Computational Complexity: Lecture 9. (Part 2)

Polynomial Hierarchy: (PH)

$$\Sigma_{1}^{P} = NP$$

$$TI_{1}^{P} = co NP$$
Define Σ_{2}^{P} is the collection of languages $L = s.t$
a poly time TM M and a poly $q. s.t$
a EL $\iff 3\gamma \in \{o,1\}^{Q(|x|)} \forall z \in \{o,1\}^{Q(|x|)} M(x,y,z) = 1.$
(Generalise to higher i)

$$TI_{2}^{P} = co. Z_{2}^{P}$$

$$ie L \in TI_{2}^{P} \iff L \in Z_{2}^{P}.$$

$$\begin{split} \Sigma_{0} = \Pi_{p} = P \\ Obso & \Sigma_{c}^{p}, \ \Pi_{i}^{p} \in \Sigma_{i+1}^{p}, \ \Pi_{i+1}^{p} \\ Pf: \ Duh! \\ P \\ T_{i} \\$$

Currant belief: All these classes are distinct.
"Polynomial hierarchy collapses"
$$\Rightarrow$$
 PH = Zi/Ti
What if $Z_i = TT_i$?
Themes For any $i \ge 1$, if $Z_i = TT_i$, then $PH = Z_i$.
Pf (for $i=1$) Assume $Z_i^{P} = TT_i^{P}$ is $NP = CONP$.
Say $L \in Z_{\ge}^{P}$. \Rightarrow There is a polytime M
and Q

BL
$$x \in L \iff \exists \gamma \in \{0,1\}^{q(1N)} \forall \exists e \{0,1\}^{q(1N)} \dots M(\forall s, y, z) = 1$$

 $L' = \{(x, \gamma) : \forall \exists e \in \{0,1\}^{q(1N)} \cap N(x, y, z) = 1\}$.
 $\in co \cap P = \cap P \quad (by assumption).$
 $\Rightarrow There is M' poly time, and a polynomial q' s.t
 $(x, y) \in L' \iff \exists w \in \{0, 1\}^{q'(1N) + 1/y(1)} \dots M'(x, y, w) = 1$
 $\vdots a \in L \iff \exists \gamma : (x, y) \in L'$
 $= \exists \gamma \exists w \dots M'(x, y, w) = 1$
 $\in \cap P.$
 $is Z_2 = \cap P.$$

Next class:

More on PH (Doesn't Z^p₂ look a lot like NP^{NP}?)