . . . . 2k + 1; namely, P, = 1, 
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and for j>l, P,(u)=u(u-l)...(u-j+l)/j!. It follows that the matrix is non- 
singular, and (E) has a (unique) solution. 1 

Thus, G is well defined. Observe that, because of Eq. (0), the vector ti is an affine 
combination of feasible solutions and therefore satisfies all equality constraints. 

CLAIM 5. fiJ = 0 for every set J of (at most k independent) edges that go from S, 
to s,. 

Proof: Because of the obvious symmetry in the construction of 8, if Z and J are 
two sets of edges that go from S1 to Sz and have the same cardinality, then G,= EJ. 
(In general, if rc is a permutation of the nodes that maps S, to itself and S, to itself, 
then for every set J of edges, GJ = G,+). ) For j < k, let sj be the sum of the com- 
ponents sJ, where J ranges over all sets of j independent edges from S, to S,. It 
suffices to show that sj = 0. 

If M is a matching with exactly i edges from S, to S,, then the corresponding 
sum for w*(M) is (i) if i>j, and 0 if i< j. Therefore, the same is true for w(i), 
a convex combination of such matchings. Thus, sj = Cirj (>)c, = 0 by Eq. (j). 1 

CLAIM 6. $20. 

Proo$ We shall show that for every set J of at most k independent edges, 
GJ 2 0, and furthermore, if J has at least one edge from Si to Sz, then GJ = 0. We 
use induction on the number t of edges of J that do not go from Si to S,. The 
basis, t = 0, follows from Claim 5. For the induction step, let [a, b] be an edge of 
J that does not go from S, to S2, say both a and b are in S,, and let Z be the rest 
of the edges of J. Suppose first that Z= @; that is, J= ( [a, b] }, and wJ is actually 
the variable x,~. All solutions w*(M), corresponding to the perfect matchings, 
satisfy the equation Ccfa x,, = 1; therefore, also their aftine combination G satisfies 
the same equation. By Claim 5, for c E S2, the value of x,, in 6 is 0. By the 
symmetry in the construction of G’, for all c E S, with c #a, x,, has the same value, 
which therefore must be 3, = l/( IS, 1 - 1) > 0. 

Suppose now that I# 0. For every perfect matching Zt4, the solution w*(M) 
satisfies the equation w:(M) = C, w:, lca,c,j (M), where c ranges in the sum over all 
nodes for which the variable is defined (i.e., c is a node different than a and the 
nodes of I). To see this, observe that, either M does not contain Z, in which case 
all terms on both sides of the equation are 0, of M contains Z, in which case the 
left-hand side is 1, and on the right-hand side all terms are 0 except for the one 
where c is the mate of node a in M. Since D is an afftne combination of the 
w*(M)%, it satisfies te same equation. For c E S,, the set Zu { [a, c] } has fewer 
edges (than J) that do not go from S, to S,, and has at least one edge (namely, 
[a, c]) from S, to S,; thus, by the induction hypothesis, the corresponding 
component of G is 0. Therefore, C,, s1 3,” lCO,cli = 9,. By the symmetry in the 
construction of 0, all terms in the sum are equal to each other, and in particular 
to GJ. By the induction hypothesis, $I 2 0, and therefore GJ 2 0. If J has an edge 
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from S, to S,, then this edge is also in I; from the induction hypothesis KJ,= 0, and 
thus also %, = 0. 1 

This completes Step 4 and the proof of Theorem 1. 1 

Consider a LP in the standard varibles x and new variables y. The support of a 
feasible solution is the graph consisting of the edges [i, j] such that xti > 0 in the 
solution. If the LP expresses the matching polytope, then for every feasible solution, 
its x-projection is a convex combination of the characteristic vectors of perfect 
matchings. Thus, certainly its support must have a perfect matching. In the proof 
of Theorem 1 we have actually shown the following. 

COROLLARY 1. A symmetric LP of subexponential size, whose projection contains 
the matching polytope, has a feasible solution whose support is a graph that does not 
have a perfect matching. 

We can argue as in the proof of Theorem 1 to show a similar result for the TSP 
polytope. Although a direct proof is possible, it is somewhat more complicated; it 
is much easier to use a reduction from matching. 

THEOREM 2. The TSP polytope cannot be expressed by a symmetric LP of 
subexponential size. 

