Computational Complexity - Lecture 19.
Agenda: Toda's Theorem.
Recap: - \#P $=\left\{f: \Sigma^{*} \rightarrow \mathbb{N}: f(x)=\right.$ \#ace. withesses for M on $\left.x\right\}$.

- \#SAT, Perm are \#P-complete.

Some arithmetic with \#SAT.
Say $\# \operatorname{SAT}(\varphi)=m \quad \& \quad \# S A T\left(\varphi^{\prime}\right)=m^{\prime}$.
\rightarrow Can we build a formula with $m \cdot m^{\prime}$ sat. assignments.

$$
{ }^{v} \varphi \times \varphi^{\prime \prime}=\phi(x) \wedge \phi^{\prime}(y)
$$

\triangleright What about a formula with $m+m^{\prime}$ assignments?

$$
\varphi+\varphi^{\prime \prime \prime}=[(z=0) \wedge \varphi(x)] \vee\left[(z=1) \wedge \varphi^{\prime}(x)\right]
$$

D What about $m+c$ for a constant c ?

$$
" \varphi+c "=[(z=0) \wedge \varphi(x)] \vee[(z=1) \wedge(x<c)]
$$

How powerful is $\# P$?

$$
\# P=F P \quad \Rightarrow \quad P H=P .
$$

A finer question: What can you do in $P^{\# P}$? (Recall: $P=N P \Rightarrow P H=P$ but $P^{N P} \subseteq \Sigma_{2}^{P}$ and not $P H$).

The [Toda]: PH $\subseteq P^{\# P}$. In fact, only one query is made to the \#P oracle.
\rightarrow Agenda for this class
$\exists x . \forall y \quad q(x, y)$.

Valiant-Vazirani Lemma:
There is a randomised ago that, on input 1^{n}, returns a formula $\tau\left(x_{1},, x_{n}\right)$ such that for every $\varphi\left(x_{1}, \ldots x_{n}\right)$

$$
\begin{align*}
& \phi \in S A T \Rightarrow \operatorname{Pr}[\# S A T(\varphi \wedge \tau)=1] \geqslant 1 / 8 n \tag{2}\\
& \phi \in \overline{S A T} \Rightarrow \operatorname{Pr}[\# S A T(\varphi \wedge \tau)=0]=1 .
\end{align*}
$$

(τ doesn't cave about what ϕ was: $\tau(x)=(h(x)=\overline{0})$)
Issue: $1 / 8 n$ is way too small a probability... an we amplify it somehow?
Idea: Move from none vs one to even rs odd! (f) $x: \phi(x)= \begin{cases}\text { True if } \varphi(x) \text { is true for odd number o } x \text { 's } \\ \text { False if } \phi(x) \text { is true for even number o } \\ x \text { i's }\end{cases}$ $\exists x$ (fy $\forall z \quad \varphi(x, y, z)$.

$$
\operatorname{Remi}_{\mathrm{l}} \neg \oplus z: \phi(z)=\oplus z: " \phi(z)+1^{\prime \prime}
$$

Amplifying $V V$:

$$
\begin{aligned}
& \exists y: \varphi(y) \Rightarrow P_{r}[\oplus y: \varphi \wedge \tau \text { is true }] \geqslant 1 / 8 n \\
& \neg \exists y: \varphi(y) \Rightarrow P_{A}[\oplus y: \varphi \wedge \tau \text { is true }]=0 . \\
& \varphi \wedge \tau^{(1)}, \varphi \wedge \tau^{(2)}, \ldots \varphi \tau^{(k)} \\
& \operatorname{Amp-VV}\left(\varphi, \tau^{(1)},, \tau^{(k)}\right)=V_{i=1}^{k}\left(\oplus\left(\varphi \wedge \tau^{(i)}\right)\right) \\
& \\
& \left.=\oplus z: \quad\left(\left(\varphi \wedge \tau^{(1)}\right)+1\right) \cdots\left(\varphi \wedge \tau^{(k)}\right)+1\right)+1^{\prime \prime} \\
& =\oplus z: \Gamma(z) .
\end{aligned}
$$

$\therefore \phi$ satisfiable $\Rightarrow \operatorname{Pr}_{\tau}[\oplus z: \quad \Gamma(z)=1] \geqslant 1-(1-1 / 8 n)^{k} \geqslant 1-\frac{1}{2 t}$

$$
\phi \text {-unsatisfiable } \Rightarrow \operatorname{Pr}_{\Sigma}[\oplus Z \Gamma(z)=1]=0
$$

