
Coding Theory 10 Nov, 2016

Problem Set 2

• Due Date: 15 Dec 2016

• Turn in your problem sets electronically (LATEX, pdf or text file) by email. If you submit handwritten
solutions, start each problem on a fresh page.

• Collaboration is encouraged, but all writeups must be done individually and must include names of
all collaborators.

• Refering sources other than the text book and class notes is strongly discouraged. But if you do use
an external source (eg., other text books, lecture notes, or any material available online), ACKNOWL-
EDGE all your sources (including collaborators) in your writeup. This will not affect your grades.
However, not acknowledging will be treated as a serious case of academic dishonesty.

• The points for each problem are indicated on the side.

• Be clear in your writing.

• Problems 1 is from Guruswami’s course while problems 5, 6 are due to Ramprasad Saptharishi.

1. (15) Parallel decoding of expander codes

Consider the binary expander code based on a (d, D)-bounded unbalanced bipartite (d(1 − ε), δ)-
expander (L, R, E) as defined in lecture (i.e., the code whose parity check matrix is the bipartite adja-
cency matrix of the expander) for some ε ∈ (0, 1/20). Let |L| = n. In lecture, we gave a sequential
decoder that decoded as long as the fraction of errors is at most δ(1− 2ε). In this problem, we will
analyze the following parallel iterative decoder.

For c log n rounds (for a constant c chosen large enough), do the following in parallel for
each variable node: If the variable is in at least 2d/3 unsatisfied checks, flip its value.

Prove that the above algorithm corrects any pattern of δ(1− 3ε)n errors.

2. (3+4+3+5) Exponential lower bounds for 2-query linear LDCs

In this problem, we will prove an exponential lower bound for 2-query linear locally decodable codes.

Recall that a code C : {0, 1}k → {0, 1}n is said to be (q, δ, ε)-locally decodable if there exists a (prob-
abilistic) decoder D such that on oracle access to any y ∈ {0, 1}n that satisfies ∆(y, C(x)) ≤ δn, we
have

• ∀i ∈ [k], Pr [Dy(i) = xi] ≥ 1
2 + ε.

• D makes at most q probes into y on any input i and internal random coins.
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For fixed c ∈ R, ε ∈ (0, 1) and integer 2, we say that C : {0, 1}k → {0, 1}n is a (q, c, ε)-smooth code if
there exists a probabilistic oracle machine A such that:

• In every invocation, A makes at most q queries non-adaptively.

• For every x ∈ {0, 1}k and and for every i ∈ [k], we have

Pr[AC(x)(i) = xi] ≥
1
2
+ ε.

• For every i ∈ [k] and j ∈ [n], the probability that on input i the oracle machine A queries index j
is at most c

m .

(a) Show that if C : {0, 1}k → {0, 1}n is a (q, δ, ε)-locally decodable code, then C is also a (q, q/δ, ε)-
smooth code.

Let C : {0, 1}k → {0, 1}n be a linear code. Since C is linear, we might wlog. assume that there
exist a1, . . . , an ∈ {0, 1}k, such that for all x ∈ {0, 1}k and j ∈ [n], we have C(x)j = 〈aj, x〉. For
simplicity, let us assume that all the ai’s are distinct. Suppose C is a (2, δ, ε)-locally decodable for
some δ, ε ∈ (0, 1). Let us further make a simplifying assumption that the local D (corresponding
to C) makes exactly 2 probes every time and uses both the probes. It follows from 2a that C is
(2, 2/δ, ε)-smooth.

Construct recovery graphs {Gi = ([n], Ei)}k
i=1 based on the smooth decoder A for C as follows:

the vertices of all the k graphs Gi’s are [n]. Two vertices j, j′ ∈ [n] are connected in Gi if

Pr[AC(x)(i) = xi|A queries C(x) at indices j and j′] >
1
2

.

(b) If G is (2, c, ε)-smooth, show that for each i ∈ [k], the graph Gi has a matching Mi ⊆ Ei of size at
least εn/c.

