
Computational Complexity 12 May, 2021

Problem Set 4

• Due Date: 26th May 2021

• Turn in your problem sets electronically (pdf or text file) on Acadly.

• Collaboration is encouraged, but all writeups must be done individually and must include
names of all collaborators.

• Referring to sources other than the text book and class notes is strongly discouraged. But if
you do use an external source (eg., other text books, lecture notes, or any material available
online), ACKNOWLEDGE all your sources (including collaborators) in your writeup. This
will not affect your grades. However, not acknowledging will be treated as a serious case of
academic dishonesty.

• The points for each problem are indicated on the side. There are 6 questions with a total of
100 points in this problem set.

• Some of the questions are broken-down in to multiple subdivisions to guide you towards a
solution. Feel free to use the earlier subdivisions for later ones, even if you haven’t solved it
(yet).

• Be clear in your writing.

Question 1 (Parallel decision vs search). (10)
Recall that we can obtain a satisfying assignment for a Boolean formula (if one exists) in poly-

nomial time given an oracle for deciding SAT (using downward self-reducibility of SAT). However,
note that this reduction algorithm makes adaptive queries to the SAT oracle, i.e. its i-th query
depends on the answers to its first i− 1 queries. Show that the reduction can be made nonadaptive
if we allow it to be randomized.

[Hint:UseValiant-Vaziranireduction.]

Question 2 (#P-completeness). (3 + 3 + (3 + 7 + 6) + 3)
Recall the definition of #P-completeness. A function f : {0, 1}∗ → Z≥0 in #P is said to be #P-

complete if for every g ∈ #P, there exists a deterministic polynomial time oracle Turing machine
M such that for all x ∈ {0, 1}n, Mf (x) = g(x).

(a) Prove that for any constant c > 0, obtaining a c-approximation for # SAT (where the input is
an arbitrary formula) is NP-hard. (Recall that we say a TM M computes a c-approximation for
this function if, for any input ϕ, we have

1

c
·# SAT(ϕ) ≤M(ϕ) ≤ c ·# SAT(ϕ).

We almost did this in class but do spell it out in this answer.)

(b) Let # DNF be the function that, when provided an suitably encoded DNF as input returns the
number of satisfying assignments of the DNF. Show that # DNF is #P-complete

(c) In this part, we will see that we can get an (1+ε)-approximation for # DNF in polynomial time
(without the need for any NP-oracle). Let ϕ be the input DNF on n variables.

1

(i) Consider the following näıve algorithm:

Randomly sample t strings x(1), . . . , x(t) ∈ {0, 1}n. Compute the fraction p of
these strings that satisfy ϕ. Output p · 2n.

How large should t be in order to obtain a (1 + ε)-approximation for # DNF?

(ii) Let ϕ = T1 ∨ T2 ∨ · · · ∨ Tm where each Ti is a term (AND of literals). Show that size of
the set

S′ = {(x, i) ∈ {0, 1}n × [m] : x satisfies term Ti}

can be computed efficiently. Furthermore, give a polynomial time randomized algorithm
to sample uniformly at random from the above set S′.

(iii) Consider the following algorithm:

Pick t independent uniform samples from S′ — let the multiset of these samples
be

{
(x(1), i1), . . . , (x(t), it)

}
.

Compute the fraction p of these samples (x(i), ti) that satisfy the property that i
is the index of the first term that x(i) satisfies.
Return p · |S′|.

How large should t be so that the above algorithm yields a (1 + ε)-approximation for
DNF?

(d) Part (a) claims that any c-approximation for # SAT is NP-hard. On the other hand, part (c)
claims that # DNF has a polynomial time (1 + ε)-approximation algorithm. Both of these
problems are #P-hard. Why does this not show that NP ⊆ BPP?

Question 3. (7 + 13)
An arithmetic formula is defined as a tree with internal gates labeled by + and × that have the
obvious semantics of adding and multiplying the values computed by its children respectively. The
leaves of the tree are either labeled by input variables xi or constants −1 or 0 or 1. Note that the
root of the tree naturally computes a polynomial f(x1, . . . , xn) with integer coefficients.

(a) Consider the following language:

L = {(C1, C2) : C1 and C2 compute the same polynomial} .