Proof Consider a graph G with 6n nodes which are partitioned into three equal 
size sets L= {I,, . . . . ZZn}, M= (m,, . . . . m2,,}, R= {rl, . . . . r2n}. The subsets L, R 
induce complete subgraphs and, in addition, each node mi is connected to Ii and ri. 
Think of the complete graph induced by L as an instance for the matching 
polytope, and suppose we have a symmetric LP C for the TSP on 6n nodes. 

A permutation of L induces an automorphism of G. Therefore, setting in C all 
variables xii to 0 for the missing edges [i, j], we get another LP C’ which is sym- 
metric with respect to L. Since C expresses the TSP polytope on 6n nodes, the LP 
C’ expresses the convex hull of the characteristic vectors of the Hamilton circuits 
of G, denoted TSP(G). Since the nodes mi have degree 2, a Hamilton circuit of G 
consists of their incident edges and perfect matchings from L and R. Also, every 
perfect matching of L can be extended to a Hamilton circuit of G. Therefore, the 
matching polytope for L is a projection of TSP(G). It follows that C’ expresses the 
matching polytope on 2n nodes. 1 

COROLLARY 2. A symmetric LP of subexponential size whose projection contains 
the TSP polytope has a feasible solution (1) whose support is a nonHamiltonian 
graph, and (2) which violates a 2-matching constraint. 

Proof Let C and C’ be the linear programs as in the proof of Theorem 2. We 
may assume without loss of generality that every solution of C satisfies the con- 
straints 0 < xii < 1 for every edge [i, j], and xi xii = 2 for every node i; if not, then 
we can just add these constraints. From the proof of Theorem 1, we know that 
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there is a feasible solution z of c’ (and thus, also of C) and an odd subset S of L 
such that the support of z does not contain any edge from S to L - S. It follows 
that the support of z is a nonHamiltonian subgraph of G. 

Consider the 2-matching constraint that corresponds to the set S of nodes 
and the set of edges F= ( [li, mi] : Zj E S}. Since mi has degree 2 in G, for every 
edge e in F the corresponding variable X, has value 1 in z ( a solution to C’). 
Thus, the left-hand side of the 2-matching constraint is CecS x, + I,, F  x, = 
~CCsESCIXS,+~eEFXel=3 IW. I 

The proof of Theorem 1 gives a lower bound for a class of LP’s somewhat larger 
than the symmetric class. Suppose that we have an LP AZ= b; z>O with a family 
of solutions {z*(M)} for the perfect matchings and that, with respect to these 
perfect matching solutions, every variable can be written as a positive combination 
of some variables that depend on few nodes (or of variables wJ) in the sense 
of Claim 3 in the proof. Then the rest of the proof goes through as before. For 
example, let us say that a variable zi concerns a set S of nodes (with respect to the 
family (z*(M)} of perfect matching solutions), if the variable has the same value 
for any two matchings M , and M , that agree on the edges that cover S (i.e., 
zF(M,) = z,*(M*)). From steps 3 and 4 of the proof of Theorem 1, if every variable 
concerns k < n/4 nodes, then the LP does not express the matching polytope and 
has a feasible solution whose support does not have a perfect matching. Note that, 
if a variable depends on a set S of nodes, then it also concerns S, but the converse 
is not true; for example, a variable zi whose interpretation is “the label of the mate 
of node i” (i.e., z*(M) =j, where [i, j] EM) is sensitive to the labelling of all the 
nodes, but concerns only node i. As an illustration, we shall show the lower bound 
can be transferred through a reduction that is not symmetric (does not preserve the 
symmetries of the complete graph as the reduction of Theorem 2 does). 

COROLLARY 3. A polynomial size symmetric LP, whose projection contains the 
matching polytope, has a feasible solution whose support is a graph of maximum 
degree 3 that does not have a perfect matching. 

Proof: Consider the following reduction of the matching problem from general 
graphs to degree 3 graphs. Given a graph G with n nodes, construct a graph G as 
follows. For every node i of G take a complete binary tree with at least n leaves and 
insert a node in the m iddle of every edge; let Ti be the resulting tree. The graph G 
has a tree Ti for every node i of G, and for every edge [i, j] it has an edge 
connecting the jth leaf of Ti to the ith leaf of Tj. 

