Computational Complexity: Lecture 20. Recap: - #P - counting witnesses. #SAT, Perm are #P-complete - PH C P#P - NV++ & some modular magic. Agenda: - Approximate counting Qn's Exactly computing # satisfying assignments is hard. But can use approximate the number of SAT assignments? q(x^{u)}) A...A q(2^{u)}) either mo sal $\bigwedge \phi^k \longrightarrow 22^k$ \bigcirc Computing #SAT approximately seems at least as hard as SAT ilself. Thm: For any E, S, there is a BPP algorithm. A SAT which, on input q, satisfies $P_{\mathcal{V}}\left[A^{SAI}(\varphi) \in \#SAT(\varphi).(1\pm \varepsilon)\right] \ge 1-\delta.$ with summing time $poly(|\varphi|, \frac{1}{2}, \log \frac{1}{5})$.

What an use do with an NP prack?
- Checking if
$$\varphi$$
 is SAT/TAUT
- Checking if φ has exactly 1 SAT assignment.
- Checking if φ has $\Rightarrow 42$ SAT assignments.
 $\circ^{\circ} I_{\delta} = 454T(\varphi)$ is "small" then we can compute
this exactly using an NP pracle.
A simpler promise problems
approx -count $(\varphi, k) = \begin{cases} y_{es} & i & \#sat(\varphi) \ge 2^{k+1} \\ No & if & \#sat(\varphi) \le 2^{k} \end{cases}$.
How can use hope to solve this even with an
NP oracle?
 $\int \phi_{es} = \sum_{i=1}^{n} \int \phi_{es} = \int$

Let us just assume this for now and proceed.
BPP NP algo for approx-count
$$(q, k)$$
:
 P If $k \leq 5$ we can check if $q \geq 2^{k+1}$ sat assignments
using an NP oracle.
 P If $k \gg 6$. Set $m = k - 5$ and pick a
random h: $\{o, i\}^{n} \rightarrow \{o, i\}^{m}$ from a pick.f.
Return yes if the formula
 $q(x) = 1 \land h(x) = 0$ has ≥ 48 sat assignment
 $g'' = 1 \land h(x) = 0$ has ≥ 48 sat. assignment

Correctness:
Let
$$S = \{a: \ p(a) = 1\}$$
.
^s Yes" case: $|S| \ge 2^{k+1} = 2^{m+6} = 4 \cdot 2^{m}/e^{2}$ for $e = 1/4$.
LHL says $P_{0}[]\{a \in S: h(a) = 0\}|\ge (1 - \epsilon) \cdot \frac{|S|}{2^{m}}] \ge \frac{3}{4}$
"No" case: $|S| \le 2^{k}$. $S \le S'$ $|S| = 2^{k} = 2^{m+5}$ $i = 1/2$
 $P_{1}[\{a \in S': h(o)\}] > (1 + \epsilon) \cdot \frac{|S'|}{2^{m}}] \le \frac{1}{4}$

Remark: We can push the error down by repeating + majority.

□.

 $B^{NP}(q)$: Run approx-court (p,i) for i=0,1,..., n. If k is the last point where approx-court (q,k)=1/es, seturn 2k. #SAT(q) $\leq 2^{k} \leq \# SAT(q) \leq 2^{k+2}$ $\frac{4}{4}$ "Yes" at k. "No" at "No" at b+1 is This alg. gets #SAT(q) right within a factor of 4. Cor: There is a BPP Algo to compute #SAT within a factor of 4. Can we get within a (1±E) factor? $A^{SAT}(q)$: > Consider $\Psi = q^{t}$ (t to be chosen shortly) $P N = B^{SAT}(\Psi)$ D Return N^{VE} Say $M = \#SAT(q) \implies M^{t} = \#SAT(\psi)$ $(\frac{1}{4})^{t} M^{\xi} \leq (B^{SAT}(\varphi))^{t} \leq M^{\xi}$ $\left(\frac{1}{2}\right)^{t} \approx 1-\varepsilon \qquad t = O(\frac{1}{\varepsilon})$

Essentially Thm: For any
$$\varepsilon, \varepsilon$$
, there is a BPP ^{NP} algorithm. A^{SAI} which, on input φ , satisfies
this $P_{\delta}\left[A^{SAT}(\varphi) \in \#SAT(\varphi).(1\pm\varepsilon)\right] \ge 1-\varepsilon.$
with running time poly $(1\varphi|, \frac{1}{\varepsilon}, \log\frac{1}{\varepsilon}).$

modulo the LHL.

