Randonised Space classes.

More formally o - layered graph (edges only from layer i-> i+1). - first layer with a unique vertex 3. - last layer has a special vertex t. - Edges can either be constant, or labelled by a literal which signifies it is present iff literal is true. Width = max # vertices in any layer. Langth: # layers. width PARITY E BP(2, n). D Modino & BP (100, n) Them [Barnington]: Any f that is computable by a sizes formula is in BP(5, poly(s)) WHAT?! love Mod₇₁₃₄₅ $\in BP(5, s^2)$ & MAJ $\in BP(5, s^2)$. How do we prove something like this? Inductions 5 q χ_{4} χ_{5} χ_{2} *ک*

Formulas(s)
$$\subseteq$$
 BP(s,s).
Rough roadmaps Induction
Given PBPs for f&g, build a PBP for
fVg, frg, $\neg f$ by maintaining width.

Detour: Permutations

$$S_n = \{ \text{ set } 2 \}$$
 all permutations $2 \text{ n-elements } \}$.
 $\binom{1}{3} \binom{2}{1} \binom{2}{2} \binom{1}{2} \binom{2}{3}$
 $= \binom{1}{3} \binom{2}{2} \binom{2}{2} \binom{1}{2} \binom{2}{3}$

Forms a group - has identity, inverses, associative.

Obs: If
$$\sigma = (\sigma_{(1)}^{\prime} \sigma_{(2)}^{\prime} \sigma_{(3)}^{\prime} \sigma_{(1)}^{\prime} \sigma_{(2)}^{\prime} \sigma_{(3)}^{\prime} \sigma_{(1)}^{\prime} \sigma_{(2)}^{\prime} \sigma_{(1)}^{\prime} \sigma_{(2)}^{\prime} \sigma_{(1)}^{\prime} \sigma_{(2)}^{\prime} \sigma_{$$

Defn: A PBP
$$(\overline{r}, \overline{r})$$
-computes of if
 $\forall \mathcal{X}:$ $f(\mathcal{X}) = 1 \implies PBP(\mathcal{X}) = \sigma$
 $f(\mathcal{X}) = 0 \implies PBP(\mathcal{X}) = \tau$.

Pfo
$$\beta = \sigma^{-1} \alpha \sigma^{-1}$$

 $(1, \sigma^{-1}, \sigma^{-1}) \rightarrow PBP(\alpha, id) (-(1, \sigma, \sigma))$
 \square

Lemma & If we have a PBP that
$$(\alpha, id)$$
-computes f , then
we also have a PBP that (α, id) computes \overline{f} .
Pfo $PBP foo f + (1, \alpha^{-1}, \alpha^{-1})$
is a PBP that (α^{-1}, id) accepts \overline{f} .
Obs: $\alpha \quad \alpha \quad \alpha^{-1}$ have the same eyele structure
 \Rightarrow By prev lemma, we are done.
Computing $f \land g$?
P₁: (α, id) -computing f .
 P_2 : (β, id) -computing g .
 $P_1 \quad \beta \quad \beta$.
 $P_1 \quad \beta \quad \beta$.

Cool idea:
$$PBP_{f,\alpha} + PBP_{g,p} + PBP_{f,\alpha'} + PBP_{g,p'}$$

 $\alpha \quad (12) \quad \beta = (23) \quad \forall \beta a' \beta' - 3cycle$

lor & If f is compidable by a formula of depth & d, then we have a PBP of width 5 and length & 4^d = formula computing f. Fact: Any formula of size 5 has an equivalent formula of size poly(3) & depth Ollogs) $G \supseteq \{ T_{1}, T_{2} \}.$

$$G_1 : \{ x \beta x' \beta' : x, \beta \in G \}$$

 $\supseteq \{ \pi_1, \pi_2, \pi_3 \}$