Computational Complexity: Lecture 31.
Agenda: An explicit unconditional bower bound
(albeit for a really simple model)
The Holy Grail: Prove SAT takes superpoly tinge
(If you believe in this...)
Can we prove lowerbounds for simpler models?
Very ven y restricted circuits: constant depth circuits.

AC ${ }^{\circ}$ circuits: $\left\{c_{i}\right\}$
Δ Gates are $1, V, 7$
$\triangleright \operatorname{depth}\left(\mathrm{Ci}_{\mathrm{i}}\right)=O(1)$
\triangle fan-in of gates are arbitrary.
$L \subseteq\{0,1\}^{n}$ is in $A C^{0}$ of there is a poly size $A C^{D}$ che fancily computing it.

Un: Can we at least prove lower bounds for these things?
(ie) can we find $f:\{0,1\}^{*} \rightarrow\{0,1\}$ that requires laxge canst. auth circuits?

How do you prove such lower bounds?

- Identify a weakness for the model.
- Quantify this weakness.
- Find a function that does not
 Share this weakness.

Some weakness for $A C^{0}$:

- If you set a few vars to random values, the circuit seems to simplify a bot. (random restriction)
- Pick $x \in R\{0,1\}^{n}$ and pick $i \in[n]$

$$
f(x) \approx f\left(x^{\otimes^{i}}\right) \quad \text { (influence) }
$$

Candidate hard fr: PARITY
Razborov: "Any $A C^{0}$ fr looks like a bow degree polynomial" (it is not spikey)
PARITY is not so.
[Altai, Furst-Saxe-Sipser, ... Razborov, Smolensty, ..., Hisstad]
Thu: Any $A C^{\circ}$ circuit family computing PARITY must [Hastad] have size $s \geqslant \exp _{2}\left(\Omega\left(n^{1 / d-1}\right)\right)$
What is the "right" answer?
$d=2$

DNF or CNF

\wedge
In general, for depth d : $\quad 2^{O\left(n^{1 / d-1}\right)}$
\Rightarrow Hastad's l.b is optimal.

- Suritching lemma

This class: a weaker lower bound of $\exp \left(\Omega\left(n^{1 / 2(d-1)}\right)\right)$ by Razborov \& Smolensk.

Roadmap:
(1) Show every "small" $A C$ " is approximated by a low degree polynomial over F_{3}.
(2) PARITY requires large degree even to approximate it.

$$
\begin{aligned}
f_{0}\{0,1\}^{n} \rightarrow\{0,1\} & \\
& \tilde{f}: \mathbb{F}_{3}^{n} \rightarrow \mathbb{F}_{3} \\
& \tilde{f}\left(x_{1},, x_{n}\right)
\end{aligned}
$$

Candidate defy: $\tilde{f} \quad \varepsilon$-approximates f if

$$
P_{x \in\{0,1\}^{n}}[f(x) \neq \tilde{f}(x)] \leqslant \varepsilon \text {. not work. }
$$

Defy: (Randomised polynomials): $P(x, \gamma)$ is a randomised deg a polynomial if $\forall r \in\{0,1\}^{m}$,

$$
(1)(x, r)=P_{r}(x) \in F_{3}\left[x_{1},, x_{n}\right] \text { of deg } d \text {. }
$$

We will say $P(x, r)$-approximates $f:\{0,1\}^{n} \rightarrow\{0,1\}$ of

$$
\forall x: \quad \operatorname{Pr}_{\gamma}[P(x, \gamma)=f(x)] \geqslant 1-\varepsilon .
$$

Eg: $O R\left(x_{1}, \ldots, x_{n}\right)$

$$
\theta(x, \gamma)=1
$$

Doesthis ε-approx or ? No! Always errs on 0^{n}.

$$
\begin{gathered}
P\left(x, r_{1}, r_{n}\right)=\left(x_{1} r_{1}+\ldots+x_{n} r_{n}\right)^{2} \quad r_{i} \in_{l} F_{3} \\
x=0^{n} \Rightarrow P(x, r)=0 \quad \forall r .
\end{gathered}
$$

What if $x \neq 0^{n} ? \operatorname{Pr}_{r}\left[r_{1} x_{1}+\ldots+r_{n} x_{n}=0 \bmod 3\right] \leq 1 / 3$.

$$
\Rightarrow \operatorname{Pr}[P(r, r)=1] \geqslant 2 / 3
$$

What about smaller ε ?

$$
\begin{array}{ll}
Q(x, r) \quad & 1-\left(1-P\left(x, r^{(i)}\right)\right) \cdots\left(1-P\left(r, r^{(k)}\right)\right) \\
& \operatorname{error} \leqslant\left(\frac{1}{3}\right)^{k}=\varepsilon \quad k=O\left(\log \frac{1}{\varepsilon}\right) \\
& \operatorname{degree}(Q)=O\left(\log \frac{1}{\varepsilon}\right)
\end{array}
$$

