Computational Complexity - Lecture 21.  
Recaps - #SAT, Pure are #P-complete.  
- Todas PH S P<sup>#P</sup>  
- Approx counting 
$$\in$$
 BPP<sup>NP</sup>  
Agendas - The classes GapP & PP.  
- Its connection to #P  
- Beigel- Reingold - Spielman theorem.  
Qris Is this fin in #P?  $f(x) = x^2 + 4x - 5$   
No... any fin in #P?  $f(x) = x^2 + 4x - 5$   
No... any fin in #P? is non-negative  
Defin (GapP):  $f: \Sigma^* \rightarrow N \in GapP$  if there is a polytime  
machine M(,) s.t.  
 $f(x) = |\{r: M(x,x) = i\}] - f\{r: M(x,x) = 0\}].$   
Gap (M, z)  
Some properties & GapP (Simclar to #P).  
 $f, g \in GapP \Rightarrow$  Obse:  $f \in #P \Rightarrow f \in GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$   
 $ightarrow fig e GapP = Pf = fig e GapP.$ 

Define (hobabilistic poly time or PP): A language 
$$L \subseteq \Sigma^*$$
 is  
in PP if there is a polytime machine  $M(x_3x)$  with  $M \le p(x_1)$   
it  $x \in L \iff P_x [M(x_3x) \ accepts] \ge 1/2$   
 $a \notin L \iff P_x [M(x_3x) \ accepts] < 1/2.$   
(b)  
 $x \in L \iff \# \ acc. \ paths \ge 2^{|x|-1}$   
 $x \notin L \iff \# \ acc. \ paths < 2^{|x|-1}$ .  
Rn: If  $L \in PP_3$  is  $L \ also$  in PP?  
Obs: We can actually make the inequalities strict on both  
sides. is  $x \in L \iff P_x [M(x_3x)=1] > 1/2$   
 $x \notin L \iff P_x [M(x_3x)=1] > 1/2$   
 $x \notin L \iff P_x [M(x_3x)=1] > 1/2$   
 $x \notin L \iff P_x [M(x_3x)=1] < 1/2.$   
Pf= Say M was a machine for L acc. to above defn.  
Say M was m random bils

What is the prob that 
$$M^{f}$$
 accepts  $z$ ?  
 $R_{1}[M(z, \tau')-r] = R_{1}[M(z, \tau)-r] + R_{2}[M(z, \tau)-rolower heads]  $\circledast$   
 $R_{2}[M(z, \tau')-r] = R_{1}[M(z, \tau)-r] + R_{2}[M(z, \tau)-rolower heads]  $\circledast$   
 $R_{2}[M(z, \tau')-r] = R_{1}[M(z, \tau)-r] + \frac{1}{2^{m+1}} (1-p) < \frac{1}{2}$   
 $R_{2}[X + L: )  $\circledast = P + (1-p) - \frac{1}{2^{m+1}} > \frac{1}{2}$   
 $R_{2}[X + L: )  $\circledast = P + (1-p) - \frac{1}{2^{m+1}} > \frac{1}{2}$   
 $R_{2}[X + L: )  $\circledast = P + (1-p) - \frac{1}{2^{m+1}} > \frac{1}{2}$   
 $R_{2}[X + L: )  $\circledast = P + (1-p) - \frac{1}{2^{m+1}} > \frac{1}{2}$   
 $R_{2}[X + L: )  $\circledast = P + (1-p) - \frac{1}{2^{m+1}} > \frac{1}{2}$   
 $R_{2}[X + L: )  $\circledast = \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2^{m+1}} (1-p) < \frac{1}{2}$   
 $R_{2}[X + L: )  $\circledast = \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2^{m+1}} (1-p) < \frac{1}{2}$   
 $R_{2}[X + L: )  $\circledast = \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2^{m+1}} (1-p) < \frac{1}{2}$   
 $R_{2}[X + L: ]  $\circledast = \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2^{m+1}} (1-p) < \frac{1}{2}$   
 $R_{2}[X + L: ]  $\Re = \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2^{m+1}} (1-p) < \frac{1}{2}$   
 $R_{2}[X + L: ]  $\Re = \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2^{m+1}} (1-p) < \frac{1}{2}$   
 $R_{2}[X + L: ]  $\Re = \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2^{m+1}} (1-p) < \frac{1}{2}$   
 $R_{2}[X + L: ]  $\Re = \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2^{m+1}} (1-p) < \frac{1}{2}$   
 $R_{2}[X + L: ]  $\Re = \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2^{m}} (1-p) < \frac{1}{2}$   
 $R_{2}[X + L: ]  $\Re = \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2^{m}} (1-p) < \frac{1}{2}$   
 $R_{2}[X + L: ]  $\Re = \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2} - \frac{1}{2}$   
 $R_{2}[X + R_{2}] = \frac{1}{2} - \frac{1}{2^{m}} + \frac{1}{2} - \frac{1}{2}$$$$$$$$$$$$$$$$$$$ 