Suppose that M  is a perfect matching of G. Construct a perfect matching M  of 
G  as follows. If A4 contains the edge [i, j], then ii;i contains the corresponding edge 
connecting the jth leaf of Ti to the ith leaf of Tj. Within the tree Ti, an internal 
degree 2 node is matched to its father if it lies on the path from the root to the jth 
leaf (the one that is matched to another tree) and is matched to its child otherwise. 
Conversely, suppose that li;i is a perfect matching of G. We claim that there is 
exactly one matched edge coming out of every Ti, and thus, I@ corresponds to a 
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perfect matching M of G. Note that in each tree Ti there is a unique alternating 
path that starts at the root with a matched edge (because of the degree 2 nodes); 
this path must lead to a leaf that is matched to a node outside Ti. It is easy to see 
that every internal degree 2 node that is not on this path must be matched to its 
child (use induction on the level of the node). Therefore, every other leaf is matched 
within T,. 

Let R, be the degree 3 graph that results when we apply this transformation on 
the complete graph K,, of n nodes. Let N be the set of nodes of K, and w of K,,, 
and let m = IN1 = O(n*). Note that the reduction is not symmetric, it depends on 
how the nodes of K,, are numbered. Suppose that we have a symmetric LP (without 
loss of generality in standard form) L : AZ = b; z z 0 with at most (T) variables, 
k < n/4, and that its projection on the x variables contains the matching polytope 
on m nodes. We know that we can pick a family {z*( .)} of solutions for the perfect 
matchings on m nodes so that every variable z, concerns at most k nodes of R. Let 
L’ be the LP obtained from L by setting to 0 the x variables corresponding to the 
edges missing from K,,. Regard L’ as an LP for the matching polytope on n nodes 
by identifying the xii variable for the edge [i, j] of K, with the x variable of L’ for 
the corresponding edge of K”, i.e., the edge connecting the jth leaf of Ti with the 
ith leaf of T,. For every perfect matching A4 of K,,, choose z*(m) as its feasible 
solution in L’, where R is the matching of K,, that corresponds to M. We claim 
that every variable concerns at most k nodes of K,,. In proof, suppose that a 
variable zI concerns a set S of nodes from i??. Every node of s belongs to some tree 
T, corresponding to a node i of K,. Let S be the set of nodes of K,, that correspond 
to the trees that contains the nodes of S; since ISI < k, also ISI < k. Suppose that 
two perfect matchings M,, M, of K,, agree on the edges that cover the nodes of S. 
Then the corresponding matchings li;i,, R, of K,, agree on the edges that cover the 
nodes of S, and therefore the variable z, has the same value in the solutions for the 
two matchings. 

Since every variable concerns at most k nodes of K,,, there is a feasible solution 
z” of L’ whose support G in K, does not have a perfect matching. The support of 
Z in K,,, is a subgraph G of K” that does not contain the edges that correspond to 
edges missing from G, and thus G does not have a perfect matching either. 1 

Along the same lines, one can show an analogous result for the TSP using the 
reduction in [GJS] of the Hamilton circuit problem to degree 3 graphs. 

4. A COMBINATORIAL PARAMETER 

Recall that, if we want to describe a polytope by a LP in the standard variables, 
there is very little flexibility. However, if one may use any new variables and con- 
straints one wishes, there is an unlimited number of possibilities. We will provide 
a combinatorial characterization of the number of variables and constraints needed, 
which may help to get some handle on this problem. 
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Let P be a polytope in n-dimensional space with f facets and u vertices. Define 
a matrix SM (for slack matrix) for P whose rows correspond to the facets, and the 
columns correspond to the vertices. Pick an inequality (anyone) for each facet. The 
ijth entry of SM is the slack of thejth vertex in the inequality corresponding to the 
ith facet, That is, if the inequality is cix < di and the jth vertex is xj, then 
SM[ i, j] = d, - cjxj. Note that SA4 is a nonnegative matrix. 

THE~OREM 3. Let m be the smallest number such that SM can be written as the 
product of two nonnegative matrices of dimensions f x m and m x v. The minimum of 
the number of variables plus number of constraints over all LP’s expressing P is 
O(m + n). 

ProojI Suppose that the slack matrix SM can be written as the product of 
nonnegative matrices F and V of dimensions f x m and m x o, respectively. Let 
(Ll ) : Ax = b; Cx < d be a complete description of the polytope P in the standard 
variables x. Introduce a vector y of m new variables, and consider the LP 
(L2) : Ax = b; Cx + Fy = d; y B 0. Since F is a nonnegative matrix, the x-projection 
of any feasible solution of L2 satisfies Ll, and thus is in P. Conversely, for every 
vertex xi of P, if the corresponding column of V is yj, then the vector (xj, yj) is 
a feasible solution to L2. Therefore, L2 expresses P. The linear program L2 has 
m + n variables; it may have many more equality constraints. However, at most 
m + n of them are linearly independent, and the rest can be removed. In general, a 
LP consisting of the nonnegativity constraints y>O and a set of equality 
constraints describing the afftne hull of the vectors (xj, yj) that correspond to the 
vertices, expresses P. 

