
Computational Complexity 2 Jun, 2021

Problem Set 5

• Due Date: 16th June 2021

• Turn in your problem sets electronically (pdf or text file) on Acadly.

• Collaboration is encouraged, but all writeups must be done individually and must include
names of all collaborators.

• Referring to sources other than the text book and class notes is strongly discouraged. But if
you do use an external source (eg., other text books, lecture notes, or any material available
online), ACKNOWLEDGE all your sources (including collaborators) in your writeup. This
will not affect your grades. However, not acknowledging will be treated as a serious case of
academic dishonesty.

• The points for each problem are indicated on the side. There are 5 questions with a total
of 75 points in this problem set (there are totally 95 points, but may choose to skip either
Question 1 or Question 2)

• Some of the questions are broken-down in to multiple subdivisions to guide you towards a
solution. Feel free to use the earlier subdivisions for later ones, even if you haven’t solved it
(yet).

• Be clear in your writing.

You have a choice to answer just one of Question 1 and Question 2.

Question 1 (Perfect completeness in MA and AM). (2 + 4 + 4 + 2 + 4 + 4)
Note: You can either answer this question or Question 2.

In this problem, you will be showing that you may assume, without loss of generality, that AM
and MA protocols have perfect completeness.

Recall the definition of MA that says that a language L ∈ MA if there is a language R in P with
y, z having lengths polynomial in |x| such that

x ∈ L⇒ ∃y : Pr
z

[(x, y, z) ∈ R] ≥ 2/3,

x 6∈ L⇒ ∀y : Pr
z

[(x, y, z) ∈ R] ≤ 1/3.

(a) Show that the definition below is equivalent to the above definition of MA — there is a
polynomial time language R, with y, z having lengths polynomial in |x| such that

x ∈ L⇒ ∃y : Pr
z∈{0,1}r

[(x, y, z) ∈ R] ≥ 1− 1

4r
,

x 6∈ L⇒ ∀y : Pr
z∈{0,1}r

[(x, y, z) ∈ R] ≤ 1

4r
.

That is, the error can be made to be roughly 1/|z|.

(b) Suppose S is an arbitrary subset of {0, 1}r. Prove the following two facts:

1

• If |S| ≤ 2r

4r , then for any choice of vectors a1, . . . , ar ∈ {0, 1}r we have∣∣∣∣∣
r⋃

i=1

(S ⊕ ai)

∣∣∣∣∣ ≤ 2r

4
.

• If |S| ≥ 2r ·
(
1− 1

4r

)
, then there exists choice of vectors a1, . . . , ar ∈ {0, 1}r such that

r⋃
i=1

(S ⊕ ai) = {0, 1}r.

(c) Using the above two parts, show that the following definition is equivalent to the definition of
MA — there is a polynomial time language R, with y, z having lengths polynomial in |x| such
that

x ∈ L⇒ ∃y : Pr
z

[(x, y, z) ∈ R] = 1,

x 6∈ L⇒ ∀y : Pr
z

[(x, y, z) ∈ R] ≤ 1

3
.

(d) Recall the definition of AM — a language L ∈ AM if there is a polynomial time language R
such that

x ∈ L⇒ Pr
y

[∃z : (x, y, z) ∈ R] ≥ 2

3
,

x 6∈ L⇒ Pr
y

[∃z : (x, y, z) ∈ R] ≤ 1

3
.

Show that the following is an equivalent definition, without loss of generality:

x ∈ L⇒ Pr
y∈{0,1}r

[∃z : (x, y, z) ∈ R′] ≥ 1− 1

4r
,

x 6∈ L⇒ Pr
y∈{0,1}r

[∃z : (x, y, z) ∈ R′] ≤ 1

4r
.

(e) Consider the following MAM protocol for L ∈ AM, similar to the earlier case.

Merlin sends a1, . . . , a` ∈ {0, 1}r to Arthur. Arthur picks a random y ∈ {0, 1}r and
sends that to Merlin.

Merlin now sends an i ∈ [`] and a z to Arthur.

Arthur accepts if (x, y ⊕ ai, z) ∈ R′.

Show that this is a legitimate MAM protocol with perfect completeness for an arbitrary AM
protocol.

(f) Show that an MAM protocol with perfect completeness can be simulated by an AM protocol
with perfect completeness. (This can be done by imitating the proof done in lecture that
MA ⊆ AM and observing it preserves completeness).

Question 2 (Round reduction for AM). (3 + 9 + 5 + 3)
Note: You can either answer this question or Question 1.

We mentioned in our lectures that AM[k] = AM for constant k; we will prove this in this problem
using some quantifier jugglery. For the purpose of this problem, we will use a definition different

2

from that in lecture, the k in AM[k] and MA[k] will not refer to the number of rounds, but to the
number of players (w/ alternation). In other words, AM[3] = AMA and not AMAMAM.

Let prAM[k] be the promise problem version of AM[k] (i.e, it has the same completeness and
soundness properties for the YES and NO instances as AM[k], but the YES and NO instances do
not partition the universe (there could be “don’t care” instances)).

For a class C of promise problems, we define prΣ · C to be the class of promise problems Π such
that there exists a promise problem Π′ ∈ C and a polynomial p for which

x ∈ ΠY ⇒ ∃y ∈ {0, 1}p(n) : (x, y) ∈ Π′
Y

x ∈ ΠN ⇒ ∀y ∈ {0, 1}p(n) : (x, y) ∈ Π′
N

Similarly, we define prBP·C to be the class of promise problems Π such that there exists a promise
problem Π′ ∈ C and a polynomial p for which

x ∈ ΠY ⇒ Pr
y∈{0,1}p(n)

[(x, y) ∈ Π′
Y] ≥ 2/3

x ∈ ΠN ⇒ Pr
y∈{0,1}p(n)

[(x, y) ∈ Π′
N] ≥ 2/3

(a) Show that for every integer k ≥ 1, we have prMA[k] = prΣ · prAM[k − 1] and prAM[k] =
prBP · prMA[k − 1], (where prMA[0] = prAM[0] = prP by definition).

