DTIME(n) What can we compute now?

$$P^{A} = \left\{ L(M^{A}) : M \text{ is an power the find always } \right\}$$

$$NP^{A} : \left\{ L(M^{A}) : H \text{ is an oracle NTM } ... } \right\}$$

$$NP^{A} : \left\{ L(M^{A}) : H \text{ is an oracle NTM } ... } \right\}$$

$$Ong Are these languages in P^{SAT}? Coh-Levin = in an U-LeNP reduces - SAT yes. To UNF-SAT. - Swalled vertex corre. - TAUT yes.
$$Ons IJ A \in P, \quad \text{what can you say about } P^{A}? P$$

$$Ong What about NP^{SAT}? PH will telly a moc... P TAUT D (Q, k) is there a $\varphi \equiv \varphi \ sl \ I \ \varphi I \leq k$?
$$Guees \varphi Ask : \varphi(x) \neq \varphi(x) \ satisfiable?$$

$$On''s IJ DTIME^{A}(n^{2}) \subseteq DTIME^{A}(n^{3})?$$

$$Or NTIME^{A}(n^{2}) \subseteq NTIME^{A}(n^{3}).$$

$$Ves! Exactly the same proof.
That proof was in sensitive' to the inner voortings & M. In port, & M had oracle tapes.$$$$$$

Thm: [Baker-Gill-Solovay]. There is an oracle
$$A \subseteq \mathbb{Z}^*$$

such that $P^A = NP^A$.
And there is an oracle $B \subseteq \mathbb{Z}^*$ st
 $P^B \neq NP^B$.

- . Oracle insensitive arguments <u>cannot</u> hope to resolve P vs NP.
- Pfe Ward to find AGZ* s.t. the "non-deterministum" of TM is invelevant. A be any EXP-complete longuage. Claim: pA= NPA = EXP. pA G NPA G EXP G pA From through all guess made by machine. Solve queries as it onces.

The fun direction is to show there is a
$$B \subseteq \mathbb{Z}^*$$

s.t $P^B \neq NP^B$ provably!

$$L_{B} = \left\{ I^{m} : \exists x \in B \quad |x| = m \right\}.$$
Obs: For any B, $L_{B} \in NP^{B}$
Pf: Guess $z \notin laugth m (mp)$
query B to check $ij \quad x \in B.$
Idea: Design B s.t $L_{B} \notin P^{B}$
by diagonalisation!
Defining B in stages:
N₁, M₂, --- oracle THs.
Stage is (diog against Mi)
Chapse a laugth n not considered so far.
Run Mi by plugging in B as oracle.
When Mi queries γ
Pin p^{r}
 $= i \int already committed to γ , answer
accordingly.
all Mi accepts I^{n} , put no string ϑ
If Mi accepts I^{n} , add some string ϑ
laugth n to B.$

LE SPACE (3(n)) i_{L} fluxe is a det. TH M that decides L s.t on any input α accesses \leq C. S(121) work space cells. M^{M} for NSPACE (3(n)) - there is an NTM deciding L that, on every non-det computation, accesses \leq C. S(1×1) cells. Convention: $S(n) \geq \log n$

Define
$$S: N \rightarrow N$$
 is space constructible if $S(1\times 1)$
can be computed in SPACE(S(n))

Obs: DTIME(S(n)) & SPACE(S(n)) Pf: Duh!

Qn: $DSPACE(S(n)) \subseteq DTIME(?)$ $S(n)^{2}?$ $2^{O(S(n))}$

Thm: DTIME (S(n)) & SPACE (S(n)) & NSPACE (S(n)) (1) DTIME (20(5(n)))

Any ideas? Inp. Configuerations. Jusone Jusone (9, head positions, andent of woodspace) How many configurations are there? (on a input $|Q| \cdot n S(n)^2 |Z|^{2.S(n)} = 2^{O(S(n))}$ So what does this have to do with computation? Configuration graphs - Next time.