
Spectral Methods 7 Feb, 2019

Problem Set 1

• Due Date: 21 Feb, 2019

• Turn in your problem sets electronically (LATEX, pdf or text file) by email. If you submit handwritten solutions,
start each problem on a fresh page.

• Collaboration is encouraged, but all writeups must be done individually and must include names of all
collaborators.

• Refering sources other than class notes and given references is discouraged. But if you do use an external
source (eg., other text books, lecture notes, or any material available online), ACKNOWLEDGE all your
sources (including collaborators) in your writeup. This will not affect your grades. However, not acknowl-
edging will be treated as a serious case of academic dishonesty.

• The points for each problem are indicated on the side.

• Be clear in your writing.

1. [Trace from spectral decomposition] (3+(3+3)) = 9

The trace of a matrix M ∈ Rn×n is defined as Tr(M) := ∑i∈[n] Mi,i. Let λ1, λ2, . . . , λn be the n
eigenvalues of M (with multiplicities).

(a) Using the fact that the λi’s are roots of the characteristic polynomial det(xI −M) = 0 (with
multiplicities), conclude that Tr(M) = ∑ λi.

(b) In this part, we will use the spectral decomposition to give an alternate proof of the above
fact (for the case of real symmetric matrices).

i. Prove that for any two matrices A ∈ Rm×n and B ∈ Rn×m, we have Tr(AB) = Tr(BA).

ii. Using the above part and the spectral decomposition for symmetric matrices (i.e., for
every real symmetric M, there exists an orthonormal matrix Φ and diagonal matrix Λ
such that M = ΦΛΦT) conclude that for any real symmetric M, we have Tr(M) = ∑ λi.

2. [top eigenvector can be made strictly positive] (5+5) =10

Let A be the adjacency matrix of a connected weighted graph G (with non-negative edge weights).

(a) Suppose ϕ is an eigen-vector of A with all non-negative entries. Show that ϕ has all strictly
positive entries.

(b) Let µ1 be the largest eigenvalue of A. Show that there exists a corresponding eigenvector for
µ1 with all non-negative entries.

The two parts together imply that there exists a top eigenvector with all strictly positive entries.

3. [Colouring using top eigenvector] (9+2) =11

Let A be the adjacency matrix of an undirected graph G, and let ϕ be a top eigenvector with
eigenvalue µ1. Note that κ ≥ 0 and (by the previous problem) ϕ can be so chosen as to have
positive entries. Let us assume further that the vertices are ordered so that the entries of ϕ are
arranged in non-increasing order (i.e., ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕn > 0).

1



Consider now the following colouring procedure, which is based on the above order. We start
with an empty list L of colours. We then process the vertices u1, u2, . . . , un in order, and for any
given i, construct the set S of the colours assigned to neighbors uj of ui with j < i. If S = L,
then we create a new color c, set L ← L ∪ {c} and assign the colour c to ui. Otherwise, if L \ S is
non-empty, we choose a color from L \ S (according to some pre-defined choice rule) and assign
it to ui. Note that this procedure produces a proper coloring of the graph.

How large can L can be at the end of the algorithm? Show that your bound is tight by giving an
appropriate example.

4. [νn ≈ 2⇔ almost bipartite] (6+14)=20

Let G = (V, E) be an undirected graph and let L = D− A be its Laplacian. The largest eigenvalue
of the normalized Laplacian, denoted by νn satisfies

νn = max
x 6=0

xT Lx
xT Dx

.

Recall that in class, we proved that νn ≤ 2 and that equality holds iff the graph G is bipartite.

(a) [almost bipartite⇒ νn almost 2]

Suppose the MAXCUT in G has normalized cost at least 1 − ε. That is, there exists a cut
(S, V \ S) such |∂S| ≥ (1− ε)|E|. Prove that there is a non-zero vector x ∈ RV such that

xT(D + A)x ≤ 2ε · xT Dx.

Hence, conclude that νn ≥ 2(1− ε).

(b) [νn almost 2⇒ almost bipartite]

In this part, we will prove the following theorem.

Theorem. Let νn ≥ 2(1 − ε) or equivalently there exists a non-zero vector x ∈ RV such that
xT(D + A)x ≤ 2ε · xT Dx. Then there exists non-zero vector y ∈ {−1, 0, 1}V such that

∑{u,v}∈E |yu + yv|
∑u∈V du|yu|

≤
√

8ε.

To this end, we define the following randomized process that constructs a random non-zero
vector Y ∈ {−1, 0, 1}V given a non-zero vector x ∈ RV satisfying xT(D + A)x ≤ 2ε · xT Dx.
Since this latter condition is scale-invariant, we may assume wlog. that maxu |xu| = 1 and
let u∗ ∈ V such that |xu∗ | = 1.

• Pick a value t uniformly in [0, 1].

• Define Y ∈ {−1, 0, 1}V as follows:

Yu =


−1 if xu < −

√
t,

1 if xu >
√

t,

0 otherwise, i.e., |xu| ≤
√

t.

i. (2 points) Prove that Pr [∃u ∈ V, Yu 6= 0] = 1.

ii. (3 points) Prove that E [|Yu|] = x2
u and E [|Yu + Yv|] ≤ |xu + xv| · (|xu|+ |xv|).
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iii. (6 points) Prove that E
[
∑{u,v}∈E |Yu + Yv|

]
≤
√

8ε ·E [∑u du|Yu|].

[Hint:Cauchy-SchwarzInequality.]

iv. (3 points) Hence, conclude that there exists a non-zero vector y ∈ {−1, 0, 1}V such that

∑{u,v}∈E |yu + yv| ≤
√

8ε. ·∑u∈V du|yu|.

Discussion. It is known that G is connected if ν2 6= 0. Or equivalently, ϕ(G) 6= 0 iff ν2 6= 0. Cheeger’s
inequalities give a “quantitative strengthening” of this statement by showing that√

2ν2 ≥ ϕ(G) ≥ ν2/2.

This problem is similar in spirit but work with νn and “bipartiteness” instead of ν2 and “connectedness”
respectively.

Define the bipartiteness ratio number of a graph G to be

β(G) := min
y∈{−1,0,1}V

∑{u,v}∈E |yu + yv|
2d ∑u∈V |yu|

,

which is equivalent to

β(G) = min
S⊆V,(L,R) partition of S

2∂(L, L) + 2∂(R, R) + ∂(S, V \ S)
d|S| ,

Observe that β(G) = 0 iff G is bipartite. It is easy to check that β(G) = 0 iff νn = 2. Problems 4a–4b are
a quantitative strengthening of this claim as they demonstrate that√

2(2− νn) ≥ β(G) ≥ 1
2
· (2− νn).

These problems are due to a result by Luca Trevisan.
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