Step 1 of Toda's the:

$$
\Sigma_{k}-S A T . \xrightarrow{B P P}(9) \text { SAT. }
$$

It will be useful to instead prove a stronger claim.
Lemma: (Relativised Toda-Step 1) There is a randomised algorithm that takes a quantified formula $\Phi(x)=\exists y^{(1)} \forall y^{(2)} \cdots \theta y^{(c)} \varphi(x, y)$. and returns a formula $\Gamma(x, z)$ st $\Phi(x) \equiv \oplus z . \Gamma(x, z)$.
That is, w.h.p.

$$
F_{\partial}\left[\forall a \in\{\theta, 1\}^{n}: \quad \Phi(a)=1 \Leftrightarrow \oplus z \cdot \Gamma(a, z)=1\right] \geqslant 1-1 / 2 t .
$$

Pf: Induction on \# quantifier alternations.
Base case: $i=1 . \quad \Phi(x)=\exists y . \varphi(x, y)$.
Let $\Gamma(x, z)=\operatorname{Amp-W}\left(\phi(x, y), \tau^{(1)},, \tau^{(k)}\right)$

$$
={ }^{"}\left(\varphi(x, y) \wedge \tau^{(1)}(y)+1\right) \cdots\left(\varphi(x, y) \wedge \tau^{(k)}(y)+1\right)+1^{\prime \prime}
$$

For any $a \in\{0,1\}^{n}$, we know that

$$
\begin{aligned}
& \operatorname{Pr}[\exists y: \varphi(a, y) \quad \notin \oplus z \cdot \Gamma(a, z)=1] \leqslant 1 / 2 t \\
\Rightarrow & \operatorname{Pr}\left[\text { For some } \begin{array}{l}
a \in\{0,1\}^{n}
\end{array} \quad \exists y: \varphi(a, y) \nLeftarrow \oplus z \Gamma(a, z)=1\right] \leqslant 1 / 2 t-n . \\
\therefore & \operatorname{Pr}[\Phi(x)=\exists y \quad \varphi(x, y) \equiv \oplus z: \Gamma(x, z)] \geq 1-1 / 2^{t^{\prime}}
\end{aligned}
$$

Inductive step:
Say $\Phi(x)=\exists w: \psi(x, \omega)$
where ψ is a formula with $c-1$ alternations. By induction, we have some $\alpha(x, w, z)$ such that

$$
\psi(x, w) \equiv \underbrace{(\pm z: \alpha(x, w, z)}_{\beta(x, \omega)} \cdot \text { with prob } \geq 1-1 / 2 t_{1} .
$$

Consider $\Phi^{\prime}(x)=\exists \omega: \beta(x, \omega)$.
Once again, using $V V$, we have that if $\exists \omega: \beta(x, \omega) \quad \overline{\bar{h} \cdot p} \sum_{c=1}^{k_{2}}\left[\left(\oplus \omega: \beta(x, \omega) \wedge \tau^{(i)}(\omega)\right]\right.$

$$
\text { RUS }=V_{i=1}^{k_{2}}\left[\oplus \omega \cdot \oplus z: \alpha(x, \omega, z) \wedge \tau^{(i)}(\omega)\right]
$$

$$
\begin{aligned}
& =V_{i=1}^{k_{2}}\left[\left(f \omega, z: \alpha(x, \omega, z) \lambda \tau^{(i)}(\omega)\right]\right. \\
& =\text { (7) } \tilde{\omega}, \tilde{z}: \quad "\left(\alpha(x, \omega, z) \wedge \tau^{(1)}(\omega)+1\right) \cdots\left(\alpha(x, \omega, z) \wedge \tau^{(k 2)}(\omega)+1\right) \\
& +1^{\prime \prime} \\
& \therefore \Phi(x)=\exists \omega: \psi(x, \omega) \underset{\text { php }}{\therefore} \exists \omega: \beta(x, \omega) \\
& \text { III w.h.p } \\
& \text { (7) } \tilde{\omega} \tilde{z}: \Gamma(x, \tilde{\omega}, \tilde{z})
\end{aligned}
$$

A super succinct version of writing this: (Disclaimer. I hate this...)

