Computational Complexity -Lecture 18.
Recap: - Promise problems

- SAT $\leqslant_{R P}$ Unique-SAT (Valíant-Vazirani Lemma).

Next few lectures: the power of counting
$\# P=\left\{f_{0} \Sigma^{*} \rightarrow \mathbb{N}: \begin{array}{l}\text { There is a polytime machine } M(\cdot, \cdot) \\ \text { st } f(x)=|\{\omega: M(x, \omega)=1\}|\end{array}\right.$ st $f(x)=|\{\omega: M(x, w)=1\}|$
Not a decision problem but rather a function
$F P=\left\{f: \Sigma^{*} \rightarrow \Sigma^{*}\right.$ : There is a dit polytime machine $M$ that outputs $f(x)$ on imp $\left.x.\right\}$
What all can you do if $\# P=F P$ ?

$$
-P=N P=P H=R P=\operatorname{co} R P=B P P
$$

everything collapses
Comparing with other classes:
\#P - how many witnesses?
RP - Is there $\geqslant 1 / 2 \cdot 2^{n}$ witnesses, or none?
BPP- Is there $\geqslant \frac{2}{3} 2^{n}$ witnesses, or $\leq \frac{1}{3} \cdot 2^{n}$ witureses?
Examples of problems in \#P:

- Given $\varphi$-3CNF, count \#SAT ( $\varphi$ ).
- Given a graph G, count \# spanning trees. Actually in FP ! Look up Kirchoff's tree thu.
- Courting Vies of size $k$.

Remark: Counting can be hard even though detection is easy!
\#CYCLE $(G)=\#$ simple cycles in $G$.
ie $\left(v_{i_{1}}, v_{i_{\sigma}}\right) \begin{aligned} & \text { st } \\ & \text { distinct otherwise }\end{aligned}$ distinct otherwise and $\left(v_{i_{j}}, v_{i_{j+1}}\right) \in G$.
Lemma: If \#CyCLE $\in F P$, then Hamilton cycle $\in P$.
$P f:$ Idea: $G \longrightarrow H$
has an n-cycle $\leadsto \begin{gathered}\text { lots! } \\ \text { cycles. }\end{gathered}$ of different

$2^{m}$ possible paths from $u \leadsto v$.
$\therefore$ Any cycle of length $k \simeq 2^{m k}$ many distinct cycles.
Set $m=n^{3}$.
Claim: There is a Hamiltonian $\Leftrightarrow \# C Y C L E(H) \geqslant 2^{n^{4}}$ ache in $G$.
$P_{f}: \Rightarrow$ obvious
*: Every cycle in $H$ is related to some cycle

If no length $n$-cycle in $G$, how many cycles ca we have in H?
(\#cyeles in G) $\cdot 2^{m \cdot(n-1)}$

$$
n!\cdot 2^{m(n-1)}=2^{n^{4}-n^{3}+o(n \log n)} \ll 2^{n^{4}} .
$$

\#\#-completeness.
Defn: (\#P-hardness) $f: \Sigma^{*} \rightarrow \mathbb{N}$ is $f^{\# P \text {-hard if for any }}$ $g \in \# P$, we have $g \in F^{f}$.
$f$ is \#P-complete if $f$ is \#P-hard \& $f \in \# P$.
Some cardidate \#P- complete langnages.

$\triangleright$ The usual example: $f_{0}\left\langle M, x, 1^{t}\right\rangle \mapsto$| \# witnesses for $M$ |
| :---: |
| when nen | for just $t$ steps.

$\checkmark$ Prop: \#SAT is \#P-complete
Pf: The Cook-Levin reduction is a parsimonious redn!

$$
x \longmapsto \varphi_{M, x}(y)
$$



$$
\begin{aligned}
& \varphi_{M}\left(z_{11,}, z_{t t}\right) \\
& =\Lambda\left(z_{l *}=\text { stant state }\right) \\
& \Lambda\left(z_{t *}=\text { accepting }\right) \\
& \wedge_{i j}\left(z_{i j}=\begin{array}{l}
\text { whatever local } \\
\text { cheek says }
\end{array}\right)
\end{aligned}
$$

Ever ace $y$ for $M(x, \cdot)$ leads to a unique $z$. and vice-versa
$\therefore$ \#witnesses for $M$ an $x=$ \#SAT $\left(\varphi_{M, x}(y)\right)$
Fact: \#CNF-SAT is also \#P-complete.
The counting version of all NP-complete problems we encountered (VC, ind-set, clique) all are \#P-hard.
$\because$ the reduction we did were actually parsimonious. (or can be made so with little effort).

The Permanent:

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \ddots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]
$$

$$
\begin{aligned}
& \operatorname{Det} A=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \cdot \prod_{i=1}^{n} a_{i \sigma(i)} \\
& \operatorname{Perm} A=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
\end{aligned}
$$

Claim: Perm of a dl-matrix $\in \# P$.
Pf: $M$ on $A$ :
Guess $\sigma$. Ace if $\sigma$ is a permutation and all $a_{i \sigma(i)}=1$.