Proof g the Leftover Hash Lemmas Lemma: (Leftover Hash Lemmas) Let $H = \{h: for is^m \}_{h, is a family g pairwise independent hash functions and let ero.$ $For any <math>s \in \{or is^m s \cdot t \mid Is| \ge 4 \cdot 2^m/c^2$, we have. $f_{s} \in [I\{ses: h(x) = 0^n \}] \in [\frac{1}{2^m} \cdot (1 \pm e^n)] \ge 34$. Say $S = \{a_{15} \dots a_{rs}\}$. $Xi = 11(h(a_i) = 0^m)$ $E[x] = |S|/2^m = \pi/2^m = \mu$ $Z \times i = X$ Interested in $Pr[|X - \mu| \ge 2\mu]$ If Xis were indep. then Chernoff would have hopshed. But Xis need not be indep... but they are pairwise Obs: For any $i \neq j$ $P_{s}[Xi = a, X_{j} = b] = P_{s}[Xi = a] P_{s}[X_{j} = b]$

Since Xis are pairwise indep,
Var
$$(x) = \mathbb{E}\left[\left[(X-\mu)^{2}\right]\right]$$

Private $\rightarrow = \mathbb{Z}$ Var (X_{i})
 $:= \sum_{i=1}^{r} \left(\mathbb{E}[X_{i}] - \mathbb{E}[X_{i}]^{2}\right)$
 $:= \sum_{i=1}^{r} \left(\frac{1}{2^{m}} - \frac{1}{2^{2m}}\right) \leq \sum_{i=1}^{r}$
 $Pr\left[|X-\mu| \geq r\mu\right] = Pr\left[(X-\mu)^{2} \geq r^{2}\mu^{2}\right] \leq \frac{\mathbb{E}\left[(X-\mu)^{2}\right]}{r^{2}\mu^{2}}$
 $\leq \frac{r/2^{2m}}{r^{2}} = \frac{2^{m}}{r^{2}} < \frac{1/4}{r^{2}}$
 $f = \frac{r/2^{2m}}{r^{2}} = \frac{2^{m}}{r^{2}} < \frac{1/4}{r^{2}}$
So what have we learnal?
 $Prenn \ \ \text{A #SAT are } \#P - complete.}$
 $P = FP \Rightarrow P = NP.$
But we can do a bet more with a $\#P$ prace
than with an NP-prace.
 $p^{NP} \in \mathbb{Z}_{2}$.
 $P = PH.$
 $P = P$

Perm
$$(X + tY) = f_0 + f_1 t + f_2 t^2 + \dots + f_n t^n$$
.

$$\begin{bmatrix} x_n + ty_n \\ \vdots \\ x_m + ty_m \end{bmatrix} \rightarrow Perm(X)$$
Let $\beta t = Perm(X + \alpha_i Y) \quad f_{pr} \quad i = 0; t_{3-2} n$

$$\begin{bmatrix} t & \alpha_0 & x_0^2 & \dots & \alpha_n^n \\ 0 & x_0^2 & \dots & \alpha_n^n \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ g_n \end{bmatrix} = \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_n \end{bmatrix}$$

$$\frac{t}{p_n} = \begin{bmatrix} p_0 \\ \vdots \\ p_$$

,

Turns out, even if A computer Perm on the fraction of inputs, that's enough to get the same conclusion above! "low-degree polynomials are error-correcting codes". Ref: "Permanent is hard even on a good day" by Yuval Filmus.