Computational complexity: Lecture 5.
Agenda: Diagonalisation -
D Time hierarchy theorems
\square Ladner's theorem.

$$
\begin{aligned}
\text { Recap: }-P & =\bigcup_{c \geqslant 0} \operatorname{DTIME}\left(n^{c}\right) . \\
-N P & =\bigcup_{c \geqslant 0} \operatorname{NTME}\left(n^{c}\right)
\end{aligned}
$$

- Also saw other classes like co NP, NEXP, EXP etc.

How do we show certain tasks are not in a class e ?
On: Can you give me a task that cannot be solved in P?

Halting
On: Can you give me a task that can be solvedin $O\left(n^{3}\right)$ bul cannot be solved in $O(n)$?

Task: on 1^{n}, print n^{3} ores.
Qu: What about decision tasks? As languages, is $\operatorname{DTIME}(n) \underset{n^{2}}{\subset}$

Diagonalisation:

- uncountability of reals

Time Hierarchy Tho orem: Suppose $f: \mathbb{N} \rightarrow \mathbb{N}$ \& $g: \mathbb{N} \rightarrow \mathbb{N}$ are time constructible and g is "sufficiently bigger"* then f. Then

$$
\begin{aligned}
\operatorname{DTIME}(f(x)) & \risingdotseq \operatorname{DTIME}(g(x)) . \\
*: \quad f(x) \log f(x) & \neq o(g(x))
\end{aligned}
$$

We will assume $f(n)=n \quad g(n)=n^{3}$.
Candidate: $\quad\left\{(\alpha, x): M_{\alpha}\right.$ accepts x in n^{2} steps $\}$.

Pf: Idea:

| | x_{1} $x_{2} \ldots$
 M_{1} A
 R R
 M_{2} A
 A A
 R
 $A$$\quad D(i)=\neg M_{i}\left(x_{i}\right)$ |
| :--- | :--- | :--- | :--- |

D: On input (α, x) :
Use the UTM for n^{2} steps to simulate M_{α} on (α, x). Reject only if M_{α} accepts by then. Else, accept.

Claim 1: $L(D) \in \operatorname{DTME}\left(n^{3}\right)$

Claim 2: $\quad L(D) \notin D T / \operatorname{ME}(n)$.

Recall: The UTM, on input $\left(\alpha, x, 1^{t}\right)$ car simulate M_{α} on x for t steps in time c.tlogt. where c depends only on M_{α}^{\prime} s alphabet size, \#tapes.

Pf of Claim 1: Duh!

If of Claim 2: Suppose, for contradiction S solves it in time n.
Let α be a description of S that is really long.

$$
|\alpha|=l
$$

What does S do on $\left(x, l^{l}\right)$?
S accepts $\left(\alpha, l^{l}\right) \Leftrightarrow D$ accepts $\left(\alpha, l^{l}\right)$ $\stackrel{y}{4}$
M_{α} rejects $\left(\alpha, l^{l}\right)$
$\Leftrightarrow U T M$ for n^{2} steps saw M_{α} reject $\left(\alpha, l^{l}\right)$
t steps of M_{α} can be sim in C. tlogt steps of UTM. \Rightarrow If n is large enough, $\quad n^{2}>c \cdot n \log n$.

What about with non-determinism?
If $f \ll g$, is $\operatorname{NTIME}(f)$ e $\operatorname{NTIME}(g)$?
Non-det time hierarchy thm: f, g time constructible with " $f \ll g$ ". Then $\operatorname{NTIME}(f) \not \subset \operatorname{NTIME}(g)$.

Why doesn't the same proof work?
In mon-determinism, flipping is expensive?
Recall NP vs co NP.
[AB] has a proof of this thin using "epochs".
Well see a different proof by Forthow-Santhanam.
Key: When we want to flip, well do del. simulation.

Pf: $D: O_{n}$ input $(\alpha, x, y):$
D If $|y|<|\alpha|+|x|$: Use the N. UTM for n^{2} shes simululate M_{α} on $(\alpha, x, y 0)$ \& $(\alpha, x, y 1)$ Accept if M_{x} accepts both.

$$
\triangleright \text { If }|y| \geqslant|x|+|x|:
$$

Simulate deterministically M_{α} on (α, x, ε) by using y as the guesses.
Flip the answer.