Thm[Valiant]: 0/1-Permanent is \#P-complete
Well actually prove a weaker result, which will show that Perm with entries $\{-2,-1,0,1,2\}$ is \#P-hard. Going from here to standard o/1-Perm is a shorlstep.

Graph theoretic interpretations.
$\checkmark$ A. Bipartite adjacency matrix: $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$
$\pi a_{i \sigma(i)}=1 \Leftrightarrow \sigma$ corresponds to a perfect matching.
$\therefore \operatorname{Perm}(A)=\#$ perfect matching.
For weighted graphs,
$\operatorname{Perm}(A)=\operatorname{sum}$ of weighted perfect matchings where weight $(M)=\Pi$ edge weights.

DA- adjacency matrix of a general directed graph

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$



Deft: A cycle cover of $G$ is a union of disjoint directed cycles that cover all vertices.
wt (cycle cover) $=\Pi$ edge weights.
Obs: If A interpreted as the adj. matrix of a directed graph, then $\operatorname{Perm}(A)=\operatorname{sum}$ of weighted cycle covers.

$$
\left[\begin{array}{llll}
1 & 1 & & \\
& 1 & 2 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$



$$
\left[\begin{array}{llll:ll}
1 & 1 & 0 & 0 & & \\
& 1 & & 1 & 1 & 1 \\
1 & & 1 & & & \\
& 1 & & 1 & & \\
\hdashline & 1 & & 1 & \\
& & 1 & & & 1
\end{array}\right]
$$

Thin: [Valiant] Perm is \#P-hard.
Pf: \#ZCNF-SAT $\leqslant$ Perm.

$$
\varphi \longrightarrow G_{\varphi} \text {-directed graph }
$$

satisfying
assignments $\longleftrightarrow$ cycle cover in $G_{\varphi}$.

(1) gluing gadgets.

Clause gadgets
Literal gadget
Clause gadget:

$$
x_{1} \vee \bar{x}_{3} \vee x_{7}
$$

7 satisfying assignments.


7 cycle covers.
(one for every proper subset of blue edges).


$$
\begin{aligned}
\varphi: & \left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right)
\end{aligned}
$$



How do we enforce consistency?

enforces that either

- cycle cover must use both the edges
$\square$ cycle cover uses neither.
Variable gadget:

$$
\begin{aligned}
& \left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \\
& \left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right)
\end{aligned}
$$



Glue gadget:


Gadget has adjacency matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ What all do we want $A$ to satisfy?

should contribute wo 1

$$
\Rightarrow \quad a_{33}=1
$$



Should contribute wt 1.

$$
\Rightarrow \operatorname{Perm}(A)=1
$$

Should contribute zero.

$$
\Rightarrow \operatorname{Perm}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]=0
$$

Should contribute zero.

$$
\Rightarrow \quad \operatorname{Perm}\left[\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right]=0 .
$$

$$
\begin{gathered}
a_{12} \cdot a_{33}+a_{13} a_{32}=0 \\
\operatorname{Perm}\left[\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right]=0
\end{gathered}
$$


$\operatorname{Perm}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]=0$.
Here is a matrix that works: $\left[\begin{array}{ccc}-1 & -1 & -1 \\ 1 / 2 & 1 / 2 & 1 / 2 \\ -1 & -1 & 1\end{array}\right]$

Wt $1 / 2$ is annoying. But if we scale all edge weights by 2 , then all cycle covers get weight scaled by $2^{n}$ where $m=$ \#vertices.

$$
\therefore \operatorname{Perm}\left(G_{\varphi}\right)=2^{m} \cdot \# \operatorname{SAT}(\varphi) .
$$

Note :s Matrix has entries $\{-2,-1,0,1,2\}$. With some additional work, we can get a o/1-matrix.

- If you replace Perm by Det above, there is no way to satisfy those constraints!

To show hardness of d/-Perm:

1) \#SAT $\leq$ Perm with small, integer entries $\rightarrow$ we just
2) Perm with $\leq$ Perm with non neg.
3) Perm with $\leq$ Perm with 0/1 entries. entries
if of (2): $A_{\text {ran }}$. say entries are just $\{-2,-1,0,1,2\}$.
How large can Perm $A$ be? At most $2^{n} \cdot n!=M$.
Let $N=2 \cdot M+1$ and let $B=A \bmod N$
$\operatorname{Perm} B=\operatorname{Perm} A \bmod N$.

If $\operatorname{Perm} B \bmod N<N / 2$, return that.
Else, return $($ Perm $B \bmod N)-N$.
Entries in $B$ are as large as $2^{n} \cdot n!$ now...


III


And if wt on edge $=\omega=2^{m_{1}}+2^{m_{2}}+\cdots+2^{m_{k}}$

and now do the above trick.
This proves (3).

