Computational Complexity - Lecture 21.
Recap: - \#SAT, Perm are \#P-complete

- Toda: PH $\subseteq P^{\# P}$
- Approx counting \in GP NP

Agenda: - The classes Gap \& PP.

A puzzle:
You will be given x, y : $-N \leq x, y \leq N$.
Find an "epprasion" $h(x, y)$ st

- Its connection to \#P
- Beigel-Reingold-Spielmar theorem.

On: Is this for in AP? $\quad f(x)=x^{2}+4 x-5$
No... any fr $m \# P$ is nonnegative

Deft (Gap): $f: \Sigma^{*} \rightarrow \mathbb{N} \in \operatorname{Gap}$ if there is a polytime machine $M($,$) st$

$$
f(x)=|\{r: M(x, r)=1\}|-|\{r: M(x, r)=0\}|
$$

$\operatorname{Gap}(M, x)$
Some properties of Gap (similar to $\# P$).

$$
\begin{array}{rlrl}
f, g \in & \operatorname{Gap} P \Rightarrow & \text { Obs: } f \in \# P \Rightarrow f \in \operatorname{Gap} P . \\
& \triangleright f+g \in \operatorname{Gap} P & & \triangleright f g \in \operatorname{Gap} P \\
& \triangleright f-g \in \operatorname{Gap} P & & \triangleright f^{3}+3 f^{2} g-10 f^{4}+g^{5}-7 \\
& \triangleright 2^{n} \cdot f \in \operatorname{Gap} P & & \in \operatorname{Gap} P
\end{array}
$$

\#P:

Defy: (Robabilistic poly time or PP): A language $L \subseteq \Sigma^{*}$ is in PP if there is a polytime machine $M(x, r)$ with $H \in \rho \rho(x)$ st $x \in L \Leftrightarrow \operatorname{Pr}[M(x, r)$ accepts $] \geqslant 1 / 2$
$x \notin L \Leftrightarrow \operatorname{Pr}[M(x, r)$ accepts $]<1 / 2$
(or)

$$
\begin{aligned}
& x \in L \Leftrightarrow \text { \# acc. paths } \geqslant 2^{|r|-1} \\
& x \notin L \Leftrightarrow \text { acc. paths }<2^{|r|-1} .
\end{aligned}
$$

Rn: If $L \in P P$, is \bar{L} also in $P P$?
Obs: We can actually mate the inequalities strict on both sides. ie $x \in L \Leftrightarrow P_{r}[M(x, r)=1]>1 / 2$

$$
x \notin L \Leftrightarrow \operatorname{Pr}[M(r, r)=1]<1 / 2 .
$$

Pf: Say M was a machine for L ace to above deft.
Say M uses m random bels
$M^{\prime}:$ Pick $\gamma_{1}, \ldots \gamma_{m}$. Let $b=M(x, r)$
If $b=1$: rectum 1
If $b=0$
Toss mil random wires.
Acc of all were heads.
Res ow.

Btw, how many of you have heard of sinh, cosh, tanh? (the hyperbolic trig frs)

What is the prob that M^{\prime} accepts x ?

$$
P_{r}\left[M^{\prime}\left(x, r^{\prime}\right)=1\right]=\operatorname{Pr}[M(x, r)=1]+\operatorname{Pr}[M(x, r)=0 \& \text { moi heads }]
$$

If $x \in L: \circledast=p+(1-p) \cdot \frac{1}{2^{m+1}}>\frac{1}{2}$
If $x \notin L: \circledast \leqslant \frac{1}{2}-\frac{1}{2^{m}}+\frac{1}{2^{m+1}}(1-p)<1 / 2$
$\therefore P P$ is the class where you have a randomised algo with some nonzero advantage.

Cor: $f \in P P \Leftrightarrow \neg f \in P P$
Pf: With strict ineq on both sides, this is trivial.
What is the connection to \#P?
Obviously, $P P \subseteq P^{\# P}$. Compute the \#ace. paths \& just $L=\left\{(M, x):\right.$ If Mass $\geqslant 2^{n-1}$ acetum $\}$
Lemma: \#P $\subseteq F P^{P P}$.
Pf: $\quad f: \Sigma^{-x} \rightarrow$
$f(x)=\quad N \leq 2^{n}$
PP: Is $N \geqslant 2^{n-1}$
Can I use PP oracle to check if $N \geqslant a$

$$
\begin{aligned}
& \text { \# acc. paths }=f(x)+ \\
& \geqslant 2^{m}-a \\
& \geqslant 2^{m} \text { if } f(x) \geq a
\end{aligned}
$$

\therefore With PP as an oracle, we can simulate AP.

$$
\therefore \text { Toda } \Rightarrow \quad P H \subseteq P^{\# P} \subseteq P^{P P} \text {. }
$$

An alt. definition for PP:

$$
\begin{aligned}
x \in L & \Leftrightarrow \operatorname{Gap}(M, x)>0 \\
x \notin L & \Leftrightarrow \operatorname{Gap}(M, x)<0
\end{aligned}
$$

On: If $L_{1}, L_{2} \in P P$, is $L_{1} \cap L_{2}$?
That is, if M_{1}, M_{2} are such that

$$
\begin{array}{l|l}
x \in L_{1} \Leftrightarrow \operatorname{Gap}\left(M_{1}, x\right)>0 & x \in L_{2} \Leftrightarrow \operatorname{Gap}\left(M_{2}, x\right)>0 \\
x \Leftrightarrow L_{2} \Leftrightarrow \operatorname{Gap}\left(M_{1}, x\right)<0 & x \notin L_{2} \Leftrightarrow \operatorname{Gap}\left(M_{2}, x\right)<0 .
\end{array}
$$

