Computational Complexity: Lecture 16
Agenda: - Randomized space complexity.

- Barrington's theorem.
Recap: - RP, wRY, BPP, ZPP
- Error reduction, Chernoff bounds.
$-B P P \subseteq$ Ppoly $\quad B P P \subseteq \Sigma_{2} \cap \pi_{2}$.

Randomised Space classes.
Input tape
$L \in \operatorname{RSPACE}(S(n))$ if there is an
Work tape
random tape
\rightarrow uni directional. machine
$x \in L: \quad \operatorname{Pr}_{r \in\left\{0,13^{*}\right.}[M$ accepts $] \geqslant 1 / 2$
$x \notin L: \quad r_{r}[M$ accepts $]=0$
Cool fact: undirected s-t connectivity $\in R L$.
Algo for deg-d graphs:

$$
x=s .
$$

For $i=1, \ldots, n^{1 D}$:
If $u=t$: Return "Yes".
$u \leftarrow$ random neighbour of u.
Return "No".

If $s \& t$ are connected, the ago succeeds with prob $>1 / 2$.

Revisiting low-space computation.
out $=0$
for $i=1 \ldots n$:
out $=\operatorname{out}(4) x_{i}$
return out.

How much space are we using?

What if we allow the TM to access any input location instantly?

RAM model: Allow access to arbitrary tape location.
input work index

PARITY - Obi) space

- accept
- reject.

Branching programs:

OR

Accept x if there is a path from $s \leadsto t$ using only true literals.

Note: Vars need not be read in order and can be revisited.

$$
\operatorname{SPACE}(S(n)) \subseteq B P(?, ?)
$$

More formally:

- layered graph (edges only from layer $i \rightarrow i+1$).
- first layer with a unique vertex s.
- last layer has a special vertex t.
- Edges can either be constant, or labelled by a literal which signifies it is present iff literal is true.

Width $=\max$ \#vertices in any layer.
Length: \#layers.
PARITY $\in B P(2, n)$.

$\operatorname{Mod}_{100} \in B P(100, n)$

The [Barrington]: Any f that is computable by a sizes formula is in $B P(5$, poly (s)) WHAT?!

Cor: $\operatorname{Mod} 7_{1345} \in B P\left(5, s^{2}\right) \& \operatorname{MAJ} \in \operatorname{BP}\left(5, s^{2}\right)$. How do we prove something like this?

Induction:

Formulas (s) $\subseteq B P(s, s)$.
Rough roadmap: Induction
Given PBPs for $f \& g$, build a PBP for $f \vee g$, $f \wedge g, \neg f$ by maintaining width.

Detour: Permutations
$S_{n}=\{$ set of all permutations of n-elements $\}$.

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
\end{aligned}
$$

Forms a group - has identity, inverses, associative.

Cycle decomposition: $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 5 & 3 & 1 & 2\end{array}\right)$
α, β are similar in cycle structure.

Obs: If $\sigma=\left(\begin{array}{cccc}1 & 2 & . . & n \\ \sigma(1) & \sigma(2) & \cdots(n)\end{array}\right)$, then for any α, if $\beta=\sigma^{-1} \alpha \sigma$, then $\alpha(i)=j \Leftrightarrow \beta(\sigma(i))=\sigma(j)$ $P_{f_{0}} \sigma(i) \xrightarrow{\sigma^{-1}} i \xrightarrow{\alpha} j \xrightarrow{\sigma} \sigma(j)$
Cor: If two permutations α, β have the similar cycle type, then they are conjugates of each other.
Permutation branching program:
Sequence of instructions of this form:

$$
(i, \alpha, \beta): \quad \begin{aligned}
& \text { If } x_{i}=1, \text { apply } \alpha \\
& \\
& \text { else apply } \beta .
\end{aligned}
$$

Ego Input $x=(1,1,0)$.

$$
\begin{aligned}
& (1, \quad(23),(12)) \\
& \left(3,\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right) \\
& \left(1,\left(\begin{array}{ll}
2 & 3
\end{array}\right), \quad i d\right) \\
& \left(2,(123),\binom{1}{3}\right.
\end{aligned}
$$

