Computational Complexity: Lecture 27.
Agenda: - Zero knowledge for IP.
- Zero knowledge proofs & knowledge.
Recap: - Zero knowledge interactive proofs.
Defne: L has a ZK IP if there is a protocol

$$V \Leftrightarrow P$$
 s.t:
[Completenes] $z \in L \Rightarrow Pr[V \Leftrightarrow P(z) = acc] \ge 2/3$
[Soundnes] $z \notin L \Rightarrow \forall P^*: Pr[V \Leftrightarrow P^*(z) = acc] \le 1/3$.
[Zero knowledge] $\forall V^*$, there is a ZPP simulator ²eL
 S^* s.t $\{S^*(z)\} = \{View_r(V^* \Rightarrow P(z))\}$.
(perfect ZK, statistical ZK, computational ZK).
Examples:
 $\triangleright GNI: \{(G_{1,2}G_2):: G_{1} \notin G_2\}$.
Ver: Rek $b \in \{1,2\}$
 $Piover$.
Acc if $C=b$.

Simulator for
$$V^*$$
:
> Pick b, σ ace to V^* .
> Return view: $(b, \sigma, \frac{H}{2b})$
> GI: $\{(G_1, G_2): G_1 \cong G_2\}$.
Prover: $(\tau: G_1 \rightarrow G_2)$
Verifier
Picks $\sigma \in_E S_n$.
H = $\sigma(G_2)$
T = τ
 $T = \sigma = T$
 $T = \sigma = S_n$.
 $T = \sigma$

Skelch for 3-colouring:
Prover knows a
$$\sigma: (n) \rightarrow \{1,2,3\}$$
.
 \triangleright Prover picks $\pi \in_{p} s_{3}$.
 \triangleright P $\xrightarrow{B_{1} - -s} B_{1}$ V Repeat
 $p \xrightarrow{(1,3)} P$ $\xrightarrow{(1,3)} B_{2}$ V Repeat
 $p \xrightarrow{(1,3)} B_{2}$ $\xrightarrow{(1,3)} P$ $\xrightarrow{($

hoofs of knowledge: Can a protocol somehow convince a verifier that the prover must know something? Or have a witness? " The only way this prover can convince me hohp is if the prover knows a witness." Example: GI Prover: $(T:G_1 \rightarrow G_2)$ H____ Verifier σEgSn H= σ(G2) Ь b Cp {1,23 F b=1 π= σ. τ π b=2 T=0 Check of OK/Nice try. H= π(Gb) Suppose P^* makes verifier accept $L p \ge 3/4$ does it mean P^* "knows" an isomorphism? [Bellare-Goldreich]: "You should be able to 'extract" a witness from such a prover " knowledge extractor.

Claims
$$P_8 \left[\begin{array}{c} p^{+} \\ s \end{array} \right] is the stage H is "good" \right] \ge 1/4.$$

Pf:
 $good$ bad
 $good$ bad

p:
$$R_{0}[Ver acc. after (H, 1)] \qquad q = R_{0}[Ver. acc. after (H, 2)]
P+q = 2 = 3 $P+q \ge 4$ $R_{0}[Ver. acc. after (H, 1)] = P_{0}q \ge 1/3.$
 $\Rightarrow P_{0}q \ge 1/3.$
 $\Rightarrow R_{0}q \ge 1/3.$
 $\Rightarrow M \quad breaks \quad ont \quad vo.p \ge 1/3b.$
What about all $q \quad NP ?$
Blum's protocol for Hamiltonicity:
Rever: (knows a Hamilton cycle in G).
Picks $\sigma \in e S_{n}$. $H = \sigma(G)$. Ruts all n^{2} bits in locked boxes and sends these to verifier.
Verifier: With prob $\frac{1}{2}$:
 $-Show me have the locked boxes evalues a shuffling $q \in G$.
With prob $\frac{1}{2}$:
 $-Reveal the length n path.$$$$

Fuether readings- "On Z-protocols" by Ivan Damgård. - Non-interactive zero knowledge