Is there a machine N s.t

$$
\operatorname{Gap}(N, x) \text { is } \begin{cases}>0 & \text { if both } \operatorname{Gap}\left(M_{1}, x\right)>0 \& \operatorname{Gap}\left(M_{2}, x\right) \\ <0 & 0 / w .\end{cases}
$$

Th: [Beigel-Reingold-Spielman] PP is closed under intersection.
What do we wart to prove?

$$
\begin{aligned}
f(x) & =\operatorname{Gap}\left(M_{1}, x\right) \quad g(x)=\operatorname{Gap}\left(M_{2}, x\right) . \\
H(x) & =\operatorname{sign}(f(x))+\operatorname{sigh}(g(x))-1
\end{aligned}
$$

$\operatorname{sign}(f(a))$ is not a polynomial...
But we know that $-2^{m} \leq f(x) \leq 2^{m}$

Can we approximate $\operatorname{sigh}(x)$, for $-2^{n} \leq x \leq 2^{n}$ by a polynomial?
Suppose $S(x)$ satisfies the following properties.

$$
\begin{aligned}
& \triangleright \text { For } x=1,2_{0}=2^{n}, \quad S(x) \in[1,1.5] \\
& \triangleright S(-x)=-S(x) \\
& \triangleright S(x)=S_{0}+S_{1} x+\cdots+S_{k} x^{k}
\end{aligned}
$$

where each S_{i} is "Small" ad k is small.
Issue: No such poly even comes close...
Brilliant idea 1: Let's try rational functions

$$
S(x)=\frac{P(x)}{Q(x)}
$$

Even if these were great approximations to $\operatorname{sigh}(x)$, how is this useful in this context?

$$
\begin{aligned}
S(a)+S(b)-1 & =\frac{P(a)}{Q(a)}+\frac{P(b)}{Q(b)}-1 \\
& =\frac{P(a) \cdot Q(b)+Q(a) \cdot P(b)-Q(a) Q(b)}{Q(a) Q(b)}
\end{aligned}
$$

But we only care for the sigh of

$$
\Rightarrow \operatorname{sigh}(S(a)+S(b)-1)=(\text { Mum }) \cdot \text { (Denom) }
$$

Then the exp: $(P(a) Q(b)+\ldots+\theta(a) \theta(b)) \cdot Q(a) \theta(b)$
\therefore If we can find a good rational approximation $\frac{P(x)}{Q(x)}$ for $\operatorname{sign}(x)$, we will be done.
Where can we find such approximations?
Brilliant idea \#2: What about $\tanh (x)$?

$$
\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

This is not a rational exp!
Why don't we replace e^{x} by a polynomial?
Attempt 1: $\quad P_{n}(x)=\sum_{i=0}^{n} \frac{x^{i}}{i!}$
Define $S_{n}(x)=\frac{P_{n}(x)-P_{n}(-x)}{P_{n}(x)+P_{n}(-x)}$
Does this work?

$$
\begin{aligned}
\frac{P(x)-P(-x)}{P(x)+P(-x)} & =\frac{P(x)+P(-x)}{P(x)+P(-x)}-\frac{2 P(-x)}{P(x)+P(-x)} \\
& =1+\frac{2}{\left(\frac{P(x)}{-P(-x)}-1\right)}
\end{aligned}
$$

What we wat is for $P(x) \gg-P(-x)$
Brilliant idea 3:

$$
P_{n}(x)=(x+1) \prod_{i=1}^{n}\left(x+2^{i}\right)^{2} \leadsto \begin{gathered}
\text { Newman. } \\
\text { Ratiaal approx for } \\
|x|
\end{gathered}
$$

Claim: For any $1 \leqslant x \leqslant 2^{n}, \quad P(x) \geqslant 4 \cdot(-P(-x)) \geqslant 0$
Pf: Term by term, $P(x) \geqslant-P(-x) \geqslant 0$
Suppose $2^{i-1} \leq x \leq 2^{i}$

$$
\begin{gathered}
\left(x+2^{i}\right)^{2} \geqslant 2^{2 i} \\
\left(-x+2^{i}\right)^{2}=\left(2^{i}-x\right)^{2} \leqslant\left(2^{i-1}\right)^{2}=2^{2 i} / 4 . \square . \\
\therefore \quad S_{n}(x)=\frac{P(x)-P(-x)}{P(x)+P(-x)} \quad \text { odd function. }
\end{gathered}
$$

And for any $1 \leq x \leq 2^{n}$

$$
S_{n}(x)=1+\frac{2}{\left(\frac{p(x)}{-p(-x)}-1\right)} \leq 1+\frac{2}{3} \leq \frac{5}{3}
$$

The Gap fr for $L_{1} \cap L_{2}$:

$$
f(x)=\operatorname{Gap}\left(M_{1}, x\right) \quad g(x)=\operatorname{Gap}\left(M_{2}, x\right) .
$$

Define $H\left(z_{1}, z_{2}\right)$
where $S(z)=A(z) / B(z)$

$$
\begin{gathered}
=\left[A\left(z_{1}\right) B\left(z_{2}\right)+A\left(z_{2}\right) B\left(z_{1}\right)-B\left(z_{1}\right) B\left(z_{2}\right)\right] \times \\
B\left(z_{1}\right)-B\left(z_{2}\right)
\end{gathered}
$$

Build a machine N st

$$
\begin{aligned}
& \operatorname{Gap}(N, x)=H(f(x), g(x)) \\
& \therefore L_{1} \cap L_{2} \in P P .
\end{aligned}
$$

BRS - idea comes from Newman's the.

unary halting