Claim: $L(D) \in \operatorname{NTimE}\left(n^{3}\right)$
Pf: Duh!
Claim: L(D) \& NTIME (n).
Pf: Assume S is a N.TM that solves $L(D)$ in time n
Assume α is a long enough encoding of s so that UTM for n^{2} steps completely simulates n steps of s. Let $|\alpha|=l$
We will fix $\alpha, 1^{l}$ and vary y.

$$
\begin{gathered}
S \text { acc }\left(\alpha, l^{l}, \varepsilon\right) \\
\text { \# } \\
D \text { accepts }\left(\alpha, l^{l}, \varepsilon\right) \\
\vdots(\alpha, l, 0) \\
D \quad \text { acc }(\alpha, l, l)
\end{gathered}
$$

$$
\mathbb{1}
$$

D accepts $\left(\alpha,\left.\right|^{l}, y\right) \Leftrightarrow D$ accept $\left(\alpha,\left.\right|^{l}, y\right)$
$\forall y: \quad|y| \leq|\alpha|+l$
$\forall y: \quad|y|<|\alpha|+l$
\Downarrow
S, on guess y, rejects
$\left(\alpha, l^{l}, \varepsilon\right) \quad \Leftrightarrow S$ rejects $\left(\alpha, l^{l}, \varepsilon\right) \quad B$.
$\forall y: \quad|y| \leq|\alpha|+l$.

Actual the statement: f, g time-constructible with

$$
f(n+1)=o(g(n)) \text {, then } \operatorname{NTIME}(f(n)) \nsubseteq \operatorname{NTME}(g(n))
$$

Where is the log factor??
Non. Let UTM simulation only has a constant overhead. (Ex 2.6 in Arora-Barak)

Another application of diagonalisation:
Let us assume we are in the world where $P \neq N P$.
Can it be the case that every problem not in P is actually NP- complete?
Or are there "NP-intermediate" languages?

Ladner's Theorem: Suppose $P \neq N P$. Then there are languages that are neither in P nor $N P$-complete.
Pf: Idea: How can we make SAT easier?
Give more time.
For $H: \mathbb{N} \rightarrow \mathbb{N}$, non-dec function.

$$
\text { SAT }_{H}=\left\{\left(\varphi, 1^{n^{H(n)}}\right) ; \quad|\varphi|=n, \quad \varphi \in S A T\right\} .
$$

SAT with the "right" padding.

Wart to show: $S A T_{H}$ is NP-hard $\Rightarrow P=N P$. How?!

$$
\begin{aligned}
& \begin{array}{c}
\text { SAT } \leqslant p \text { SAsH } \\
n^{i}
\end{array} \\
& \varphi \longmapsto\left(\psi, 1^{m^{H(m)}}\right) \\
& \text { Suppose } H(m) \rightarrow \infty \\
& \Rightarrow \text { For large } m \text {, } \\
& H(m) \geqslant 2 i \\
& \Rightarrow m^{H(m)} \leqslant n^{i} \\
& m \leq r^{i /+1(m)} \leq \sqrt{n}
\end{aligned}
$$

We also wort SATH $\in N P$
$\left(\varphi, l^{l}\right) \stackrel{?}{\in} S A T_{H}$ in $N P$?
If $H(n)$ car be computed in poly time, then $S A T_{H} \in N P$.
Wart to show: $\quad S A T_{H} \in P \Rightarrow P=N P$.
If it so happens that SA TH is $N P$-complete, then $S A T_{H} \in P \quad \Rightarrow \quad P=N P$.

Suppose $H(n)$ is everentually constant, ie $H(n)=i \quad \forall n \geqslant n_{0}$.
then

$$
\text { SAT } \leqslant p \text { SAT: }
$$

$$
\begin{aligned}
\text { SAT } & \leq p \text { SAT: } \\
\varphi & \mapsto\left(\varphi, 1^{n^{i}}\right)
\end{aligned}
$$

Cool Idea: We will cleverly choose 4 so that H is eventually constant if SATH $\in P$ It is inc. otherwise.

Defn: $H(m):$
The smallest $i \leq \log \log m$ st the machine
D.TM M_{i} solves SATH on inputs of length $\leq \log m$ in n^{i} time.
If no such i, then $H(m)=\log \log m$.
Ex: $H(m)$ is computable in poly (m) time.

Lem: If $S A T_{H} \in P$, then H is eventually constant. $P f:$ If $S A T_{H} \in P \Rightarrow S A T_{H} \in \operatorname{DTME}\left(n^{i}\right)$ for some i.
\therefore SAT $\in P \Rightarrow$ SATH is NP-hard $\Rightarrow P=N P$
SAT $\notin P \Rightarrow H$ is increasing.
\Rightarrow Any poly fire rede from SAT \rightarrow SAT 1 gives a length-dec. rede from SAT \rightarrow SAT

$$
\Rightarrow S A T_{H} \text { is } N P \text {-hard } \Rightarrow P=N P \text {. }
$$

Summary:

- Diagonalisation is a powerful tool.

$$
P \underset{\neq}{c} \operatorname{EXP}, \quad N P \underset{\neq}{c} N E P
$$

Next time: - What are some limitations of this technique?

- Car "such arguments" show $P \neq N P$?