Consider now a LP that expresses P. At the cost of at most doubling the number 
of constraints and variables, we may assume without loss of generality that the LP 
has the form (L3): Rx + Sy = t; y > 0. Let (xj, yj) be a feasible solution for each 
vertex xi of P. Since (L3) expresses P, it must imply every facet cix < di of P. From 
linear programming theory, this means that there is a vector pi of multipliers for the 
equalities of (L3), such that pi[R, S] = (ci, fi) with fi> 0, and pjt = d,. Thus, for 
the solution (xj, yj) corresponding to the jth vertex, we have: cixi +fi y’ = 
pi[R, S][$] =pit =di. That is, the slack of the jth vertex in the ith facet is fiyj, 
and SM= F- V, where the matrix F has the f:s as its rows and V has the yj as its 
columns. 1 

Expressing the polytope by a LP in the original variables corresponds to the 
trivial factorization SM = I. SM (I the f x f identity matrix). The theorem remains 
true if the matrix is augmented with additional rows corresponding to any valid 
constraints, and additional columns corresponding to any feasible points. In 

particular, to get a lower bound we may use any valid constraints and do not need 
to know a full description of the polytope. 

The theorem concerns only the number of variables and constraints of the LP, 
and not the sizes of its coefficients. An analogous result holds for the total LP size 
if we take into account also the sizes of the entries of the factor matrices. Consider 
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a polytope P whose vertices have size polynomial in n. If the slack matrix SM of 
P can be factored into two nonnegative matrices F, V with dimensions f x m, m x v, 
and whose entries have size at most I, then P can be expressed by a LP of size poly- 
nomial in n, m, 1. And conversely, if P can be expressed by a LP of size s, then SM 
can be factored as above so that 1 and m are polynomial in s. The proof is the same 
as for Theorem 3 using standard arguments to bound the sizes of the numbers. 

EXAMPLE. Consider the spanning tree polytope and its exponential family of 
facets Ci,jss x0 d ISI - 1 for every subset S of nodes. (The rest of the constraints of 
the polytope are few in number, and we may include them explicitly in the LP.) Let 
T be a spanning tree and S a subset of nodes. If we root the tree at an arbitrary 
node k of S, then the slack SM(S, T) of the vertex T in the facet corresponding to 
S is simply the number of nodes of S whose parent is not in S. Thus, if we introduce 
a new variable A,, for every triple of nodes k, i, j with k # i #j, and its value for 
a spanning tree T is: JVkij= 1 ifj is the parent of i when we root the tree at k, and 
0 otherwise, then 

SM(S, T) = c &. (1) 
iCS,JQS 

This equation describes a factorization of SM into two nonnegative matrices F and 
V, where the columns of F and rows of V correspond to the variables ;Ikij; the 
column of V corresponding to a spanning tree T consists of the values of the 
variables lkii for T, and the row of F corresponding to a subset S of nodes consists 
of the coefficients (0 or 1) of Eq. (1) for any particular choice of a node k of S. 

Thus, we can express the spanning tree polytope by a LP consisting of the 
constraints we left out (some of these are actually redundant), the nonnegativity 
constraints, and equality constraints satisfied by all the spanning tree solutions. The 
resulting LP is basically the same as the one of Section 2, except that the second 
and third inequality there are replaced by equalities. The constraint cjl,0 = 1 (with 
i# k) says that if we root a spanning tree at k, then every other node i has one 
parent, and the constraint xti = A,, + ikji says that an edge [i, j] is in the spanning 
tree iff either i is the parent of j or j is the parent of i. Of course, the root k has 
no parent; thus, A,, = 0 and can be omitted. 

Observe that if (x, A) is a solution to this LP, S is any subset of nodes and k E S, 
then Ci,jcsxg=Ci,jss ~/q+~kji=Cjes,j+k CXicSAkijl=CjeS,jfk C1-Ci$SAkijl= 

Let us call the smallest number m of the theorem, the positive rank of the matrix 
SM. We do not know of any techniques for estimating or deriving bounds for the 
positive rank of a matrix. There are two parts in the definition of this parameter: 
the linear algebra part and the nonnegativity restriction. If we ignore the second 
restriction we get simply the rank of the matrix SM. Although typically SM has an 
exponential number of rows and columns, its rank is always small, less than n: if 
Cx< d is the inequality system describing the facets of the polytope, then 
SM = de - CX, where X is a matrix with the vertices as columns and e is a row 
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vector of 1’s. If we ignore the linear algebra part and just look at the zero-nonzero 
structure of the matrix, we can view the problem as one of communication com- 
plexity. 