(c) Argue that for each i ∈ [k], if (j, j′) ∈ Ei then ei ∈ span{aj, aj′}. It then follows from our
assumption (“the local D makes exactly 2 probes every time and uses both the probes”) that
aj + aj′ = ei.

[For extra credit, do not make this simplifying assumption and modify the following part suit-
ably to still yield an exponential lower bound.]

We can thus identify the vertices [n] with the set A = {aj|j ∈ [m]}, a subset of the vertices of the
hypercube {0, 1}k and the edges (j, j′) with the corresponding edges in the hypercube. Consider
the graph G = ([n], E1 ∪ · · · ∪ Ek). From the above identification, we get that G is a subgraph of
the hypercube. Furthermore, from 2c, we get that the k edge-sets Ei are all distinct. Hence, from
2b, we have |E(A, A)| ≥ ∑k

i=1 |Ei| ≥ k · (εn/c) = εδkn/2. Here, E(A, A) refers to the edges in G
both of whose endpoints in is A.

(d) Since G is a subgraph of the hypercube, use the upper bound on E(A, A) to conclude that n ≥
2εδk.

This proves an exponential lower bound on the size of any 2-query linear LDC (provided all
the codeword bits are distinct, ie. a′js are distinct). For extra credit, see if you can remove this
assumption of distinctness.
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3. (4+7+8+1) 3-AP-free sets in Fn
3 via the polynomial method

Let A ⊆ Fn
3 . We say that A is 3-AP-free if there does not exist x 6= y ∈ Fn

3 such that x, (x + y)/2, y ∈ A
(i.e., A does not contain any non-trivial arithmetic progression of length 3). In this problem, we will
use the polynomial method to show that any 3-AP-free set is of size at most cn for some fixed c ∈ (2, 3).

(a) (1+1+2) Let 0 ≤ d ≤ 2n. Let Vd(n) denote the set of all functions from Fn
3 to F3 expressible as

degree d polynomials. In other words, if f ∈ Vd, then f can be expressed as a polynomial of the
form

f (x1, . . . , xn) = ∑
a=(a1,...,an)∈{0,1,2}n :∑ ai≤d

ca

n

∏
i=1

xai
i .

Let md(n) = dim(Vd(n)). Prove the following facts about md.

i. m2n(n) = 3n.

ii. For all 0 ≤ d ≤ 2n, m2n−d(n) = 3n −md(n).

iii. There exists c ∈ (2, 3) such that m2n/3(n) ≤ cn.

(b) (2+4+1) Let A ⊆ Fn
3 be 3-AP-free.

i. Show that if md > 3n − |A|, then there exists a non-zero f ∈ Vd such that f (x) = 0 for all
x /∈ A.

ii. Strengthen the above to show that if md > 3n − |A|, then there exists an f ∈ Vd such that
f (x) = 0 for all x /∈ A and f is non-zero on at least (md + |A| − 3n) points in A.

iii. Let f : Fn
3 → F such that f (x) = 0 for all x /∈ A. Define the matrix M f ∈ FA×A

3 as
follows: M f (x, y) := f ((x + y)/2) for all x, y ∈ A. Show that the rank of M f is exactly
|{x ∈ A| f (x) 6= 0}|.

(c) (4+4) Let g : Fn
3 → F3 be a function in Vd(n). Consider the matrix Mg given by Mg(x, y) :=

g(x + y). Prove the following facts about the rank of the matrix Mg.

i. rank(Mg) ≤ md(n).

ii. Strenghten the above to show that rank(Mg) ≤ 2 ·md/2(n).

Hint: Recall that if a t× t-matrix M can be decomposed as M = UV where U is a t× r-matrix
and V is a r× t matrix (or equivalently there exists 2t r-dimensional vectors u1, . . . , ut, v1, . . . , vt

such that M(i, j) = uT
i vi), then rank(M) ≤ r.

