Today CSS. 203.1 - Multiprover Interactive Computational Proofs (MIP) Complexity - Lecture # 28 Instructor: (26 May 21) - Intro to PCPS Prahladh Harsha Multiprover Interactive Proots. [Ben On- Coldwasser-Kilian-Wigdesson] What happens if the venifiers interacts with multiple provers! K>1 2 2 Does having multiple prover help? Possibly not, one con simulate multiple provers using a single prover. True, only of all provers are aware of each other's questions = answers.

MIP- multiprover proots.

Remarks:

1) 2 provers suffice.

(2) I round suffice

P2 P2 V Q2 Pi qi $V(x, R) \rightarrow (q, q)$ $V_2(x, R, q, q) = acc/ref (Coms.)$

3) The answers can be just 16t each.

completeness - 3 provers (perfect

needed)

One parallel round protocol

Pi: Qi > Eq.] Que stors 6 prover

Provens m fround protocols is just a for $P_{i}: Q_{i} \rightarrow \Sigma$ (Σ is the answer alphabet) can be written down a table of values in S. Ch B 92 (9, 9, 93) $P_i:Q_i \to \Sigma$ $P_{3}:Q_{3}\rightarrow \Sigma$ $P_{i}:Q_{i}\rightarrow \Sigma$ exponentially long. Px are Thm [BGKN, BF, RS, FS] MIPC Thm [Babai - Fortnew-Lund] MIP= NEXP MIP* = Provers are allowed to share entangled 6ts. This MIP = RE [JNVNY]

Return to MIP=NEXP Qn: Can the MIP result be scaled down logorithmically to yield a connesponding nesult for NP? YES [..., BFLS, FGLSS, AS, ALMSS] PCP Theorem (Probabilistically Checkable Proofs) (PCR) PCPs. Recall classical definition of LENP scel? \propto xeL? 2 π ĒĒĒ Han Comized Proo

LENP If Japtome Kay difference () Strengthen veritien det verifier V s.t det -> randomized $C: x \in L \Rightarrow J = T$, $V(x, \pi) = I$ S: x \$ L =) \$ T, V(x, T)=0 (2) Weaken venifier 9-local view of proof Formal Definition of Veritien. Definition. (n,9, m, t, a) - restricted verifier (ahere signitia: IN -> IN) 13 a prob TM that on input & g length o - tosses at most re(n) random cours - queries a proof of length m(n) m at most g(n) locations - grand in time the

- stand in time tin) - compates a predicate D: {0,} ??? - {acc, rej} g size

at most alm) - Accepts negects of the proof Gids Crestricted to 9(1) locations satisfy the preducates

 $V(x, R) \mapsto (Q, D)$ bet of queries predicate. PCP class: O ≤ 8< c ≤ 1 $Comp: x \in \mathcal{L} =) \quad J \quad T \quad P_x \left[D(T |_Q) = a \propto \frac{1}{2} \right]$ Sound: $x \notin L \Rightarrow \forall TT P_n(D(TT_Q) = acc] < 8$

 $NP = U PCP \left[n=0; q=n, m=n, t=n, a=n \right]$ We will usually drop the parameter m, t, a 1 m=2 1- sandomness 9 - guesy complexity 9 - guesy complexity

 $NP = UPCP \left[\mathcal{H} = 0, q = n^{c} \right]$

 $BPP = U PCP \left[\frac{9}{2} = 0 \right]$

MIP = NEXP can be stated as NEXP = UPCP 15, 15 [n=n^c, 9=2]

Scaling down, PCP Theorem [BFLS, AS, ALMSS] There exists a constant Q s.t. FLENP, there exists a constant c LE PCP, [clogn, Q] Succreating NP = PCP [logo, O(1)] Remark: (), Q = 3 b: 1/2 + E $\begin{array}{c} c: \ L \\ \hline 2 \\ Q=2; \\ c=1; \\ r \\ PCP \\ \subseteq P \\ \end{array}$ (3) PCP[ollogn), O(1)] = P MAY3SAT. λG Input: q= GAS. G = clause as 3 laterals. Coal: Find an assignment that satisfies the most number of clauses? For stanters, assume Q=3 Predicate = (V V)

