
POSITIVE DEFINITE MATRICES: SOME NOTES

PIYUSH SRIVASTAVA

All material in these notes is standard. More details can be found in the book by Bhatia [2007], and in
lecture notes by Carlen [2010].

1. Notation and Preliminaries

All matrices, unless otherwise stated, will be assumed to be square. For a vector or matrix 𝐴, 𝐴∗ denotes
its complex conjugate transpose. A matrix 𝑀 ∈ C𝑛×𝑛 is said to be positive semi-definite (PSD) if 𝑣∗𝐴𝑣 ≥ 0
for all 𝑣 ∈ C𝑛; it is said to be positive definite (PD) if 𝑣∗𝐴𝑣 > 0 for all 𝑣 ≠ 0 ∈ C𝑛. Note that this definition
implies that any positive semi-definite 𝐴 must be Hermitian, 𝐴 = 𝐴∗, and thus must admit 𝑛 orthonormal
eigenvectors with non-negative (or, in the case of positive definite matrices, positive) eigenvalues.

For a matrix 𝐴, 𝐴† denotes its Moore-Penrose pseudo-inverse: for a diagonal matrix 𝐷, 𝐷† is defined as
the diagonal matrix obtained by inverting all the non-zero entries of 𝐷, while when 𝐴 is not diagonal and has
a singular value decomposition 𝐴 = 𝑈𝐷𝑉∗, we define 𝐴† = 𝑈𝐷†𝑉∗ (note that this definition indeed uniquely
defines 𝐴†, even when 𝑈 and 𝑉 are not uniquely determined by 𝐴).

Proposition 1.1. 𝐴 is positive definite if and only if 𝐴−1 exists and is positive definite. 𝐴 is positive semi-
definite if and only if 𝐴† is positive semi-definite. Further, whenever 𝐴 is Hermitian, 𝐴𝐴† = 𝐴†𝐴 is the
orthogonal projection onto the range of 𝐴.

The following properties of PD matrices follow easily from the definition.

Proposition 1.2. (1) If 𝐴 and 𝐵 are PSD, then 𝐴 + 𝐵 is PSD. If at least one of 𝐴 and 𝐵 is, in addition,
PD, then 𝐴 + 𝐵 is also PD.

(2) If 𝑠 is a positive real number and 𝐴 is PSD (respectively PD), then 𝑠𝐴 is PSD (respectively, PD).
(3) Is 𝐴 is a PSD (respectively, PD) matrix, then every principal submatrix of 𝐴 is PSD (respectively,

PD).
(4) If 𝐴 is Hermitian, then 𝐴 � 𝐼 if and only if all eigenvalues of 𝐴 are at most 1.

Definition 1.1 (Congruence). Two matrices 𝐴 and 𝐵 are said to be congruent, denoted 𝐴 ∼ 𝐵, if there exists
an invertible matrix 𝑋 such that 𝐴 = 𝑋∗𝐵𝑋 .1

The following proposition again follows easily from the definition.

Proposition 1.3. Suppose 𝐴 and 𝐵 are congruent matrices. Then 𝐴 is positive definite if and only if 𝐵 is
positive definite. Similarly, 𝐴 is positive semi-definite if and only if 𝐵 is positive semi-definite.

Fact 1.4. Let 𝑀 be the block matrix
[
𝐼 𝐴

0 𝐼

]
, where all blocks are assumed to be squares of the same

dimensions. The 𝑀 is invertible with inverse
[
𝐼 −𝐴
0 𝐼

]
.

1Compare with the notion of similarity: matrices 𝐴 and 𝐵 are similar if there is an invertible matrix 𝑋 such that 𝑋−1𝐴𝑋 = 𝐵.
If 𝐴 and 𝐵 are similar, then they have the same multiset of eigenvalues. However, two congruent matrices need not have the same
multiset of eigenvalues.
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2. Block matrices

The following two innocuous (and, perhaps, contrived) looking propositions will turn out to be extremely
useful.

Proposition 2.1. Let 𝐴 be PSD, 𝐵 PD, and 𝑋 any matrix, all of the same dimension. Then, the matrix[
𝐴 𝑋

𝑋∗ 𝐵

]
is PSD (respectively, PD) if and only if 𝐴 − 𝑋𝐵−1𝑋∗ is PSD (respectively, PD).

Proof. We have [
𝐴 𝑋

𝑋∗ 𝐵

]
∼

[
𝐴 − 𝑋𝐵−1𝑋∗ 𝑂

𝑂 𝐵

]
,

since [
𝐴 − 𝑋𝐵−1𝑋∗ 𝑂

𝑂 𝐵

]
=

[
𝐼 −𝑋𝐵−1

0 𝐼

] [
𝐴 𝑋

𝑋∗ 𝐵

] [
𝐼 𝑂

−𝐵−1𝑋∗ 𝐼

]
.

Now, when 𝐵 is PD, the latter matrix is PSD (respectively, PD) if and only if 𝐴−𝑋𝐵−1𝑋∗ is PSD (respectively,
PD). This completes the proof. �

The same proof can also be arranged in a slightly different manner, so that it does not require 𝐴 and 𝐵 to
be PD.

