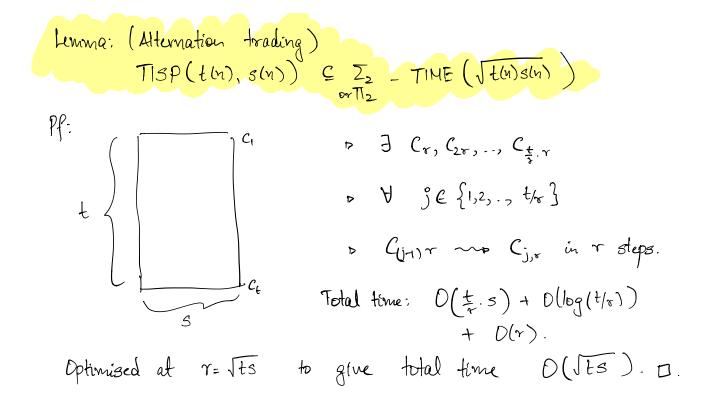
A different kind & trade off:
Qn: Is SAT & TISP (n, n^{o(1)}).
lottine opace?
[Forbraco, Fortnow-Lipton-vanHelkebeek-Viglas, Williams, Diehl-van Melkebeek].
Troms [Williams] NTIME (n) & TISP (n^{1,8}..., n^{e(n)}).
We wan't quite get there but we will try and get
close to it.
Trom: NTIME (n) & TISP (n⁰, n^{e(1)})
(we'll dry and keep improving c).
Key ingrediculs:
» "No complemend ay speed-up".

$$\Sigma_{e}$$
-TIME (f(n)) & TR-TIME (o(for)))
» "Alternation elimination"
» "Alternation trading".
Leroma: [Alternation elimination]. B NTIME (n) & TIME (n^c)
Hen Tz-TIME (n) & TL, TIME (n) & TIME (n^c)
Pf: V----V = ---==== Addeministive ~+ V---V Towe(n^c)
Tr-TIME(N^c). D.

-



Suppose C>J2, what can we say? "New lemma": Π_2 -TIME (n) \subseteq TISP (n^{c²}, n^{o^{cn}}) "Better alt. elimination." I_3 -TIME(n) $\subseteq \sum - \Pi SP(n_i^{c^2} n^{o(1)})$ EZZIT-TIME (m^{c/2+o(1)}) Revisiting alternation trading:] Cr, C2r, -, Ct/2. r ¥ je [t/s]. Ciji) ~~~ Cjr J TISP(~,5) 5 TI2-TIME (JES) Overall, $O(\underline{ts} + \sqrt{rs}) \longrightarrow O(\underline{t}^{\gamma_3} \underline{s}^{2/3})$ $\therefore TISP(t,s) \subseteq \Sigma_3 - TIME(t^{1/3}s^{2/3})$ G ZE-TIME (t s) Back to time-space trade offs. AFSOC 3,-TIME (m) & TISP (m, m⁽¹⁾)
$$\begin{split} \mathcal{Z}_{3}-\text{TIME}(n) &\subseteq \mathcal{Z}_{2}-\text{TIME}\left(n^{c^{2}/2+o(1)}\right) \\ &\subseteq \text{TISP}(n^{c^{2}/2+o(1)}, n^{o(1)}) \\ &\subseteq \text{TI}_{3}-\text{TIME}(n^{c^{4}/6+o(1)}). \end{split}$$

... We get a contradiction if $C^{4} \ge 6$ ie $C \le \sqrt{6} \ge 1.565...$ $L_{p} \ge 2^{\frac{14}{2}} \cdot 3^{\frac{14}{2}}$. I c>16, we get a "new facts". Σ_3 -TIME (n) \subseteq TISP ($n^{c^{1/2}} + o(1), n^{o(1)}$) \mathbb{Z}_{4} -TIME (m) \mathbb{C} \mathbb{Z}_{3} -TIME (m^{c/6} + o(1)) $\circ \circ \Sigma_{4}$ -TIME(n) <u>C</u> Σ_{3} -TIME(n^{c⁴/6} + \circ (1)) \mathcal{E} TISP $\left(\gamma^{c_{1/6} \cdot c_{1/2} + o(1)}, \gamma^{o(1)} \right)$ \subseteq T₄ - TIME ($\gamma^{c^{s}/12\times4}$ + o(1)) We get a contradiction if C⁸ < 48 or C~ 1.62 or we get "new facts" ... and so on! Eventually limits to $2^{\frac{14}{3}} 3^{\frac{18}{4}} 4^{\frac{1}{5}} 5^{\frac{1}{32}} \cdots \approx 1.6617...$ [William] : What is the best constant that can be obtained

via this "assumption + all elimination + alt-trading + no caup." Showed NTIME(n) $\not=$ TISP(n's n^{o(1)}) for all C< 2 cos(T/7). \approx 1.8...

New topic: Boolean circuits

What is a circuit? A DAG made up & 1, V, 7 with leaves labelled x1, ..., 2n. Output computes f: {0,1} -> {0,1}. On: Does this boolean circuit 2n] solve, say, SAT? Hunh? We only have length n for input! Defnes (Circuit family) C= { Ci}i=1... is a circuit family if (i has i-inputs. We say C is a family of size S(n) if Icil ≤ S(i) ¥i. We say C'emputes" J: {0,13* -> {0,13 if $\forall x \in \{0,1\}^*$ $|x|=i \Rightarrow -f(x)=C_i(x).$ Fact: Every function f: 20,13 -> 20,13 can be computed by circuite of size O(n. 2ⁿ). (Infact O(2/n) is enough.). P/pory = class of languages that can be decided by a poly - size circuit family. = U SIZE (n°) (20 - r languages dec. by ...

Thing P C P/poly. Pfo Very similar to Cook-Levin. C. Each local computation input can be "encoded" by a constart sized circuit. Composièng all génes a circuit of zoze C_t $O(T(n)^2)$. \square . Claime Lis any unany language ie L C {1": n CINZ. Then, LE P/poly. $Pf: C_{i} = \begin{cases} AND(x_{1}, ..., x_{i}) & i \\ D & i \\ 1 & i \\ 0 & i \\ 1 & i \\ 1$ is clearly a circuit family deciding this larguege. IJ. lor's P/poly contains languages that are undecidable! Pf: UHALT = { 1 : the nth machine halts g. ้เห Unary is undecidable. Д