(b) Similar to the proof you saw in class for MA ⊆ AM, show that we have
prΣ · prBP · C ⊆ prBP · prΣ · C for any class C of promise problems.

[Hint:Youmaywanttochangethat2/3tosomethingexponentiallycloseto1first(with
appropriatejustificationofcourse!).]

(c) Prove that for every constant k ≥ 2, we have prAM[k] = prAM. Conclude that AM[k] = AM.

(d) Where in the above parts was it important to work with promise problems instead of languages?

Question 3 (Two ways in which the PCP theorem is optimal). (5+10)
We mentioned in class that there are NP-complete languages L (such as CircuitSat) that we

now know to be in PCP1,0.51(O(log n), 3) (that is, there is a 3-query PCP with perfect completeness
where the verifier only tosses O(log n) random coins).

(a) Show that, for any constant s < 1, we have PCP1,s(O(log n), 2) ⊆ P . (Hence, if an NP-
complete language has a 2-query PCP with perfect completeness, then P = NP).

(b) Let s < 1 be any constant. If L is an NP-complete language and L ∈ PCP1,s(o(log n), O(1)),
then P = NP. (That is, if there is a PCP for an NP-complete language L that uses constant
number of queries and sub-logarithmic randomness, then P = NP).

[Hint:TryandusethePCPtobuildalength-reducingreductionfromLtoL.]

Question 4 (Proof of Knowledge, with one of two witnesses). (4 + 4 + 6 + 6)
In class, we saw a perfect zero-knowledge proof of knowledge for Graph Isomorphism. Consider

the following language

GIOR = {((G0, G1), (H0, H1)) : G0 ≡ G1 or H0 ≡ H1} .

3

Clearly the above language is in NP, where an accepting witness is an isomorphism between one of
the pairs.

Suppose a Prover is given an isomorphism for one of the pairs, we want to build a PZK-PoK for
the above language (in particular, the Verifier shouldn’t even learn which of the two pairs the prover
has the witness for, or even which of the two graphs are isomorphic). Below is a description of the
protocol between the honest prover and the honest verifier.

Prover sends two graphs G,H to the verifier (that are supposed to be a shuffling of one
of the Gi’s and one of the Hj ’s).

The verifier sends a bit s ∈ {0, 1}.
The prover now sends (σ1, b1) and (σ2, b2).

The verifier accepts if σ1(Gb1) = G and σ2(Hb2) = H and b1 ⊕ b2 = s.

(a) Show that the above protocol for GIOR has completeness 1 and soundness error at most 1/2.

(b) Show that the above protocol is a perfect zero-knowledge protocol by constructing an appro-
priate simulator (for possibly cheating verifiers as well).

(c) Show that even a randomized polynomial time machine that has been provided a valid isomor-
phism for just one of the pairs can execute the above protocol faithfully (that is, the “prover”
needn’t be all-powerful).

(d) Show that the above protocol has knowledge-soundness 1/2. That is, any Prover that manages
to convince the honest verifier with probability substantially bigger than 1/2 (say probability
at least 3/4) must “know” an isomorphism for one of the two pairs of graphs.

Question 5 (Perfectly binding and hiding commitment schemes?). (4 + 4 + 6 + 6)
In class, we introduced the concept of commitment schemes, which were defined by a function

Commit : Σn × {0, 1} → Σm

such that

• (computationally hiding) {Commit(k, 0)}k ≈c.i {Commit(k, 1)}k, and

• (perfectly binding) Commit(k1, b1) = Commit(k2, b2) =⇒ b1 = b2.

(a) Formally define the notion of a “perfectly hiding” commitment scheme, and show that there
are no commitment schemes that are both perfectly hiding and perfectly binding

When we have multiple provers at our disposal, we can have these commitments as interactive
protocols. We will now see a commitment protocol that will allow us to convert any multi-prover
interactive protocol into a perfect zero-knowledge interactive protocol! Below is the description of
the commitment protocol.

Before protocol begins: Let f0, f1 : {0, 1} → {0, 1} given by f0(x) = x and f1(x) =
1 − x. Prior to the protocol beginning, the provers P1 and P2 are supposed to share
random bits r1, . . . , rk.

P1 commits to bit b: The commitment protocol, when P1 wishes to commit to a bit b,
begins with the verifier sending m uniformly random bit s1, . . . , sm ∈ {0, 1} to P1 (these
are NOT sent to P2)

4

P1 now sends their commitment c1, . . . , cm where ci = fsi(ri)⊕ b.

Reveal: In order to reveal the committed bit, the Verifier P1 for the bit b and asks P2

for the bits r1, . . . , rm and checks if ci ⊕ fsi(ri) = b.

(b) (Perfectly hiding) Show that the distributions of the commitment c1, . . . , cm for both b = 0
and b = 1 are identical.

(c) (Almost-perfectly binding) For any commitment c1, . . . , cm for a bit b, show that the probability
that the two provers convince the verifier that the committed bit is (1− b) is at most 1

2m .

(That is, there is an at most 1
2m for the provers to cheat on their original bit after the com-

mitment).

(d) Show that the above commitment protocol is a zero-knowledge protocol by describing a suitable
simulator.

You should now be able to (vaguely) convince yourself that every multi-prover interactive proof can now be made

into a perfect zero-knowledge multi-prover interactive proof!

5

