Computational Complesity-Lecture 10.
Agenda: - More about the polynomial hierarchy

- Deft via oracles
- Alternating $T M s$
- Time-space trade offs for SAT.

Recap: $口 \sum_{2}^{P}=\{L: \quad x \in L \Leftrightarrow \exists y . \forall z \quad M(x, y, z)=1\}$.

$$
\pi_{2}^{p}=\{L: \quad x \in L \Leftrightarrow \forall y \quad \exists z \quad M(x, y, z)=1\}
$$

$\left\|\|^{r \mid y}\right.$ for other $\sum_{i}^{P}, \pi_{i}^{p}$
D $\Sigma_{i}=\pi_{i} \Rightarrow P H$ collapses to Σ_{i} / π_{i}.
D Does not extend to PSPACE $=\Sigma_{i}$!
\sum_{2}^{p} and oracles:
On: Is $\Sigma_{2}^{P}=N P^{N P}$?
Attempt towards showing this:
S: $L \in \Sigma_{2}^{p}:$

$$
x \in L \Leftrightarrow \text { by. } \forall z \quad N(x, y, z)
$$

NP $P^{S A T}$: Guess y.
Ask oracle $\exists z . M(x, y, z)=0$ If oracles says no, you accept.

2: Main issue: $N P^{N P}$ can mate many queries. But \sum_{2}^{p} feels like a "single query"

Idea: Use the nondeterminism to guess answers when possible.

D Guess a non deft path of N
\rightarrow Guess answers to all queries.

- Guess assignments for "Yes" answers.
\square Confirm "no" alswers.

If we new N on the nou-det path x_{1}, \ldots, u_{m} and if oracle answers were a_{1}, a_{m}, does N accept x
and: for $i=1 \ldots m$
$a_{i}=1$ then r_{i} is a sat-ass. for the ithquy.
$a_{i}=0$ then s_{i} is a falsifying assignment for th query.

$$
\Rightarrow L \in \Sigma_{2}^{P} .
$$

The: $\quad \sum_{2}^{P}=N P^{N P}=N P^{\Sigma_{i}^{P}} \quad>$ Which language?
For $i \geqslant 2 \quad \sum_{i}^{P}=N P^{\sum_{i-1}^{P}} \quad$ What is a complete problem here?
$\Sigma_{2}-S A T=\left\{{ }^{\prime} \exists x \forall y \quad \varphi(x, y)^{\prime \prime}:\right.$ that are true $\}$
Obs: This is complete for \sum_{2}^{P}.
On: What is a complete problem for PH?
Say $L \in P H$ is a complete problem. $\Rightarrow L \in P H=U \sum_{i}^{P}$
\Rightarrow there is some i : $L \in \sum_{i}$ Any $L^{\prime} \in P+1 \quad L^{\prime} \leq L$
But \sum_{i+1} SAT $\in \sum_{i+1} \subseteq P H$

$$
\Rightarrow \quad \sum_{i+1}-S A T \leqslant_{p} L \Rightarrow \sum_{i+1}^{p}=\sum_{i}^{p}
$$

$\Rightarrow \mathrm{PH}$ collapses.
If you believe PH does not collapse, then there are no couplete.

Alternating TMS: (combining non-determinism \& co-nondetermison)
Non-det TM: Accepts an input if some path leads to accept.
Co-nondet TM: $\begin{aligned} & \text { Accepts } \\ & \text { accept. }\end{aligned}$ an input if ewer path leads to

Machine state will determine of it is in a \exists mode or \forall mode.

Alternating TM: Like regular TMs with potentially two transitions from each configuration. Every state except accept, reject is labelled with either \exists or \forall. An ATM accepts an input of

Eg: ATM for SAT.

A configuration C is accepting if D C is in qaccept.

D If State labelled by \exists, then at least one of its children is accepting. - If state is labelled by \forall, then all its children are accepting.

Egg ATM for ind. set of size exactly k.

Can also write something similar for \sum_{i}^{P}.

