Today

Interactive Proots

$$
\begin{aligned}
& -P^{\# D} \subseteq I P \\
& -I P=P S P A C E
\end{aligned}
$$

(Part III)

CSS.203. 1
Computational
Complexity

- Lecture \# 24

Instructor: (12 May 21) Prahladh Harsha

Recap: \quad ASAT $=\{(\varphi, k) / \varphi$ us उCNF form

$$
\# S A T(\varphi)=k \quad\}
$$

Lant to prove: ASAT $E I P$.
What does if mean to say $\angle E I P$

(1) Efferency CNext message tr computable impoly tione in $x /$.
(2) Completeness:

$$
\begin{aligned}
& x \in L \Rightarrow D \text { Prover } P \\
& P[(V \leftrightarrow P)(x ; P)=\operatorname{acc}] \geqslant / 3
\end{aligned}
$$

(3) Soundness $x \notin \angle \Rightarrow \not \subset$ Povex P^{\nexists}

$$
e^{P r}\left(\left(V \leftrightarrow P^{x}\right)(x ; P)=a c c\right] \leqslant 1 / 3 .
$$

Arithmetration
Clow-degree polynomial representation
of a Boolean fincton)

3CNF formala

pdynomial

$$
\begin{aligned}
& \forall \sigma_{1} \ldots \sigma_{n} \in\{0,1\}^{n} \\
& \varphi\left(\sigma_{1} \ldots, \sigma_{n}\right)=p_{p}\left(\sigma_{1} \ldots \sigma_{n}\right)
\end{aligned}
$$

Nofrce for $\alpha_{1} \ldots \alpha_{n} \in \mathbb{F}^{n} \backslash\{0,1]^{n}$

$$
\varphi\left(\alpha_{1} \ldots \alpha_{n}\right) \text { - not detinad }
$$

however $P_{p}\left(\alpha_{1} \ldots.\right)$) - well detined.
Definition of P_{P}
rodactively.
(0) φ - constant $0 / 1$
$p_{p} \leftarrow$ constant $0 / 1$.
(2) Varcables.

$$
\begin{aligned}
& \varphi-x_{i} . \\
& P_{\varphi} \leftarrow x_{i} .
\end{aligned}
$$

(3) Negations

$$
\begin{aligned}
& \text { Eqations } \\
& \varphi=7 \psi
\end{aligned} \quad / P_{\varphi} \leftarrow 1-P_{\psi}
$$

(4) Conpunc tons.

$$
\varphi=\psi_{1} \cap \psi_{2} / P_{\varphi} \leftarrow P_{\psi_{1}} \cdot P_{2 / 2}
$$

(5) Disjunctions

$$
\begin{aligned}
\varphi & =\psi_{1} \vee \psi_{2} \\
& =\tau\left[\left(\tau \psi_{1}\right) \wedge\left(\tau \psi_{2}\right)\right] \quad / p_{\varphi} \leftarrow\left(1-P_{\psi_{1}}\right)\left(1-P_{\psi_{2}}\right)
\end{aligned}
$$

φ - BCNF formala.
m clauses

$$
\varphi=C_{1} \wedge C_{2} \ldots \quad \wedge C_{m}
$$

where each $c_{i}=x_{4} \vee \bar{x}_{\varepsilon_{2}} \vee x_{g}$

$$
\begin{aligned}
& P_{\rho}-\operatorname{deg}\left(P_{\varphi}\right) ? \\
& \otimes C=x_{1} \vee x_{2} \vee \bar{x}_{3}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{deg}\left(P_{c}\right) & \leqslant 3 \\
\operatorname{deg}\left(P_{P}\right) & \leqslant 3 m
\end{aligned}
$$

By construction, $P_{p} \& \varphi$ agree on Boolcan ralues.
Want to give an IP-profocal.

$$
\sum_{b_{1} \in[a,]} \sum_{b_{2} \in[0,1]} \cdots \sum_{b_{n} \in[0,1]} \varphi\left(b_{1}, \ldots b_{n}\right)=k
$$

Suffices to

$$
\begin{equation*}
\sum_{\left.\left.b_{1}, b_{[a}\right]\right\}} \sum_{b_{2} \in\{0,1]} \ldots \sum_{b_{n} \in\{0,1]} p_{\infty}\left(b_{1} \ldots \sigma_{n}\right)=k \tag{-A}
\end{equation*}
$$