(d) Conclude from the above parts that if A is 3-AP-free, then |A| ≤ m2n−d + 2md/2. Setting d =

4n/3 show that |A| ≤ 3cn where c is as in Part 3(a)iii

4. (3+2+2+3) List-decodability of the Hadamard code via Fourier analysis

In this problem, we will prove the list-decodability of the Hadamard code via Fourier analysis (this
was proved via the Goldreich-Levin theorem in class).

Let F denote the set of all functions from {0, 1}k to R. Note F is a 2k-dimensional vector space over
R. Define an inner product on this space as follows:

〈 f , g〉 := E
x
[ f (x)g(x)].
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For any y ∈ {0, 1}k, define χy ∈ F as follows: χy(x) := (−1)∑i∈[k] xiyi (mod 2).

(a) Show that for all y 6= z, we have 〈χy, χz〉 = 0. Conclude that the 2k functions χy form an
orthonormal basis of functions for the vector space F .

Hence, conclude that any function f ∈ F can be expressed uniquely as follows:

f (x) = ∑
y

f̂ (y) · χy(x).

where f̂ (y) = 〈 f , χy〉. These real numbers f̂ (y) are called the Fourier coefficients of f .

(b) (Parsevals’ equation). Show that for f ∈ F , we have ‖ f ‖2
2 = 〈 f , f 〉 = ∑y | f̂ (y)|2. Hence, for any

Boolean function f : {0, 1}k → {1,−1}, we have ∑y | f̂ (y)|2 = 1.

It will be convenient to express the range of a Boolean function as {1,−1} instead of {0, 1}. We
move from {0, 1} to {1,−1} using the transformation b 7→ (−1)b. Observe that with this nota-
tion in place, the χy’s exactly correspond to all the linear functions (and thus all the Hadamard
codewords).

(c) Let f : {0, 1}k → {1,−1} be any Boolean function and y ∈ {0, 1}k such that Prx[ f (x) = χy(x)] ≥
(1+δ)

2 . Conclude that f̂ (y) ≥ δ.

(d) Let f : {0, 1}k → {1,−1} be any Boolean function. Conclude that there at most 1/δ2 linear
functions which have agreement at least (1+δ)

2 with f .

We have thus proved that for any Boolean function f , there are at most 1/δ2 linear functions
which are within 1−δ

2 fractional distance from f . We had proved this fact via the Goldreich-
Levin list-decoding algorithm. The above Fourier-based argument can also be used to construct
a list-decoding algorithm for Hadamard codes.

5. (5 + 5 + 5) Rough polarization without martingales

In the lectures on polar codes, we studied a sequence of random variables Z1, Z2, · · · , with Z1 = α,
that evolved as:

Zn+1 =

2Zn − Z2
n with probability 1/2

Z2
n with probability 1/2

.

(a) Let Φn =
√

Zn(1− Zn). Show that

E[Φn+1 | Φn] ≤
(√

3
2

)
·Φn.

(b) Show that for any 3
4 < δ < 1,

Pr[Zn(1− Zn) > δn] ≤ 1
2
·
(

3
4δ

)n/2
.

Hint: Jensen, Markov
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(c) For some ε > 0, how high should n be (asymptotically, in terms of ε) to ensure that

Pr[Zn ∈ (ε, 1− ε)] <
1

1000
?

6. (1+4+5+4+3+3+5) Sharp thresholds for transitive monotone functions

For a p ∈ [0, 1], define the probability measure µp on length n strings x ∈ {0, 1}n as

µp(x) := p|x|(1− p)n−|x|

where |x| refers to the Hamming weight or the number of non-zero coordinates in x. By abusing
notation, define µp of a Boolean function g : {0, 1}n → {0, 1} as

µp(g) := Pr
x∼µp

[g(x) = 1] = ∑
x:g(x)=1

µp(x).

In this problem, we will study the behaviour of µp(g) for monotone functions as p increases from 0 to
1. You may want to check the behaviour for some simple monotone functions: dictators (DICTi(x1, . . . , xn) =

xi), majority function (majn), OR of a few variables (eg., x1 ∨ x2), OR of several variables (eg.,
∨n

i=1 xi).

