Computational Complexity-Lecture 18.
Recape - Promise problems
- SAT
$$\leq_{RP}$$
 Unique-SAT (Valiant-Vazirani Lemma).
Next few lectures : the power & counting
#P: {fe 2* \rightarrow N : There is a polytime machine M(:,.)}
Not a decision problem but rether a function
FP: {fe 2* \rightarrow X : There is a del polytime machine
FP: {fe 2* \rightarrow X : There is a del polytime machine
FP: {fe 2* \rightarrow X : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: {fe 2* \rightarrow Z* : There is a del polytime machine
FP: There is a del polytime fe 2* 2* is intenses , or is is 2* 2* intenses?
Examples & problems in #P:
- Given ϕ - 3cNF, count #SAT(ϕ).

If no length n-cycle in G, how many cycles
can we have in
$$H$$
?
(#ayeles in G), $2^{m(n-1)}$
 $n! \cdot 2^{m(n-1)} = 2^{n-n^3} + O(nlogn) < 2^{n^4}$. \Box .

#P- anyleteness.
Defne (#P-hardness) fe
$$Z^* \rightarrow N$$
 is #P-hard if for any
 $g \in \#P$, we have $g \in FP^{f}$.
 f is #P-complete if f is #P-hard & $f \in \#P$.
Some andidate $\#P$ -complete languages.
 \triangleright The rusual example: $f \in \langle N_3 \times, s^{\pm} \rangle \mapsto \#$ witnesses for M
 $ubian run ou \times x$
 $for just t steps.$
 \triangleright Prop: #SAT is #P-complete.
 $Pf \approx The Cock-Levin reduction is a parsimonious redu!
 $\chi \longmapsto P_{M,\chi}(Y)$
 $t = \begin{pmatrix} \overline{\chi}_{1,\chi} = alast state \\ A (\overline{\chi}_{t,\chi} = accepting) \\ A (\overline{\chi}_{t,\chi} = uohalower local \\ i \end{bmatrix}$$

Every ace y for M(2,.) leads to a runique 2.
and vice-versa
ob # witnesses for M an x = #SAT (QM, x (Y)) D
Facts # CNF-SAT is also #P-complete.
The counting version & all NP-complete problems we
encontered (Vc, red-set, clique) all are #P-hard.
if the reduction we did were actually parsimonious.
(or can be made so with little offert).
The fermanent :
A=
$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$
 Det A = $\sum_{\sigma \in Sn} Sign(\sigma) \cdot \prod_{i=1}^{n} a_{i\sigma(i)}$
Perm A = $\sum_{\sigma \in Sn} \prod_{i=1}^{n} a_{i\sigma(i)}$
Claim: Perm Z a Oli-matrix E #P.
A? M on A?
Guess o. Ace if σ is a permutatia, and
all $a_{i\sigma(i)} = 1$.
Then [Valiant] : O/1 - Permanent is #P-complete.
We'll actually prove a weaker result, which will shows
that Perm with entries $l = 2 - l = 0.123$ is #P-hard

that "term with articles {-2,-1, 0,1,23 is #P-hard. Going from here to standard 0/1-Perm is a short step.

Graph Huosetic interpretations.
A. Diputite adjacency metrixs
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $T(Q_{i+ic}) = 1 \iff \sigma$ corresponds to a
perfect matching.
so Perm (A) = # perfect matchings.
For weighted graphs,
Perm (A) = sum & weighted perfect matchings
where weight (M) = TT edge weights.
 $P(A) = dighted (M) = TT edge weights.$
 $P(A) = dighted (M) = TT edge weights.$

Defn: A cycle cover & G is a union & disjoint directed cycles that cover all vertices. Wit (cycle cover) = TI edge weights.

Obse IL A interpreted as the adj. matrix & a directed graph, then Perm(A) = sum & weighted cycle covers.

How do we enforce consistency?

We
$$\frac{1}{2}$$
 is annoying. But if we scale all edge weights
by 2, then all cycle covers get weight scaled by
 2^{m} where $m = #vertices$.
 $\delta = Perm(G_{q}) = 2^{m} \cdot #SAT(q)$. \Box .