Work wal some (surtably large) finite field \mathbb{F}.
Notation: $S_{i}\left(\alpha_{1}, \ldots \alpha_{i}\right)$

$$
\delta_{i}\left(\alpha_{1} \ldots \alpha_{c}\right) \triangleq \sum_{b_{c+1} \in[0,1\}} \sum_{\sigma_{c+2} \in\{0,1\}} \ldots \sum_{b_{1} \in\{0,1\}} P_{p}\left(\alpha_{1} \ldots \alpha_{c} \cdot \sigma_{c+1} . . . \sigma_{n}\right)
$$

(A) is equivalent to ' $J_{0}()=k$ "
We will give an IP-protocol
fo " $S_{i}\left(\alpha_{1} \ldots \alpha_{c}\right)=k_{i}{ }^{"}$ for any

$$
\begin{aligned}
& e \in \cos J \\
& \alpha_{1} \ldots \alpha_{i} \in \mathbb{F} \\
& k_{i} \in \mathbb{F}
\end{aligned}
$$

$$
\begin{aligned}
& k=p_{1}(0)+p_{1}(1) \\
& r_{1} \in_{R} \mathbb{F} \xrightarrow{" S_{1}\left(r_{1}\right)=p_{1}\left(r_{1}\right)^{\prime}} \\
& \left.S, r_{1}\right)=S_{2}\left(r_{1}, 0\right) \\
& <P_{2}\left(x_{2}\right) \quad \begin{array}{l}
P_{2}\left(x_{2}\right) \\
=S_{1}\left(x_{1}, x_{2}\right)
\end{array} \\
& \text { T } S_{L}\left(r_{1}, 1\right)
\end{aligned}
$$

L

$$
\begin{aligned}
& P_{1}\left(r_{1}\right)=P_{2}(0)+P_{2}(1) \\
& r_{2} \in_{R} \mathbb{F}-\frac{r_{2}}{{ }_{-S}^{S}\left(r_{1}, r_{2}\right)=P_{2}\left(r_{2}\right) "}
\end{aligned}
$$

Efficiency
Af the last round

$$
\begin{aligned}
& r_{n} \in \mathbb{F} \\
& S_{1}\left(r_{1} \ldots r_{n}\right) \\
& =P_{p}\left(r_{1} \ldots r_{n}\right)
\end{aligned}
$$

Verifier does not employ the prover.
 poly Pet is $^{\text {. is }}$ of degree at
Hence, all treanscexpts are of poly
length.
Completeness : Where is an honest prover P h
What
sf

$$
\begin{aligned}
& \text { sf } P_{r} \\
& R=r_{1} \ldots r_{n}
\end{aligned}\left(C V_{<\rightarrow p}\right)((\varphi, k), R)=a c c=1 .
$$

Soundness: $(p, k) \notin \# S A$ T
P^{*}-any prover.

$$
\begin{aligned}
& P_{R}, r_{1}, r_{n} \\
& {\left[\left(r \leftrightarrow p^{*}\right)((\varphi, k), R)=a c c\right] } \\
& \geqslant \underbrace{\left(l-\frac{d}{q}\right)\left(1-\frac{d}{q}\right) \ldots(f)}_{n}\left(\frac{d}{q}\right)
\end{aligned}
$$

$d=$ max deg of all poly
q - size of field.

$$
\begin{aligned}
\geqslant\left(1-\frac{d}{q}\right)^{n} \geqslant 1-\frac{n d}{q} & \geqslant 0.9 \mathrm{l} \\
& \text { of } q \geqslant 100 \mathrm{nd} \\
& =100.0 \mathrm{~mm} \\
& =300 \mathrm{mn}
\end{aligned}
$$

So for.

$$
P^{\# P} \subseteq I P \subseteq P S P A C E
$$

Theorem [LOnd- Fortnow-harloff-Nisan, Shaman]

$$
I P=P S P A C E
$$

(re, TQBF $\in I P$)

If: ψ is an instance of TQBR

$$
\psi=J x_{1}+x_{2} \exists x_{3} . J x_{4} \quad \forall x \underbrace{\varphi\left(x_{1} \ldots x_{n}\right)}_{\text {3CNF formala }}
$$

TQBF - true quantibed Bodean formalar.

$$
\begin{aligned}
& J x_{1} \quad K_{x_{2}} \ldots \quad J x_{n} \underbrace{\varphi\left(x_{1} \ldots x_{n}\right)}_{\text {Vorcthonetore }} \\
& p_{p}\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

Extend arithmetipation
to Cpartially) quantifed Bodean formalere.
Induction.
ψ.
(0) Ψ - no quantiters
P_{4} - obtanmed as Gefore
(1)

$$
\left.\begin{array}{rl}
\psi= & \forall x \rho(x) \\
P_{\psi}= & P_{\varphi}(0) \cdot P_{\varphi}(1)
\end{array}\right\}
$$