The setting in a communication problem is as follows. There are two sides, R and 
C, and each of them gets part (r and c, respectively) of the input. The problem is 
to design a protocol, which uses the m inimum number of bits of communication 
and allows the two sides to compute a given function or predicate of the distributed 
input r, c. There is also a notion of a nondeterministic protocol for a predicate: 
here, the two sides are allowed to make guesses in their communication, and the 
requirement is that if the input r, c satisfies the predicate, then for at least one guess 
the two sides must determine that this is the case. (See [AUY, MS, PS, Y] for 
more information and background.) One can associate a communication matrix CM 
with a communication problem. The rows of the matrix correspond to the possible 
inputs r to the side R, the columns correspond to the possible inputs c to the side 
C, and for any r, c, the entry CM(r, c) is the value of the function or predicate that 
has to be computed for this input. In the case of a predicate, CM is a O-l matrix. 
A monochromatic rectangle of CM is a submatrix defined by a subset of (not 
necessarily consecutive) rows and columns whose entries are equal. It is known that 
the nondeterministic communication complexity of a predicate is equal to the 
logarithm of the m inimum number, call it s, of monochromatic rectangles needed 
to cover the l’s of the communication matrix of the predicate. Equivalently, the 
nondeterministic complexity of a predicate is the logarithm of the smallest number 
s such that the communication matrix of the predicate can be written as the 
Boolean product (+ is OR and x is AND) of two (Gl) matrices with s as 
the intermediate dimension (number of columns of the first matrix and rows 
of the second). 

Let FV be the predicate which is 1 (true) of a facet and a vertex if the vertex does 
not lie on the facet, and is 0 (false) otherwise. Consider the following communica- 
tion problem: there are two sides, one knows a facetfi and the other a vertex vi and 
want to compute FV. The communication matrix of the predicate FV is just the 
zero-nonzero structure of the slack matrix SM. From Theorem 3 we have: 

COROLLARY 4. The nondeterministic communication complexity of the predicate 
FV is a lower bound on the logarithm of the minimum size of an LP expressing the 
polytope. 

For the matching polytope there is an obvious 4 log n nondeterministic protocol: 
just guess two edges of the matching that cross the partition of the facet. Thus, in 
the case of the matching polytope, the corollary cannot give a lower bound better 
than n4, which is probably (we believe) far from tight. However, even such a lower 
bound would be nontrivial and would be enough to imply that the direct applica- 
tion of a LP algorithm to general matching could not compete with present 
combinatorial algorithms. 

For the known classes of facets of the TSP polytope that we mentioned in the 
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previous section (including the clique-tree inequalities) it turns out that there are 
also nondeterministic protocols of complexity O(log n), and thus Corollary 4 
cannot give a superpolynomial bound for the usual TSP facets. As in the case of 
matching, it can be shown that for each of these facetsf, and for every tour C that 
does not lie on fi, there is a bounded number of edges of C such that every tour 
that contains these edges does not lie on fi. In the next section we will see some 
constraints derived from the independent set problem which do not have this 
property, and therefore may possibly give rise to a superpolynomial lower bound. 

5. VERTEX PACKING POLYTOPES 

The vertex packing polytope VP(G) of a graph G is the convex hull of the charac- 
teristic vectors of its independent sets of nodes. Note: there is one polytope for 
every graph. As expected, we do not know full descriptions of these polytopes. 
However, for some classes of graphs certain simple and natural constraints suffice. 

First there are the obvious constraints: (1) 0 <xi < 1 for every node i, and 
xi + xi < 1 for every edge (i, j) of the graph. These constraints describe the polytope 
VP(G) iff G is bipartite. Another set of constraints follows from the fact that a cycle 
C with an odd number 2k+ 1 of nodes can contain at most k nodes of an inde- 
pendent set: (2) CiEc xi < (1 Cl - 1)/2 for all odd cycles C of the graph. The 
constraints (1) and (2) describe the vertex packing polytope for a class of graphs 
called t-perfect. Although there is in general an exponential number of constraints 
of type (2), there is a good separation algorithm for them, and thus the 
optimization problem over the polytope defined by (1) and (2) can be solved in 
polynomial time using the ellipsoid algorithm (see CL]). It is not too hard to show 
also: 

THEOREM 4. The polytope defined by constraints (1) and (2) can be expressed by 
a polynomial size LP. 