on With PP as an oracle, we can simulate #P.  
No Toda ⇒ PH ⊆ P<sup>#P</sup> ⊆ P<sup>PP</sup>.  
An alt. definition for PP:  
a ∈ L ⇔ Gap (M32) > 0  
a ∉ L ⇔ Gap (M32) > 0  
a ∉ L ⇔ Gap (M32) < 0  
Qn: J<sub>6</sub> L<sub>1</sub>, J<sub>2</sub> ∈ PP, is L<sub>1</sub> ∩ L<sub>2</sub>?  
That is, if M<sub>1</sub>, M<sub>2</sub> are such that  
a ∈ L<sub>1</sub> ⇔ Gap (M<sub>1</sub>, 2) > 0  
a ∉ L<sub>2</sub> ⇔ Gap (M<sub>1</sub>, 2) > 0  
a ∉ L<sub>2</sub> ⇔ Gap (M<sub>1</sub>, 2) > 0  
a ∉ L<sub>2</sub> ⇔ Gap (M<sub>2</sub>, 2) > 0  
a ∉ L<sub>2</sub> ⇔ Gap (M<sub>1</sub>, 2) > 0  
Js there a machine N s.t  
Gap (N, 2) is 
$$\begin{cases} > 0 & i \\ < 0 & 0 \end{cases}$$
 both Gap (H<sub>1</sub>, 2) > 0 & Gap (H\_1, 2) & Gap (H\_1, 2) & Gap (H\_1, 2) & Gap

Thm: [Beigel-Reingold-Spielman] PP is closed under  
Intersection.  
What do we would to prove?  

$$f(\alpha) = Gap(M_{1}, \alpha)$$
  $g(\alpha) = Gap(M_{2}, \alpha).$   
 $H(\alpha) = sign(f(\alpha)) + sign(g(\alpha)) - 1$ 

sign(f(a)) is not a polynomial...  
But use know that 
$$-2^m \leq f(a) \leq 2^m$$

Can we approximate sign(x), for 
$$-2^n \le x \le 2^n$$
 by a polynomial?  
Suppose  $S(x)$  satisfies the following properties.  
 $\triangleright$  For  $x = 1, 2_{\delta} - \frac{1}{2}^n$ ,  $S(x) \in [1, 1.5]$   
 $\triangleright$   $S(-x) = -S(x)$   
 $\triangleright$   $S(x) = s_0 + s_1 x + \dots + s_k x^k$   
where each  $S_i$  is "small" ad kis  
small.

Issue: No such poly even comes close ... Brilliant idea 1 : Let's try rational functions  $S(x) = \frac{P(x)}{D(x)}$ 

Even if these were great approximations to sign(a), how is this useful in this context?  $S(a) + S(b) - 1 = \frac{P(a)}{Q(a)} + \frac{P(b)}{Q(b)} - 1$  $= \frac{P(a) - Q(b)}{Q(a)} + \frac{Q(a) \cdot P(b)}{Q(a) Q(b)} - \frac{Q(a) Q(b)}{Q(a) Q(b)}$ 

But we only care for the sign 
$$g$$
  
 $\Rightarrow$  sign(S(a) + S(b) -1) = (Num). (Denom)  
Then the expo: (P(a) Q(b) + ... + Q(a) Q(b)). Q(a) Q(b)

So If we can find a good national approximation  

$$\frac{P(x)}{Q(x)} \quad \text{for sign(x), we will be done.}$$
Where can we find such approximations?  
Brilliant idea #2: What about tanh (x)?  

$$\tan (x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \qquad \frac{1}{1}$$
This is not a rational export.  
Why don't we replace  $e^{x}$  by a polynomial?  

$$Aftempt 1: P_n(x) = \sum_{i=0}^{n} \frac{x^{i}}{i!}$$

$$Pefine \quad S_n(x) = \frac{P_n(x) - P_n(-x)}{P_n(x) + P_n(-x)}$$
Does this work?

$$\frac{P(a) - P(-x)}{P(a) + P(-x)} = \frac{P(a) + P(-x)}{P(a) + P(-x)} - \frac{2 P(-x)}{P(a) + P(-x)}$$
  
= 1 + 2  
 $\left(\frac{P(a)}{-P(-a)} - 1\right)$ 

What we want is for 
$$P(\alpha) \gg -P(-\alpha)$$
  
Brilliant idea 3°  
 $P_n(\alpha) = (2i+1) \prod_{i=1}^{n} (\alpha + 2^i)^2$ . Neroman.  
Patrianal approx for  
Interval is  $2 = (2i+1) \prod_{i=1}^{n} (\alpha + 2^i)^2$ .  
Plained approx for  
Interval is  $2 = (\alpha + 2^i)^2$ .  
Plained approx for  
Interval is  $2 = (\alpha + 2^i)^2$ .  
Plained approx for  
Plained approx for  
Interval is  $2 = (\alpha + 2^i)^2$ .  
Plained approx for  
Plained

$$\int_{0}^{\infty} S_{n}(x) = \frac{P(x) - P(-x)}{P(x) + P(-x)}$$
 odd function.  
And for any  $| \le x \le 2^{n}$   

$$S_{n}(x) = 1 + \frac{2}{(\frac{P(x)}{-p(-x)} - 1)} \le 1 + \frac{2}{5} \le \frac{5}{3}$$

The Gap fn for 
$$L_1 \cap L_2$$
:  
 $f(\alpha) = Gap(M_{1,2} \times)$ 
 $g(\alpha) = Gap(M_{2,2} \times)$ .  
Define  $H(z_{1,2}z_{2})$ 
where  $S(z) = A(z)/B(z_{2})$   
 $= \left[A(z_{1})B(z_{2}) + A(z_{2})B(z_{1}) - B(z_{1})B(z_{2})\right]_{\chi}$ 
 $B(z_{1}) - B(z_{2})$ 

Build a machine N s-t  

$$Gap(N, x) = H(f(x), g(x))$$

o's 
$$L_1 \cap L_2 \in PP$$
.  $\square$   
BRS - idea corries from Newman's thm.

