Today

- Multiprover interactive Proofs (MIP)
- Intro to PCP
cs5.203.1
Computational
Complexity
- Lecture \# 28

Instructor: (26 May 21)
Prahladh Harsh

Multiprover interactive Proofs.
[Ben Cr-Goldluasser-Kilian-Wigadorom]
What happens if the verifiers interacts with multiple provers?

Does having multiple prover help?
Possibly not, one can simulate maltppe provers using a single prover. True, only fo all provers are aware others questions = answers.

MIP- multiprover proofs.
Remarks:
(1) 2 provers suffice.
(2) I round suffice

$$
\begin{aligned}
& V_{1}(x, R) \rightarrow\left(q_{1}, a_{2}\right) \\
& V_{2}\left(x, R, a_{1}, a_{2}\right)=\text { aco/rey / Private }
\end{aligned}
$$

(3) The answers can be just
l Get each.

Cpertec f completeness - Bprovers needed).
One parallel round protocol

$$
P_{i}: Q_{i} \rightarrow\{0,1]
$$ $Q_{p}(x)=$ set of queskons

Provers in Around protocols is gust a oh

$$
P_{c} \cdot Q_{i} \rightarrow \sum \quad \sum_{\substack{\text { answer }}}
$$ answer

alphabet)
can be written down as a table of rakes in \sum.

P_{c} is are exponentially long.
The [BGKW, BF, RS,FS] MIP \subseteq NEAP
Them [Babai - Jortorew Lind]

$$
M P=N E X P
$$

MID $=$ Provers are allowed to share Tho MIP* RE $\begin{aligned} & \text { entangled } \\ & \text { [JNVWY] }\end{aligned}$

Return to MIP $=$ NEXP
Qu: Can the MIPresult be scaled down logarithmically to yield a corresponding result for NP?

YES [..., BFLS,FGLSS,AS, ALMSS]
PCP Theorem
(Probabilistically Checkable Proofs) (PCP)
PCP.

Recall classical definition of NP
$L \in$ NP

deft
verses

$\angle E N P$ if 7 a ptime det vercfer V s.t

$$
C: x \in \angle \Rightarrow \exists \pi, \quad V(x, \pi)=1
$$

$$
S: x \notin L \Rightarrow \forall \pi, V(x, \pi)=0
$$

Kay difference
(1) Strenathen verctier det \rightarrow randomined
(2) Weaken vertier 9-local view of proof

Tormal Definition of Verifier.
Definition. ($r, 9, m, t, a$)-restricted ver.tier (ahere $r, q, m, t, a: \mathbb{N} \rightarrow \mathbb{N}$)
is a prob TM that
on input x of length in

- tosses at most $r(n)$ random coins
- querres a proog of length m(n)
m at most $q(n)$ locations
- rans in time $f(n)$
- compates a predicate

D: $\{0,1\}^{9(n)} \rightarrow\{a c c, r e y$ of sizc at most $a(n)$

- Accepts/ryects if the proot Grts Grestricted to $g(n)$ locationd satisty the predicatec

$$
V(x, R) \longmapsto \underbrace{(Q, D)}_{\text {set } \& \text { queries }} \text { predicate. }
$$

PCP class: $0 \leqslant 8<c \leqslant 1$
$L \in \underset{c, b}{P C P}[r, 9, m, t, a]$ if \exists a (r, q, m, t, a) - rest verifier

$$
V \text { st }
$$

Comp: $x \in L \Rightarrow J \pi \quad P \quad(D(\pi / Q)=a c c] \geqslant c$
Sound: $x \notin \angle \Rightarrow \Pi \quad \operatorname{Pr} \angle D(\pi / Q)=\operatorname{acc} 7<s$

$$
N P=\bigcup_{E} P C P\left[r=0 ; q=n^{G}, m=n, t=n, a=n^{a}\right]
$$

We will uscially drop the parameter

$$
\begin{aligned}
& N P=\bigcup_{C} P C_{1,0}\left[r=0, q=n^{c}\right] \\
& B P P=C_{C} P C_{3} P\left[\frac{1}{3}\left[r=n^{c} ; q=0\right]\right.
\end{aligned}
$$

MID $=$ NEXD can $G e$ stated as

$$
N E X P=\bigcup_{C} P C_{2 / 5,16} L r=n^{c}, q=27
$$

Scaling down.
PCP Theorem [BFLS, AS, ALMSS] There exists a constant Q sit $\forall L \in N P$, there exists a constant? $\angle E\left[C_{1 / 2}[C \operatorname{logn}, Q]\right.$

Succinctly $\quad N P=P C P[\log n, O(1)]$
Remark: (1), $Q=3$ s: $1 / 2 \rightarrow 1 / 2+\varepsilon$
(2) $Q=2 ; \quad C=1 ; \quad P \subset P \subseteq P$
(3) $P \subset P(0(\log n), O(1)] \subseteq P$

MAX $35 A T$.
Input: $\varphi=C_{1} \wedge C_{2} . \wedge C_{m}$

$$
C_{L}=\text { clause w/ } 3 \text { literals. }
$$

Goal: Find an assignment that satisties the most number of clauses?
For starters. "assume" $Q=3$

$$
\text { Predicate }=(\underbrace{V_{v}}_{\text {ar }} \mathrm{V})
$$

$$
\begin{aligned}
x & \longrightarrow \Phi_{x} \\
x \in L & \Longrightarrow \Phi_{x} \in S A T
\end{aligned}
$$

$x \notin L \quad \Rightarrow$ Every assignment vrolates at leost $1 / 2$ the dauses T_{R}