First for some notation. For any string x, the sensitivity, sensg(x), of g at x is defined as follows:

sensg(x) := |{i ∈ [n] : g(x + ei) 6= g(x)}| ,

the number of coordinates of x which when flipped changes the value of g. The averarge sensitivity,
asp(g) of g with respect to the distribution µp is defined as follows:

asp(g) := E
x∼µp

[
sensg(x)

]
= ∑

x
µp(x) · sensg(x) =

1
p ∑

x:g(x)=1
µp(x) · |{i ∈ [n] : g(x + ei) = 0}| .

(a) Let k ∈ [n]. We say that a Boolean function g : {0, 1}n → {0, 1} is a k-junta if it depends only
on at most k co-ordinates. In other words, there exists a subset I ∈ [n] of size k such that for all
x, x′ ∈ {0, 1}n such that x|I = x′|I , we have g(x) = g(x′). Show that if g is a k-junta, then for all
p, asp(g) ≤ k.

This shows that juntas have low average sensitivity. Friedgut proved a converse of the above
fact in the sense that if g has small average sensitivity, then g is close to some function f which is
a junta.

Lemma (Friedgut). Let p ∈ (0, 1). There exists a constant Cp such that the following is true. Let
g : {0, 1}n → {0, 1} be any Boolean function with and δ ∈ (0, 1) any approximation parameter.
Then there exists another function f : {0, 1}n → {0, 1} such that (a) f is a (Cp)

asp(g)/δ-junta and
(b) Prx∼µp [ f (x) 6= g(x)] ≤ δ.

(b) Show that if g is a monotone Boolean function, then µp(g) is an increasing function with p.

The following problem expresses the rate of growth of µp(g) with p in terms of the average
sensitivity asp(g).
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(c) (The Margulis-Russo Lemma) Let g : {0, 1}n → {0, 1} be any monotone Boolean function. Show
that the average sensitivity measures the derivative of the measure µp of the function g, i.e.,

d
dp

µp(g) = asp(g).

Hint: This can be proved by expanding either side and doing a tedious calculation. For a simpler
proof, recall how we proved the Area Theorem in class and follow similar ideas.

(d) Let g : {0, 1}n → {0, 1} be any monotone Boolean function and ε ∈ (0, 1). Let p ∈ (0, 1− ε).
Show that there exists a q ∈ [p, p + ε] such that asq(g) ≤ 1/ε.

(e) Use all the above parts and Friedgut’s Lemma to conclude the following. Let g : {0, 1}n → {0, 1}
be any monotone Boolean function, ε, δ ∈ (0, 1) and p ∈ (0, 1 − ε). Show that there exists a
q ∈ [p, p + ε] and a function f : {0, 1}n → {0, 1} such that (a) f is a (Cq)1/εδ-junta and (b)
Prx∼µq [ f (x) 6= g(x)] ≤ δ.

In other words, every monotone function is well-approximated by a junta.

(f) Explain why the following does not contradict the previous part (6e). Let n be odd and majn :
{0, 1}n → {0, 1} be the majority function. Let p = 1/2. Clearly, majn is a monotone function but
is certainly not a junta or close to any junta (as it depends on all the variables).

(g) Assume the following fact (a corollary of a result of [Bourgain-Kahn-Kalai-Katznelson-Linial])

Lemma. There is a constant c > 0 such that for every transitive monotone function g : {0, 1}n → {0, 1}
we have

asp(g) ≥ c ·min(µp(g), µp(g)) · log n.

Using this lemma, prove the following sharp threshold property of transitive monotone Boolean
functions.

Theorem. There exists a constant c′ > 0 such that for any transitive monotone function g : {0, 1}n →
{0, 1}, if µp(g) > ε for some ε > 0 then µq(g) > 1− ε for some q satisfying

q ≤ p + c′
log(1/2ε)

log n
.

Hint: First increase p to q so that µq(g) = 1
2 . Looking at

∫ q
p d(log µp(g)) should help.
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