$E g_{0}(1,(12), i d)$

$$
(n,(12), i d)
$$

$\}$ "computing" PARITY

Defy: A PBP (σ, τ)-computes f if
$\forall x: \quad f(x)=1 \quad \Rightarrow \quad P B P(x)=\sigma$

$$
f(x)=0 \Rightarrow P B P(x)=\tau .
$$

Lemma: For any $\alpha \neq \beta \in S_{m}$, if f is (α, β)-computed by a PBP of length l, then $f \in B P(m, l)$.
Pf: $\quad \alpha \neq \beta \quad$ WLOG $\quad \alpha(1) \neq \beta(1)$
$(1,(12),(23))$

$$
\log _{\rightarrow}(1)
$$

\therefore Suffices to construct a PBP for f.
Plan:- Given PBP for f, get one for \bar{f}
"Given a PBP for f, g, " " "fig.
Transforming $P B P_{S}$.
Lemma: Suppose we have a PBP of length l that (α, id) -computes f. Then there is a PBP that $(\beta$, id $)$-computes f for ar β of the same cycle type as α.

Pf: $\beta=\sigma^{-1} \alpha \sigma$

$$
\left(1, \sigma^{-1}, \sigma^{-1}\right)-P B P(\alpha, i d)-(1, \sigma, \sigma)
$$

Lemma: If we have a PBP that $(\alpha$, id $)$-computes f, then we also have a PBP that $(\alpha, i d)$ computes \bar{f}.
Pho PBP for $\rho \quad\left(1, \alpha^{-1}, \alpha^{-1}\right)$
is a PBP that $\left(\alpha^{-1}\right.$, id $)$ accepts \bar{f}.
Obs: α \& d^{-1} have the same cycle structure \Rightarrow By prev lemma, we are done.

Computing $f \wedge g$?
$P_{1}:(\alpha, i d)$-computing f.
$P_{2}:(\beta$, id $)$-computing g.

f	g	$P_{1} P_{2} P_{1}^{-1} P_{2}^{-1}$
1	1	$\alpha \beta \alpha^{-1} \beta^{-1}$
1	0	id
0	1	id
0	0	$i d$

$P_{1} P_{2}$

Lemma: Suppose P_{1} (12)-computes f \& P_{2} (23)-computes g. Then the "program" $P_{1} P_{2} P_{1}^{-1} P_{2}^{-1} \quad(132)$-computes f $\wedge g$.

(llll $\left.13 \begin{array}{ll}1 & 2\end{array}\right)$-computation
(1,2)-computations.

Fact: There are five cycles $\pi_{1}, \pi_{2}, \pi_{3}$ s.t $\pi_{3}=\pi_{1} \pi_{2} \pi_{1}^{-1} \pi_{2}^{-1}$

$$
\begin{aligned}
& E g_{0} \pi_{1}=(12345) \quad \pi_{2}=(13542) \\
& \pi_{3}=\pi_{1} \pi_{2} \pi_{1}^{-1} \pi_{2}^{-1}=(13254)
\end{aligned}
$$

Lemma: Let $\alpha=(12345)$. If $P_{1} \& P_{2}$ are $P \beta P_{s}$ of length $\leq l$ α-computing f, g. respectively. Then, there is a $P B P$ of length s-give $\leq 4 l$ that α-computes $f \wedge g$.

Pf: $x=(12345)$

$$
P_{1}-\pi_{1} P_{2}-\pi_{2} P_{1}^{-1} P_{2}^{-1}
$$

Cor: If f is computable by a formula of depth $\leq d$, then we have a PBP of width 5 and length $\leq 4^{d}=$ ethos) computing f.
Fact: Any formula of sizes has an equivalent formula of size poly (s) \& depth O(logs)

$$
\begin{aligned}
G & \supseteq\left\{\pi_{1}, \pi_{2}\right\} . \\
G_{1} & =\left\{\alpha \beta \alpha^{-1} \beta^{-1}: \alpha, \beta \in G\right\} \\
& 2\left\{\pi_{1}, \pi_{2} \pi_{3}\right\}
\end{aligned}
$$