Accept if $v_{1}, \ldots v_{k}$ is an. ind set and x_{1}, \ldots, u_{k+1} is not.
$\operatorname{ATIME}(f(x))=\left\{L: \begin{array}{c}\text { Laccepted by ar ATM ruining in time }\end{array}\right\}$

$$
\operatorname{ASPACE}(s(n))=\{L
$$

- in ensuing space $O(s(x))\}$.
Σ_{i}-Time $(t(n))=\{L:$ ace. by ATM in time $d(t(x))$ but with atmost i alternations, \& stats with $\left.\sum\right\}$.

$$
\sum_{i}^{p}=\bigcup_{c \geqslant 0} \sum_{i}-\operatorname{TIME}\left(n^{c}\right)
$$

What can you say about ATIME (pol yen))? PSPACE!
Thu: $\operatorname{NSPACE}(S(n)) \subseteq \operatorname{ATIME}\left(S(n)^{2}\right) \subseteq \operatorname{SPACE}\left(S(n)^{2}\right)$
Pf: S: Just do a DFS an the computation graph.

C: Similar to Saviteh's theorem.

$$
\begin{aligned}
\operatorname{AT}(s, T) & =O(s)+\operatorname{AT}(s, T / 2) \\
& =O(s \log T)=O\left(s^{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Reach (start, accept, } T \text {) } \\
& \quad \triangleright \text { Guess }(F) \text { mid. } \\
& \quad \triangleright \text { Guess (} \forall)\left\{\begin{array}{l}
\{\text { start, mid, }, T / 2) \\
\text { (mid, accept } T / 2)
\end{array}\right\}
\end{aligned}
$$

$$
\text { Verify Reach }(u, v, T / 2)
$$

The connection goes the otherway too.
Thy: $\operatorname{ASPACE}(S(n))=\operatorname{TIME}\left(2^{O(s(n))}\right)$ if $s(n)$-space casidr.
Pf:o Exactly like space $(s(n)) \subseteq \operatorname{TIME}\left(2^{0(s(n))}\right)$.
This is easy.

2: $\operatorname{TIME}\left(2^{s}\right) \subseteq \operatorname{ASPACE}(O(s))$
Computational Tableau:

Check $(t, i, \sigma):$ Is the $i^{\text {th }}$ cell in the $t^{\text {th }}$ row σ ?
\triangleright Guess (\exists) $q, \sigma_{1}, \sigma_{2}, \sigma_{3}$
$O(1)$
Δ Det. verify if $\left(q, \sigma_{1}, \sigma_{2}, \sigma_{3}\right) \longmapsto \sigma$ $0(1)$

- Forall:
$\operatorname{check}(t-1,1, q)$
$\log t=3$ bits.
Check $\left(t-1, i-1, \sigma_{1}\right)$
Check $\left(t-1, i, \sigma_{2}\right)$
Check ($t-1, i+1, \sigma_{3}$)

How much space are we using? $O(s)$.

$$
\therefore \operatorname{TIME}\left(2^{s}\right) \quad \subseteq \operatorname{ASPACE}(O(S)) .
$$

Given classes like ATIME, ASPACE etc, is there a hierarchy the here?
Yes: If $f(n+1)=O(g(n))$, time constr. then

$$
\Sigma_{k}-\operatorname{TIME}(f) \quad \subset \Sigma_{k}-\operatorname{TIME}(g) .
$$

Pf exactly the same.
An easier thing to prove:
$\forall k \geqslant 1$.

$$
\sum_{k}-\operatorname{TM} E(f(x)) \notin \pi_{k} \operatorname{TiME}(o(f(n))) .
$$

"No complementary speed-up".
An application: Time-space tradeoffs.
Is $N P=L$? Probably no.
Does SAT take superpolynomial time? Probably yes.
Suppose I force the TM to only use $\log ^{2} n$ space. Ca we prove time lower bounds here?

$$
\operatorname{TISP}(t(n), s(n))=\left\{L: \begin{array}{ll}
\text { accepted by a TM that with } \\
\text { time bound } t(x) \text { \& space bound } s(n)
\end{array}\right\}
$$

Not $\operatorname{TIME}(t(n)) \cap \operatorname{SPACE}(s(n))$
Thu: $\operatorname{NTIME}(n) \notin \operatorname{TISP}\left(n^{1.4}, n^{0.01}\right) \rightarrow$ Next class!
Current best of this type: $\begin{aligned} & \operatorname{NTIME}(n) \notin \operatorname{TiSP}\left(n^{1.8}, n^{2(1)}\right) \\ & \text { williams]. }\end{aligned}$

