C55.203.1 Today Computational - PCPs and handness Complexity of approximation. (FGLSS Reduction) - Lecture # 30 Instructor: (2Jun, 21) Prahladh Harisha

Recap: PCP Theorem: $NP = PCP_{\frac{1}{2}}[O(logn), O(1)]$ Equivalence to inapproximability g MAX35AT gap - MAX3SAT & NA hard.

Today: Application towards the handness of approximating the MAXCLIQUE

Capa-CLIQUE: Promise problem. (LECO, 1)) YES = Z(G, K) / I a clique of size 2k NO= E(G, k) / Every clique m G is of size]

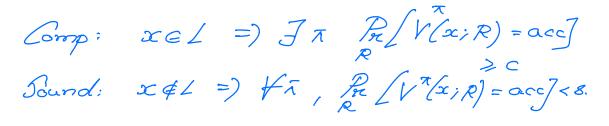
Goal: Does I KE (0,1) sit there is a ptime reduction from SAT to gap-CLIQUE? Thm [Ferge - Coldwassen - Lovos - Jatra - Szededy] If LG PCP [Hand= 4; gevery=9, trone=1] then there exist a determininistic O(E-2"+9)-time reduction from L to gapy-CLIQUE. PCP Theseem: GAT E PCP, [Clogn, Q] PCP Theorem + FGLSS Thm: Ja plime reduction thom SAT to gap, -CLIQUE Con: 1/2 - approximating the MAX CLIQUE & NP-hand.

Proof of FGLBS Theorem. Reduction: Kanp reduction from SAT to MAYCLIQUE

LE PCP [n, 9, E]

Want a reduction R

L -) gap - CLIQUE $x \longrightarrow (G_x, k_x)$ L has a (n, q, t)-restricted venchen. V



x- motonce of L. Vx = {0,13 x {0,13 4 Gr.: maltspankke graph (29,38,99) (3,10,2) (3,10,

 $E_{\chi}: \left(R_{1} \left(\begin{array}{c} 6^{(4)} \\ \\ \\ \\ \end{array} \right) \begin{array}{c} 6^{(q)} \\ \\ \\ \end{array} \right) \sim \left(\begin{array}{c} R_{2} \left(\begin{array}{c} 6^{(q)} \\ \\ \\ \end{array} \right) \begin{array}{c} 6^{(q)} \\ \\ \end{array} \right) \right)$ if the following 2 condins are met (i) Fre [2], b. - satisfying assign to the predicate DR: Cased on rondomness R: (ii) The 2 local views one consistent. kx = c. 2" x ~ (Gx, kz) Running time of reduction: 2". E Completeness: $x \in L =) \exists \pi, R \left[V \left(x; R \right) = a c \right] z c$ $S_{x} = \frac{S(R, \overline{b})}{R(\overline{a})} / \frac{R \in S_{0}}{R} ; (Q, D) \leftarrow V(\overline{x}; R)$ $D(\overline{b}) = acc, \quad \overline{x}|_{Q} = \overline{b}$ $S_{\pi} - clique, |S_{\pi}| \ge c \cdot 2^{\alpha}$ $(S_{\pi}, k_{\pi}) \in Y \in S$ R

Soundness: Suppose (G2, R2) & NO re, Ja dique 5 g size $\alpha \cdot k_2 = \frac{8}{2} \cdot c \cdot 2^{9} = 8 \cdot 2^{9}$ · · · · / Civen & clique, we can construct a proof x st $5 \leq 5_{\pi}$ Then this proof T satisfies. 8-fraction of the rendom com to ses xeL $(re_r \propto \notin L =) (G_{z_r} k_z) \in NO)$ Orignal Korp-reduction proving NP- completences of clique -) Approximation preserving reduction

PcHing everything together PCP Thm: GAT & PCP, [clogn, 3] the some constant FGLSS Thm. LE PCP, [7,9,6] $L \leq_{p} g_{q} g_{g} - CLiQCE$ in time $O(t \cdot 2^{9tq})$ Con: NP-hand to approximate clique to a tactor better thom Repeat vention huice. $PCP_{16}[n, 9, 6] \subseteq PCP_{162}[2n, 29, 26]$ k- sequential repetition. PCP, [r, q, t] = PCP, [kr, kq, kt] In particular SAT E PCP, Kclogn, 3K, poly Con: + constant de (0,1), gap-MAXCLIQUE NE-hand.

Sequential Repetition - not using independent soundom coins &- clogn Recycling - but using a k-step codd Randomness on spectral expander J size 2^r. 1 -+ O(R) clogen + O(R) (a) JSE(0,1), gop _____ CLIQUE 18 NP-hard. Håstad: [Recyle Quenies] FEE (0,1) gap 1/2 = CLIQUE 18 NP- hand under randomized reductions Zuckenman: under deterministic red no

Amortized Query complexity - What does each additional queery by you in soundness' Ceach additional query reduces soundness by 1/2 m the limit) Khot's conjecture: PCP Theorem on steron Unique (- #queries = 2 Unique - predicate (unique predicate) Came ax+ by=C Conjecture - completeness - 1-E 748, E - sourdness - & Jest - alphabet (not necessorily Boolean) Khot, Khot-Reger, Khot-Kindler-Mossel - Olieskwicz - VC 16 OG-hard to approve better than 1/2. - MAXCUT is UG-hard to approx better than dew.

3-color. gap version $YE5 = \frac{5}{6} \left(\frac{C}{C} + \frac{3}{colorable} \right)$ $\frac{VE5}{VO} = \frac{5}{6} \left(\frac{C}{C} + \frac{2}{colorable} + \frac{3}{colorable} \right)$ $\frac{VO}{VO} = \frac{5}{6} \left(\frac{C}{\alpha(G)} + \frac{1}{M} + \frac{1}{C} \right)$ (Has] # EE (0,1), NP-hard to approx MAX35AT ZEE (even when the inpat is satisfie (le)