Proof: The LP follows the separation algorithm for the constraints (2). Given 
a vector x that satisfies constraints (l), consider the graph as having lengths on the 
edges, where the length I, of the edge [i, j] is 1 - xi - xj (thus, I, > 0 by (1)). Con- 
straints (2) say that for every odd cycle C, its length Cci,ils c 1, = 1 Cl - 2 Cic c xi 
is at least 1. The separation algorithm computes the shortest odd cycle and tests if 
its length is less than 1. 

For every pair of nodes i, j, introduce variables eU and oii, which stand for the 
even and odd distances, respectively, between i and j; we do not need the variables 
eii (the even distance from i to itself is 0) but we do have variables oii. The 
constraints are: 0 < xi < 1 for all nodes i; 0 < oii < 1 - xi - xi for every edge [i, j]; 
oii d oik + ekj and eti < oik + okj for every edge [i, k] and node j; oii > 1 for all i. 

It is easy to see that in any feasible solution to this LP, the values of eU and oij 
are bounded from above by the length of the shortest even and odd path respec- 
tively from i to j (if there are paths with these parities); thus, no odd cycle has 
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length less than 1, because of the constraints oii > 1. Conversely, given a solution x 
to constraints (1) and (2), we can extend it to the new variables by letting eV (resp. 
oii) be the length of the shortest, not necessarily simple, path from i to j with an 
even (resp. odd) number of edges; if there is no even or odd i-j path then give the 
corresponding variable a large value, for example, n. It is easy to see that this is a 
feasible solution to the LP. i 

Another set of valid constraints for VP(G) follows from the fact that an inde- 
pendent set can contain at most one node from a clique: (3) CieK xi< 1 for every 
clique K of the graph. Together with the nonnegativity constraints ~~20, these 
constraints are sufficient to describe the vertex packing polytope of perfect graphs. 
This is a well-studied, rich class of graphs; it includes several natural subclasses (for 
example, chordal and comparability graphs and their complements). Some basic 
properties are: the chromatic number is equal to the maximum clique size; every 
induced subgraph of a perfect graph is also perfect; the complement of a perfect 
graph is also perfect (see [BC, G] for more information). The maximum (weight) 
independent set problem can be solved on perfect graphs through a very complex 
and deep application of an extension of the Ellipsoid algorithm [GLS]. It is an 
important open problem in computational graph theory to find a better algorithm 
for this problem. 

The slack matrix for the constaints (3) is &l, has one row for every clique and 
one column for every independent set, and the entry corresponding to a clique K 
and an independent set Z is 1 if Kn Z= 0, and 0 otherwise. The constraints (3) for 
nonmaximal cliques are clearly redundant; however, it is convenient to include 
them in the slack matrix. Note then that the transpose of the slack matrix for a 
graph G is simply the slack matrix for the complementary graph G. Since any fac- 
torization of a matrix into two nonnegative matrices implies obviously a factoriza- 
tion for its transpose, it follows that the number of variables and constraints needed 
to express the vertex packing polytope of a perfect graph and its complement are 
linearly related (and the LP sizes are polynomially related). 

For a graph G, let Q be the predicate which is true of a clique K and independent 
set Z if K and Z are disjoint and false otherwise. We do not see any obvious protocol 
for Q, but there is an obvious non-deterministic protocol with complexity log n for 
the complementary predicate Q: guess the node in the intersection of K and I. This 
protocol is unambiguous: if Q is true, then exactly one guess is successful because 
a clique and an independent set cannot have more than one node in common. In 
terms of the communication matrix of a predicate ZZ, the unambiguous complexity 
of 17 is equal to the logarithm of the smallest number d of disjoint monochromatic 
rectangles that cover the l’s of the matrix CM(ZZ); this number d is also the 
smallest number such that CM(ZZ) can be written as the product (real multiplica- 
tion) of two O-1 matrices with d as the intermediate dimension [MS]. Thus, an 
unambigous protocol of complexity log d for the predicate Q of a perfect graph G 
(and of course, a deterministic protocol, as well) gives a linear program expressing 
VP(G) with O(d) variables and constraints (and &l coefficients). 
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EXAMPLE. Suppose that G is a comparability graph, and let D be its underlying 
partial order. A clique of G corresponds to a path in D. Let K be a clique with 
nodes v,, . . . . vk in the order they appear in D, and let I be a disjoint independent 
set. Either (a) every node of K precedes in the partial order D some node of I 
(equivalently, uk precedes some node of I), or (b) no node of K precedes a node of 
I (equivalently, v, does not precede a node of I), or (c) there is a unique i such that 
vi precedes some node of I (and thus, so do also its predecessors v,, . . . . vi- I)r 
whereas vi+, does not (and neither do the successors vif2, . . . . ok). This observation 
implies the following unambiguous protocol with complexity 2 log n for the 
predicate Q. The clique side guesses which one of the three cases applies; in the first 
case it sends vk, in the second it sends vi, and in the third it guesses an i and sends 
vi and vi+i. Thus, there is an LP with O(n’) variables and constraints. 