Show that L ∈ coRP (the algorithm must run in polynomial time in the description of C1 and
C2, which is roughly the number of nodes in the two circuits).

(b) If the permanent had a polynomial time algorithm, then we know that P#P = P. Suppose
instead that we are only todl that there is is a family of polynomial-size arithmetic formulas
{Cn}∞n=1 such that Cn computes the permanent of n×n matrices. Further assume that RP = P.
Show that these two hypotheses imply that P#P = NP.

[Hint:Howdoyouverifyifacertainarithmeticformulafamilyisactuallycomputingthe
permanent?Thedownwardself-reducibilityofthepermanentshouldhelpyouhere.]

Question 4 (Downward self-reducability (Problem 8.9 in Arora-Barak)). (10)
Formally, a language L is said to be downward self-reducible if there is a polynomial time de-

terministic oracle-TM M that, for any n and x ∈ {0, 1}n, we have that MLn−1(x) = L(x) where
Ln−1 = {y ∈ L : |y| ≤ n− 1}. That is, the machine M can correctly decide membership of strings
of length n when given oracle access to strings of smaller length in the language.

Show that any downward self-reducible language L is in PSPACE.

2

Question 5 (#L problems). (10)
The class #P could have been defined in two equivalent ways.

Option 1: A function f : {0, 1}∗ → Z≥0 is in #P if there is a non-deterministic Turing machine
Mf that on input x of length n uses poly(n) time and is such that the number of accepting
paths of Mf (x) equals f(x).

Option 2: A function f : {0, 1}∗ → Z≥0 is in #P is there is a relation R(· , ·)
that is computable in polynomial time and a polynomial p such that f(x) equals
| {y : R(x, y) is true, and |y| ≤ p(|x|)} |.

(You may check for yourself that these two definitions are indeed equivalent.)

In this problem, we will show that the corresponding two definitions are very different if one
considers counting problems in logspace. Consider the following two definitions of log-space counting
problems.

#L1: A function f : {0, 1}∗ → Z≥0 is in #L1 if there is a non-deterministic Turing machine Mf that
on input x of length n uses O(log n) space and is such that the number of accepting paths of
Mf (x) equals f(x).

#L2: A function f : {0, 1}∗ → Z≥0 is in #L2 is there is a relation R(· , ·) that is computable in
logarithmic space and a polynomial p such that f(x) equals |{y : R(x, y) and |y| ≤ p(|x|)}|.

Prove that all functions in #L1 can be computed in polynomial time whereas #L2 equals #P.

[Hint:Itmaybeusefultorecall3SAThasaverifierM(·,·)thatisalogspacemachine.]

Question 6 (Promise problems). (4 + 3 + 9 + 6 + 3)

(a) Show that PNP∩coNP = NP ∩ coNP.

Recall the definition of a promise problem. Note that for a promise problem Π, “running an
algorithm with oracle Π” is not in general well-defined, because it is not specified what the
oracle should return if the input violates the promise. Thus, when we say that a problem Γ can
be solved in polynomial time with oracle access to Π, we mean that there is a polynomial-time
oracle algorithm A such that for every oracle O : {0, 1}∗ → {0, 1} that solves Π (i.e. O is correct
on ΠY ∪ΠN), it holds that AO solves Γ. Let Π be the promise problem

ΠY
def
= {(ϕ,ψ) : ϕ ∈ SAT , ψ /∈ SAT}

ΠN
def
= {(ϕ,ψ) : ϕ /∈ SAT , ψ ∈ SAT}

(b) Show that Π ∈ prNP ∩ prcoNP

(c) Show that SAT ∈ PΠ.

[Hint:YoumighthavetoquerytheoracleΠmorethanonce,evenasuperconstantnumberof
times.Downwardself-reducibilitymighthelpyouagain.]

Remark. In fact, the above fact can be extended to say that for any promise problem Γ in
prNP, we have that Γ ∈ prPΠ.

This implies that prNP ⊆ prPprNP∩prcoNP. Note that an analogous inclusion seems unlikely for
language classes, since PNP∩coNP = NP ∩ coNP, as shown in the earlier part.

3

(d) Show that prBPP ⊆ prRPprRP.

[Hint:YoumightfindtheproofofBPP⊆Σ
P
2useful.]

(e) Use the above to show that prRP = prP if and only if prBPP = prP.

4