Q $O R$
Eg:

What is the err here? Fix an input x.

$$
\operatorname{Pr}[\tilde{\theta}(x) \neq f(x)] \leqslant(a+1) \varepsilon^{\prime} \leqslant \varepsilon
$$

\Rightarrow each Q_{i} and Q have deg $O\left(\log \frac{Q}{\Sigma}\right)$

$$
\Rightarrow \quad \operatorname{deg} \tilde{\theta} \leqslant O\left(\left(\log \frac{a}{\varepsilon}\right)^{2}\right)
$$

Corollary: If f is computed by a size s, depth d circuit, then there is a randomised poly $\mathcal{P}(x, r)$ of $\operatorname{deg} \leqslant O\left(\log ^{d} s\right)$ that $1 / 4$-approximates f.
$p f_{0}$

Each $Q^{(i)}$ is an ε^{\prime}-app where $\varepsilon^{\prime}<\frac{1}{4 S}$

$$
\begin{aligned}
& \Rightarrow \operatorname{deg} Q^{(i)} \leqslant O(\log s) \\
& \operatorname{deg} \tilde{\theta}=O\left((\log s)^{d}\right)
\end{aligned}
$$

What's left to show:
Lemma: Any randomised poly $P(x, r)$ that $1 / 4$-approximates PARITY has deg $\geqslant \sqrt{n} / 1000$. Over $/ F_{3}$.

Let's assume this and finish the theorem.
Suppose C is a depth d echt computing PARITY.

- C can be $1 / 4$-app by a $\left.O(\log S)^{d}\right)$-deg rand. poly.
- C cannot be $\frac{1}{4}$-approx by $\operatorname{dog} \subseteq \frac{\sqrt{n}}{1000}$

$$
\begin{aligned}
\Rightarrow C(\log s)^{d} \geqslant \frac{\sqrt{n}}{1000} \Rightarrow & s \geqslant 2^{n^{1 / 2 d}} \cdot 1000 \cdot c \\
& =2^{\Omega\left(n^{1 / 2 d}\right)}
\end{aligned}
$$

If of lemma: In \mathbb{F}_{3}
Well l prove that for any $p(x)$ set

$$
\begin{align*}
& P_{x}[P(x)=\operatorname{Par|ty}(x)] \geqslant \frac{3}{4} \\
& \Rightarrow \operatorname{deg}(p) \geqslant \sqrt{n} / 1000 \\
& Q\left(x_{1},, x_{n}\right)=P\left(\frac{1-x_{1}}{2}, \ldots, \frac{1-x_{n}}{2}\right) \\
& -1 \xrightarrow{\stackrel{1-r}{2}} \underset{\rightarrow}{ } 1 \\
& \operatorname{deg} Q=\operatorname{deg}(P) \quad x \in\{-1,1\}^{n} \\
& \left(\Rightarrow \quad P_{x \in\{-1,1\}^{n^{2}}}\left[Q(x)=\prod_{i=1}^{n} x_{i}\right] \geqslant \frac{3}{4} .\right. \\
& A=\left\{x \in\left\{-1,13^{n}: Q(a)=\pi x_{i}\right\} \quad|A| \geqslant \frac{3}{4} \cdot 2^{n} .\right. \\
& \text { (Why is this enough?) }
\end{align*}
$$

Claim: Consider any $f\left(x_{1},, x_{n}\right) \in F_{3}[\bar{x}]$. Then, there is a poly $g\left(x_{1},, x_{n}\right)$ of $\operatorname{deg} \leq \operatorname{deg}(\theta)+n / 2$.
st $f(x)=g(x) \quad \forall x \in A$.

fo	Monomial by monomial.	
	f	g.
$\|s\| \leq \frac{n}{2}: \prod_{i \in S}^{2}$	1	
x_{i}	$\prod_{i \in S} x_{i}$	

$$
\begin{aligned}
|s| \geqslant \frac{n}{2} \quad \prod_{i \in S} x_{i}= & \prod_{i \notin S} x_{i} \cdot Q(x) \\
& \operatorname{aeg}(g) \leqslant \frac{n}{2}+\operatorname{aeg}(Q) .
\end{aligned}
$$

$$
Y=\left\{f: A \rightarrow \mathbb{F}_{3}: \text { a polynomial on }\right\} .
$$

How many different functions are there? $3^{|A|}$ Vector space, of dim $|A|$
But claim above says 7 is "spanned" by monomial

$$
\begin{aligned}
& \text { of deg } \leq \frac{n}{2}+\frac{\sqrt{n}}{1000}=r \\
& \Rightarrow 1+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{r} \geqslant \frac{3}{4} \cdot 2^{n} .
\end{aligned}
$$

$$
\frac{2^{n}}{\sqrt{n}} \cdot \frac{\sqrt{\pi}}{1000}
$$