Comparability graphs (and their complements) have polynomial size LP’s. The 
same is true of chordal graphs (and their complements), since a chordal graph has 
at most n maximal cliques. How about the rest of the perfect graphs? The best we 
can do is nO(“gn) using a result from communication complexity. 

LEMMA 1. If the unambiguous communication complexity of a predicate is g, then 
its deterministic complexity is at most O(g2). 

Proof: The proof is very similar to the one in [AUY], that if both a predicate 
and its complement have nondeterministic complexity g, then the deterministic 
complexity is at most g2. Let ZJ be a predicate with unambiguous complexity g, CM 
be its communication matrix, and let D be a set of 2g disjoint monochromatic rec- 
tangles that cover the l’s of CM. Let G be a graph whose nodes are the rectangles 
of D and which has an edge connecting two rectangles if they share a row of CM. 
For every row r, the rectangles that contain r form a clique K,, and for every 
column c, the rectangles that contain c form an independent set I,, because the 
rectangles are disjoint, so no two of them can share both a row and a column. Since 
the rectangles cover the l’s of the matrix, for any row r and column c the corre- 
sponding entry CM(r, c) is 1 iff K, n Z, # 0. Some cliques of G may correspond to 
no row, and some independent sets may correspond to no column. However, this 
construction shows that any predicate with unambiguous complexity g can be 
reduced to the Q predicate on a graph with 2g nodes. 

The protocol proceeds in stages which reduce the graph until the answer is deter- 
mined. In each stage, the clique side sends a node, say u, of the clique K that is 
adjacent to at most half of the nodes of the current graph or notifies the other side 
that it has no such node. In the first case, the side with the independent set Z com- 
municates whether (i) u E I or (ii) u is not adjacent to any node of I. If (i) occurs 
then Kn I# 0; if (ii) then Kn Z= @ and the protocol finishes. If neither occurs 
then the nodes that are not adjacent to u are removed from the graph (they cannot 
be in the clique, and therefore, neither in Kn I), and the stage finishes. In the 
second case (all nodes of K are adjacent to more than half of the nodes), the inde- 
pendent side sends a node v of I that is adjacent to at least half of the nodes of the 



COMBINATORIAL OPTIMIZATION PROBLEMS 463 

current graph or communicates that it has no such node. In the latter case, 
K A Z= 0 because of the degrees, and the protocol finishes. Otherwise, the clique 
side communicates in an analogous fashion whether (i) u E K or (ii) o is adjacent to 
all nodes of K. If (i) or (ii) occurs, then the protocol finishes; otherwise the nodes 
adjacent to u are removed from the graph (they cannot be in I) and the stage 
finishes. Since every stage removes half of the nodes, there are at most g stages, and 
the communication per stage is obviously O(g). 1 

As the numbers involved are small (O-l), it follows from the lemma and 
Theorem 3 that: 

THEOREM 5. The Vertex packing polytopes of perfect graphs can be expressed by 
LP’s of size n”(logn). 

Note that, unlike Theorem 4, this does not mean that the polytope defined by the 
constraints (3) is expressible by such an LP for general (nonperfect) graphs. The 
reason is that the polytope defined by (3) also has fractional vertices for nonperfect 
graphs. In fact, optimizing over (3) is in general NP-hard [GLS], and it is unlikely 
that (3) can be expressed by an LP of subexponential size. 

Deriving lower bounds on the size of LP’s expressing vertex packing polytopes 
in general would imply similar bounds for the TSP: 

THEOREM 6. Zf the TSP polytope can be expressed by a polynomial size LP, then 
so can the vertex packing polytopes of all graphs. 

Proof Sketch. Let G be a graph with n nodes. We can construct another graph 
H with O(n*) nodes such that VP(G) is a projection of the polytope TSP(H), the 
convex hull of the Hamilton circuits of H. Thus, a LP for VP(G) can be derived 
from a LP for the TSP polytope on O(n*) nodes by setting to 0 the variables xij 
for the edges [i, j] missing from H. 