$$
\exists B P \oplus P \subseteq B P \oplus P
$$

$$
\begin{aligned}
& N P \subseteq B P \cdot \oplus P \\
& N P^{N P} \subseteq B P \cdot \oplus P^{N P} \subseteq B P \cdot \oplus P^{\oplus P}=B P \cdot \oplus P . \\
& \quad(\text { ugh! })
\end{aligned}
$$

Step 2 of Toda's Thu:

$$
\Phi=\exists x \forall y \exists z \ldots \phi(x, y, z, \ldots) \xrightarrow{\text { w.h.p }}(\oplus z: \Gamma(z)
$$

Odd vs even is too ragor-thin... can we amplify this
gap?
Lemma: (Modulus Amplification) There is a deterministic polytime algo $A\left(1^{m}, \varphi\right)$ that transforms φ to ψ st
(tx: $\varphi(x)=1 \Rightarrow$ \#SAT $(\psi)=-1 \bmod 2^{m}$
(4) $x: \phi(x)=0 \Rightarrow$ \#SAT $(\psi)=0 \bmod 2^{m}$.

Let's finish the pf of Tola's the from this.
Say $\Phi=\exists x \forall y \exists z \cdots \varphi(x, y, z, \ldots)$ is the quantified formula with $O(1)$-alternations.
Step 1 can be thought of as the output of a let algo $A\left(\Phi, \gamma_{1}, \ldots \gamma_{m}\right)$ where $\gamma_{1}, \ldots \gamma_{m}$ are the random bits.

Consider the following machine:
Δ Guess r_{1}, \ldots, r_{m}
\square Compute $\Gamma(z)=A\left(\Phi, \gamma_{1}, \ldots \gamma_{m}\right)$.

- Apply modulus amp. to $\Gamma(z)$ to get $\Psi\left(z^{\prime}\right)$ such that
(车 $: \Gamma(z)=1 \Rightarrow \operatorname{ASAT}(\Psi(z))=-1 \bmod 2^{m}$
($-z: \Gamma(z)=0 \Rightarrow$ \#SAT $(\Psi(z))=0 \bmod 2^{m}$
\triangleright Guess z^{\prime} and accept if $\Psi(z)=1$.

If Φ was false, then $\oplus z . \Gamma_{i}(z)=0$ for all i.
\Rightarrow \#SAT $\left(\psi_{i}\left(z^{\prime}\right)\right)=0 \bmod 2^{m}$ for all i
\Rightarrow \# acc rues of $M=0 \bmod 2^{m}$.
If Φ is true, then $\left(\oplus z: \Gamma_{i}(z)=-1 \bmod 2^{m}\right.$ for $\geq 2 / 33^{9}$,
(9) $: \Gamma_{i}(z)=0 \bmod 2^{m} \quad$ for $\leq 1 / 3 q^{i s} i^{\prime} s$.

If Φ is false, then
(()z: $\Gamma_{i}(z)=-1 \bmod 2^{m}$ for $\leqslant 1 / 3 q$ is
$\oplus Z: \Gamma_{i}(z)=0 \bmod 2^{m}$ for $\geqslant 2 / 3 q$ is.
$\therefore \quad$ \#ace paths of M mood 2^{m} is

The $P^{\# P}$ aldo:
D Build the above machine M.

- Ask the \#P oracle the number of acc. paths of M. (Or, conv. M to a formula using cook-tevin ad ash \#P oracle for \#SAT)
\rightarrow Compute the residue modulo 2^{n}. If residue is "small" retain True Else return False.

How do you amplify modulus?

$0 \bmod k \sim 0 \bmod k^{2}$
$-1 \bmod k \sim-1 \bmod k^{2}$.
What about a^{3} ? $\quad a=-1+r k \Rightarrow a^{3}=-1+3 r k \bmod k^{2}$

$$
\begin{aligned}
a^{3}\left(a^{3}+2\right) & =(3 r k-1)(3 r k+1) \bmod k^{2} \\
& =-1 \bmod k^{2} \\
f(\varphi)=\varphi^{6} & +2 \varphi^{3} .
\end{aligned}
$$

How large is $f(\varphi) ? \leqslant 20|\varphi|$.
\therefore To go from of -1 mod $\leadsto 0 /-1 \bmod 2^{n}$, size becomes poly (m).| $|\varphi|$.

