Computational Complexity - Lecture 12.

We can use this
$$\{Ci3 \text{ to find } a \neq i\}$$
 one exists.
 $\Psi \circ \exists C_{12...,} C_m \quad \forall \gamma \quad M(a, \gamma, Get Witness (C_{1...}, C_m, a, \gamma))$
 $=1$
 $Claim \circ \Psi \text{ is tone} \quad iff \qquad \Psi^{1} \text{ is tone}$
 $Pf \circ \Psi^{1} = tone \Rightarrow \Psi \text{ is tone}.$
 $\Psi = tone \Rightarrow \Psi^{1} \text{ is tone}$
 $\vdots T_{2} \subseteq Z_{1} \Rightarrow PH = Z_{2} \cap T_{2}.$ \square .

An extension of this theorem
Thm [Meyer] If EXP
$$\subseteq P/poly$$
 then $EXP = \Sigma_2$
Pf: M- TM that runs in exp. time (Δ^n)
 $I = \underbrace{I = S_1}_{A_1 = S_1}$ $L_H = \{(x, t, s): s^{th} symbol in the t^{th}, mov, when M starts on a is 1.]$
 $L_H \in EXP. \subseteq P/poly$
 $Ix_{I=N}$ $L_H \in ExP. \subseteq P/poly$
 $Ix_{I=N}$ $Z = There is some eixcuit fairly.$
 $\exists C \forall t, s. Local Check (C, x, t, s)$
 $A Start State ()$
 $A Start State (accept)$
 $= EXP = \Sigma_2.$

Hierarchy theorems?
Is
$$size(f(n)) \notin size(g(n))$$
 if $f(n) \ll g(n)$?
Usual diagonalisation doesn't quide usork. (uohy?).
Note have f, g with $n < lof(n) < g(n) < 2^n/n$,
we have $size(-f(n)) \notin size(g(n))$.
Revisiting the quige
 b How many fins $F: \{o_n\}^d \rightarrow \{o_n\}$ are there?
 2^d
 p How many diractis are there g sizes?
 $gals 1, 2s - s$
For each gales
 b type $\Lambda, V, 7$ O(1)
 p Left child.
 $bes s$
 $Right child.
 $bes s$
 b sologs $\Rightarrow 3slogs$ $\Rightarrow \# circuits = d^{3slogs}$
 $cannol be computed by $S = d^n/lol size$
 $f_1 = 3slogs \leq 3 \cdot 2^n/log : K < 2^n/s \Rightarrow \# circuits < d^{2^n/s}$$$

Eqs UHALT =
$$\begin{cases} 1^n : The nth machine halls a a black tape \rbrace .
 $E P/1$.
Thm's $P/poly = \bigcup_{c,d} DTIME(n^c)/n^d$
Pf's S's The advice strings $\{Z_i\}$ is just the desc. Q the circuit family.
 $d M$ is Clet Eval
 2° :
 $\frac{|X|^2}{2}$$$

Some important circuit classes: poly size. fan-in 2 depth O(logn)) NCⁱ Nick' Class (by Sleve Cook) (Alt. THS)