The construction of H is similar to the reduction from the vertex cover to the 
Hamilton circuit probem (see, e.g., [AHU]). First we construct a directed graph D 
as follows. For each node i of G, we have a node ui and a path pi in D. For every 
edge [i, i] of G, the path pi has two consecutive nodes (i, j, 0) and (i, j, 1). There 
are arcs in both directions connecting the odes (i, j, 0) and (j, i, 0) (of the paths 
pi, pi, respectively) and, also, arcs connecting the nodes (i, j, 1) and (j, i, 1). For 
each i, the graph D has arcs from ui to the first node of the path pi and to node 
ui+ I (addition mod n) and from the last node of pi to ui+ , . Consider a Hamilton 
cycle C of the graph D. It is easy to see that the set of nodes i of G such that 
C contains the arc from ui to ui+ 1 is an independent set. And conversely, for 
every independent set Z of G, there is a Hamilton cycle C of D such that 
Z= (iJ(u,, ui+,)eC}. 

From D construct an undeirected graph H in the usual way. Replace every node 
u of D by a path of three nodes (u, 1 ), (v, 2), (v, 3), and every arc u --) w of 
D by an edge joining (u, 3) and (w, 1). For each node i of G, identify the 
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corresponding variable (coordinate) xi of VP(G) with the variable of the TSP 
corresponding to the edge joining (ui, 3) and (ui+ i, 1). Then the polytope VP(G) 
is a projection of TSP(H). 1 

As we mentioned earlier, it is not clear whether there is a nondeterministic 
protocol with logarithmic complexity for the predicate Q of a graph. We can 
formulate the nondeterministic complexity of Q as the following graph theoretic 
problem. Let us say that a family of t partitions of the nodes N into to sets, say 
(S,, N - S,), . . . . (St, N - S,), is a splitting family if every clique K and disjoint 
independent set Z are split by some partition in the family (i.e., for some i, KG S; 
and Is N- Si). Let q(G) be the smallest size t of a splitting family for G. 

LEMMA 2. For every graph G, the nondeterministic complexity of its predicate Q 
is log q(G). 

Proof: A splitting family with q(G) partitions implies an obvious nondeter- 
ministic protocol: for every clique and independent set guess the index of a partition 
in the family that splits them. Conversely, consider a nondeterministic protocol for 
Q with complexity log t, i.e., with at most t possible message exchanges. For the ith 
message exchange (i = 1, . . . . t), let Si be the union of the cliques K for which the cli- 
que side concludes that Q is 1 (i.e., that K is disjoint from the independent set), and 
let ri be the union of the independent sets for which the side with the independent 
set concludes that Q is 1. We claim that Sin Ti = 0. For, if the intersection con- 
tains some node v, then let K and Z be a clique and an independent set that caused 
v to be included in Si and Ti, respectively; K n I# 0, contradicting the correctness 
of the protocol. Thus, Ti E N - Si. For every clique K and disjoint independent set 
Z there is a message exchange for which both sides conclude that Q is 1. Thus, there 
is an i such that KcSi and Is T,cN-Si. a 

The parameter q(G) is not affected significantly if we just require the family of 
partitions to split maximal cliques from (disjoint) maximal independent sets; at 
most it decreases by 2n. Let q(n) = max{q(G) : G a graph with n nodes}. Is q(n) 
superpolynomial? We have not been able to resolve this question. This is equivalent 
to the question whether the nondeterministic complexity of a predicate is linear in 
the unambiguous complexity of its complement. (This follows from the fact that any 
predicate with unambiguous complexity g can be reduced to the Q predicate on a 
graph with 2g nodes-see the proof of Lemma 1). From Corollary 4, Theorem 6, 
and Lemma 2, we have: 

COROLLARY 5. If q(n) is superpolynomial, then the TSP polytope cannot be 
expressed by a polynomial size LP. 
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6. OPEN PROBLEMS 

This work is a step towards a sysematic study of expressing combinatorial 
optimization problems with small linear programs; there are clearly many open 
problems. Some of the more immediate ones are: 

(1) Find techniques for computing or bounding the positive rank of a matrix. 
(2) We do not think that asymmetry helps much. Thus, prove that the 

matching and TSP polytopes cannot be expressed by polynomial size LP’s without 
the symmetry assumption. 

(3) Can we express the vertex packing polytpes of perfect graphs with poly- 
nomial size LP’s How small? 
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