(2)

$$
\begin{aligned}
& \psi=J x \varphi(x) \\
& p_{\psi}=1-\left(1-p_{\varphi}(0)\right)\left(1-p_{\varphi}(1)\right)
\end{aligned}
$$

Trout: $\mathcal{H}=Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \varphi\left(x_{1} \ldots x_{n}\right)$
where $Q_{i} \in\{J, \forall\}$.
Want to check

$$
\operatorname{deg}\left(P_{p}\right) \leq 3 m
$$

bach application of quantifer (from right) doubles degree.
Final polynomial can have degree as large as $\underbrace{2^{n} 3 m}$ prohibitively large

Idea: Modify the protocol so that the degrees do not blow up.
Arithmetzan - polynomial sit on Boolean values matches of anginal Br
p- Univariate poly (of possibly large degree)

$$
q(x):=x \cdot p(1)+C(-x) \cdot p(0)
$$

(1) $\operatorname{deq}_{x}(9) \leqslant 1$
(2) $g(0)=p(0) ; \quad q(1)=p(1)$

$$
p(x) \stackrel{L x}{ } x p(1)+(1-x) p(0)
$$

Linearizing Operator:

$$
L_{x} p(x) \triangleq q(x)
$$

moats $\psi=Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \varphi\left(x_{1} \ldots x_{n}\right)$

$$
\begin{aligned}
& P_{Q_{1} x_{1}} \ldots \ldots P_{Q_{1} x_{1}} P_{Q_{n} x_{2}} P_{q}\left(x_{1} \ldots x_{n}\right) \\
& P_{Q_{1} x_{1}} \ldots P_{h_{12}}^{P} L_{x_{1}} \ldots L_{x_{n_{1}}} P P_{Q_{1} x_{n}} \underbrace{L_{x_{1}}-K_{x_{1}} L_{x_{1}} P_{\varphi}\left(x_{2} \quad x_{n}\right)}_{\text {indirdual degree in }} \\
& \text { each ar } \leq 1 \\
& \text { (Hence total deg } \leq n \text {) }
\end{aligned}
$$

Polynomial Operations $=n+1$

$$
\begin{aligned}
& f(n-1)+1 \\
& +(n-2)+1=O\left(n^{2}\right) \\
& +(n-n)+1
\end{aligned}
$$

Degree of any intermediate poly

$$
\leq \max \{3 m, 2 n\} .
$$

$$
P_{\psi}=\overbrace{\theta_{Q_{1} x_{1}}}^{\theta_{Q_{2} x_{1}}^{m}} \theta_{Q_{m} x_{n}} P_{\varphi}
$$

$g\left(x_{1} . x_{0}\right)$ - be any such intermediate poly on vars $x_{1} \ldots x_{s}$.
Carm: $f\left(a_{p}, a_{s}\right) \in \mathbb{F}^{S}=C \in \mathbb{F}$
there 18 an IP-protocal st (efficient).

- Caseci) $g_{s}\left(a_{1} \ldots a_{s}\right)=C:$ Profocol acrepto w/ prob 1
- Case (ai) $g_{s}\left(a_{4} . . a_{s}\right) \neq C$. Proto nd acceplo w/ prob.

$$
\leq \varepsilon(m)
$$

$$
\varepsilon(m)=\frac{m d}{q}
$$

So for.
IP - new model of proof veroficaton
GNI - IP-protocol Pruate Coms
PGPACE - IP protocol Public Coms perm
\#p
Public-Coms interactive Proots.
Arthur Mexlin Proof Sestems
(verster) (Prover)
$A M[t(n)]=\{\angle / L$ has a poblec coin. Ip protocol c/ at moot (n) roands?

$$
\begin{aligned}
& \text { IP }[E(n)]= \\
& \text { GNI } \in I P[1] \\
& P S P A C E \subseteq A M[P d y] \subseteq \text { IPLPok }]
\end{aligned}
$$

Proper fies:
(1)

$$
\begin{aligned}
\text { PSPACE } \subseteq \text { AM[POLy] } & \leq \text { IP[Pdy] } \\
& \subseteq \text { PSPACE }
\end{aligned}
$$

(2) Pablic Coms is Private Coin Gollary:

$$
\operatorname{Ip}[k(n)] \subseteq A M[k(n)+1]
$$

$$
G N I
$$

private coins public coms

$$
\therefore \angle P[z]
$$ profocol

$$
\operatorname{SAM}[2]
$$

(3) U constants R.

$$
A M[k] \subseteq A M[1]
$$

$$
\begin{aligned}
G N I & \subseteq A M[1] \\
& =A M
\end{aligned}
$$

(4) $A M[k(0)]$ - perfect completeness
(1) ; (2) inclass; (3) (4)-Pret5.

