- uncountability of reals

Time Hierarchy Theorem: Suppose
$$f: N \rightarrow N \& g: N \rightarrow N$$

are time constructible and g is "sufficiently bigger"*
than f . Then
 $DTIME(f(n)) \subsetneqq DTIME(g(n)).$
*: $f(n) \log f(n) = o(g(n))$
We will assume $f(n) = n$ $g(n) = n^3$.
Candidade: $\{(x, z) : M_{d} | accepts z | in n^2 steps \}.$

Pf: Idea?

$$M_1 \land R$$

 $M_2 \land A$
 $R \land$

Claim 1: $L(D) \in DTIME(n^3)$

Claim 2: L(D) ∉ DTIME(n).

.

Pf Q Claim 2: Suppose, for contradiction S solves it
in time n.
Let a be a description of S that is really long.

$$|x| = l$$

What does S do on (x, l^l) ?
S accepts $(x, l^l) \implies D$ accepts (x, l^l)
 \downarrow
Ma rejects $(x, l^l) \implies D$ accepts saw Ma reject
 (x, l^l)
t stops of Ma can be sim in C thogt stops of UTM.
 $\ni I_{n}$ n is large enough, $n^2 > c$. mlogn. \square .

Claim: L(D) E NTIHE(n³) P.P. Duh! Claim: L(D) & NTIME(n). Pf: Assume S is a N.TM that solves L(D) in time n Assume à is a long enough encoding & 5 so that UTM for nº steps completely simulates n steps of S. Let $|\alpha| = l$ We will fix x, I and vary y. $(\alpha, 1^{\prime}, \epsilon)$ Sacc $(\alpha, 1^{\prime}, \epsilon)$ $(\alpha, 1^{\ell}, 1)$ D accepts $(\alpha, \beta, \varepsilon)$ D acc. (2,1,0) D accepts (d, 1, y) 4 Y : 171 2 1×1+ f D S, on guess y, rejects $(x, 1^l, E)$ (=) 5 rejects (x,1,E) I. $\forall y: |y| \leq |x| + \ell.$

Walt to show: SATH is NP-hard => P=NP. How?!

We also word
$$SAT_{H} \in NP$$

 $(\varphi, \gamma^{\ell}) \stackrel{?}{\leftarrow} SAT_{H}$ in NP?
If $H(n)$ can be computed in polytime, then $SAT_{H} \subset NP$.
What to show: $SAT_{H} \in P \Rightarrow P = NP$.
If it so happens that SAT_{H} is NP -complete, then
 $SAT_{H} \in P \Rightarrow P = NP$.
Suppose $H(n)$ is eventually constant,
 $i \in H(n) = i \quad \forall n \ge n_{0}$.
then
 $SAT \le g SAT_{H}$:
 $\varphi \mapsto (\varphi, 1^{n})$

Cool Idea? We will cleverly choose H so that H is eventually constant if SATH GP H is inc. otherwise.

Defn: H(m) ° The smallest i ≤ loglog m st the machine D.TM Ni solves SATH on inpuds & length ≤ logm in nⁱ time. If no such i, then H(m) = loglogm. Ex: H(m) is computable in poly (m) time.

Summary :
- Diagonalisation is a powerful tool.

$$P \subseteq EXP$$
, $NP \subseteq NEXP$

Next times - What are some limitations of this technique? - Car "such arguments" show P=NP?