Today

Interactive Proofs

- Graph Non-isomorphis
- Formal Deft
- Permanent

CS5. 203. 1 Computational

Complexity

- Lecture \#22

Instructor: (5 May 21)
Prahladh Harsh

Interactive Proofs
" $x \in L$ "
Verifier
Coletermionshc)
\checkmark
Qu: What if verifier had access to the prover and not put The proof?

Interaction w/ the prover

Does interachon increase power of verifier of No, not realty.

However, not frae of verifier is randomized

Model: Vern, free -randomize I

- costeraction w/ a powerful prover.

Toy Example:
Graph Non- Isomorphism

$$
\begin{aligned}
& G N I=\left\{\left(G_{0}, G_{1}\right) / G_{0} \not \approx G_{1}\right] \\
& \widehat{G N I}=G I \in N P \quad ; G N I \in \operatorname{CNP}
\end{aligned}
$$

$$
\text { 1. } b \epsilon_{R}\{0,1\}
$$

$2, \sigma \epsilon_{p} S_{n} \quad\left(n=\mid v\left(G_{0}\right) /\right.$

$$
\left.=\left|v\left(C_{1}\right)\right|\right)
$$

3. $H=\sigma\left(\sigma_{b}\right)$
$G_{0} \neq G_{*}$.
then the correct prover

$$
\begin{aligned}
& \operatorname{Pr}\left(V_{\leftrightarrow} \leftrightarrow P\right)\left(\sigma_{0}, \sigma_{1}\right) \\
& =a c c) \\
& \frac{\sigma_{0}}{\sigma_{0} \cong \sigma_{1}}=1 \\
& \forall \text { prover }
\end{aligned}
$$

$$
\text { 4. Accept } \left.\underset{G=C}{C \in\{0,1]} P \quad P\left(V \leftrightarrow P^{*}\right)=a c c\right]=\frac{1}{2}
$$

Inferactre Proofs.

$$
\begin{aligned}
& N P \subseteq \text { IP / GNIEIP } \\
& \text { BPP } \& 1 \text { We don't know if } \\
& \text { GNIENP? }
\end{aligned}
$$

Formal Defincton:
Recall defr of NP
($\underset{\pi}{x \in L} P$
$V(x, \pi)=\operatorname{acc} f y \cdot$
$\angle E N P$ if \exists a veucter V w/ the followng properties.
(1) Efficiency: Vis polytione compreta ble.
(2) Completeress:

$$
x \in L \Rightarrow \exists \pi, \quad V(x, \pi)=a<c
$$

(3) Soundners

$$
x \notin L \Rightarrow \forall \pi, \quad V(x, \pi)=x \notin
$$

Extend this detin to interactre Poots. Model the verifics.

Inputs: x (original input)
P (randonsress input)
Next message of V

- Acc/Ray $<$

Prover is also a next message In howerex is/ no efficiency restrictions.
(P) $\angle E$ IP (interactive.
there exists a randomized vercher next message ff$) \mathrm{V}$
of
(1) Efficiency V runs in time

$$
\text { poly (} x f \text {). }
$$

(2) Completeness: $x \in L \Rightarrow \exists$ prover P

$$
\begin{aligned}
P \\
R
\end{aligned}
$$

(3) Soundness:

$$
\begin{aligned}
& x \notin L \Rightarrow \neq \text { provers } P^{*} \\
& \left.P^{x} /(V \leftrightarrow P)(x ; R)=\operatorname{acc}\right] \leqslant 1 / 3
\end{aligned}
$$

Remarks: Definition of IP.
(o) $N P \subseteq I P ; B P \subseteq I P$
(1) The error (in deft) is 1/3, Gut can be reduced to $\exp (-m)$ gust by repeating the above protocd. sequentially $\sigma(m)$ tomes.
LAos alternate resection con be performed by asking ans in parallel Also reduces error, but this requires a proof. 7 .
(2) The prover can be randomized Gut this does not give the prover any additional power.
(3) Private ns Public Coins:

Private: IP protocol in which the verier does not reveal her randomness
Public: Verier reveals the random

Surprisingly, for every language that has a private-coins IP, there is an equivalent puble-coms IP.
(4) Perfect Completeness On: Can $2 / 3 \rightarrow 1$ Any IP-protocal can be converted to one w/ perfect completeness

$$
\text { (proof. } \left.B P \subseteq \subseteq \sum_{2}^{p}\right)
$$

(5) Perfect Soundness An: Can $1 / 3 \rightarrow 0$. Possibly No.
Chen can make the verifier determinste by the prover just sending the random coins that cause the verither to accept in YES case)

$$
\text { perf-soundoness-IP }=\text { det-IP }=N P
$$

Parameters IP protocol.

$$
\angle \in I P
$$

- \#rounds. k-round protocd. $L E$ IP LE] ; IP= IP Ip dy]
- Public rs Pirate Cg: Coin

Private Cons: $\angle \in I P[p o l y]$
Pubic Coins: $\angle \in A M[$ Poly $]$

$$
A M \neq A M[p o l y]
$$

AM- always specify the Around
Poblic-coms IP/AM. protocol for computing the permanent

$$
\begin{array}{ll}
A=\left(a_{i j}\right)_{c=1}^{n} & a_{i j} \in \mathbb{F} \text {-finite held } \\
& \\
& \\
& \\
& \\
& \text { Child } \mid>2 n^{3} . \\
& \text { is large enough })
\end{array}
$$

Perm $=\{(\mathbb{F}, n, A, \alpha) / \mathbb{F}$-finite Held.

$$
\left.\begin{array}{l}
A-n \times n \text { matrix } \\
A \in \mathbb{F}^{n \times n} \\
\operatorname{perm}(A)=\alpha
\end{array}\right\}
$$

$$
\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \prod_{c=1}^{n} a_{i ; \sigma}{ }^{n}
$$

$$
=\sum_{i=1}^{n} a_{1, i} \operatorname{Perm}\left(A_{1, i}\right)
$$

where $A_{1, i}$ - refer to the $(n-1) \times(\sigma-1)$ matrix obtained by removing the st row 2 ${ }_{i}{ }^{\text {th }}$ colima.

Candidate IP-protocol:

$$
\alpha_{1} \ldots \alpha_{n}
$$

Checks if $\alpha_{c}=\operatorname{Perm}\left(A_{1, i}\right)$

$$
\begin{gathered}
\alpha=\sum_{c=1}^{n} a_{1 i} \cdot \alpha_{i} \\
e \epsilon_{R}[n]
\end{gathered}
$$

Reduced the problem to a $(n-1) \times(n-1)$ setting to check if perm $\left(A_{T}, i\right)=\alpha_{c}$.

Oui Is this a valid IP-protocol?
Efficiency
Completenicss
Soundness:???
Suppose perm $(A) \neq \alpha$.

Prover could cheat on just one of the paths.
Prob that the vercter catches the cheating proven $=\frac{1}{n!}$ Protocol Bs not sound.

$$
\begin{aligned}
& \text { Next trose: modity protocd fo } \\
& \text { smprove repecting prob from } \\
& \text { in constant). }
\end{aligned}
$$