Proposition 2.2. Let 𝐴, 𝐵 and 𝑋 be matrices of the same dimension. Then, the matrix
[
𝐴 𝑋

𝑋∗ 𝐵

]
is PSD if

and only if 𝐴 − 𝑋𝐵†𝑋 and 𝐵 are PSD and 𝑋𝐵†𝐵 = 𝑋 .

Proof. Suppose first that 𝐴−𝑋𝐵†𝑋 and 𝐵 are PSD. Thus, they are also Hermitian, and, in particular 𝐵†∗ = 𝐵†.
We then have

𝑀 ··=
[
𝐴 𝑋

𝑋∗ 𝐵

]
∼

[
𝐴 − 𝑋𝐵†𝑋∗ 𝑋 (𝐼 − 𝐵†𝐵)
(𝐼 − 𝐵𝐵†)𝑋∗ 𝐵

]
=·· 𝑁,

since [
𝐴 − 𝑋𝐵†𝑋∗ 𝑋 (𝐼 − 𝐵†𝐵)
(𝐼 − 𝐵𝐵†)𝑋∗ 𝐵

]
=

[
𝐼 −𝑋𝐵†

0 𝐼

] [
𝐴 𝑋

𝑋∗ 𝐵

] [
𝐼 𝑂

−𝐵†𝑋∗ 𝐼

]
. (1)

(The above calculation uses the identity 𝐵† − 𝐵†𝐵𝐵† = 𝑂.) Now, suppose also that 𝑋𝐵†𝐵 = 𝑋 . Then

𝑁 =

[
𝐴 − 𝑋𝐵†𝑋∗ 𝑂

𝑂 𝐵

]
is a block diagonal matrix which is PSD since both its blocks 𝐴 − 𝑋𝐵†𝑋 and 𝐵 are

PSD. Since 𝑀 is congruent to 𝑁 , we see from Proposition 1.3 that 𝑀 is also PSD. We have thus established
that

𝐴 − 𝑋𝐵†𝑋∗ � 0, 𝐵 � 0 and 𝑋𝐵†𝐵 = 𝑋 =⇒ 𝑀 � 0.
This proves one side of the equivalence. Now, suppose that 𝑀 is PSD. Then, 𝐴 and 𝐵 are PSD (and hence
Hermitian), so that the congruence in eq. (1) is again valid, and implies by Proposition 1.3 that 𝑁 is 𝑃𝑆𝐷.
This then implies that 𝐴 − 𝑋𝐵†𝑋∗ is also PSD. Now, suppose, if possible, that 𝑋 ≠ 𝑋𝐵†𝐵. Since 𝐵†𝐵 is an
orthogonal projector onto the range of the Hermitian matrix 𝐵, 𝑋 ≠ 𝑋𝐵†𝐵 implies that there exists a vector 𝑣

such that 𝐵𝑣 = 0 and 𝑋𝑣 ≠ 0. Now, consider the vector 𝑤 ··=
[
𝜏𝑋𝑣

𝑣

]
, where 𝜏 is a negative real number to be

fixed later. We then compute
𝑤∗𝑁𝑤 = 2𝜏‖𝑋𝑣‖2

2 + 𝜏2𝛾,

where 𝛾 ··= 𝑣∗𝑋∗(𝐴 − 𝑋𝐵†𝑋∗)𝑋𝑣 is a real number. But this gives a contradiction, since by choosing 𝜏 to be a
negative number of small enough magnitude we can force 𝑤∗𝑁𝑤 < 0, which contradicts the deduction above
that 𝑁 is PSD. Thus, we must also have 𝑋𝐵†𝐵 = 𝑋 . This proves the second part of the equivalence. �

From symmetry, Proposition 2.2 yields the following.

Proposition 2.3. Let 𝐴, 𝐵 and 𝑋 be square matrices of the same dimension. Then, the following are equivalent.
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(1)
[
𝐴 𝑋

𝑋∗ 𝐵

]
is PSD.

(2) 𝐴 − 𝑋𝐵†𝑋∗ and 𝐵 are PSD, and 𝑋𝐵†𝐵 = 𝑋 .
(3) 𝐵 − 𝑋∗𝐴†𝑋 and 𝐴 are PSD, and 𝐴𝐴†𝑋 = 𝑋 .

For PD matrices, we have the following simpler version.

Proposition 2.4. Let 𝐴, 𝐵 and 𝑋 be square matrices of the same dimension. Then, the following are equivalent.

(1)
[
𝐴 𝑋

𝑋∗ 𝐵

]
is PD.

(2) 𝐴 − 𝑋𝐵−1𝑋∗ and 𝐵 are PD.
(3) 𝐵 − 𝑋∗𝐴−1𝑋 and 𝐴 are PD.

3. Functions of matrices

Let 𝑓 : C→ C be any given function. A perhaps natural method to extend such a function to a diagonal
matrix is to simply apply the function separately to each of the diagonal entries. An advantage of this choice
is that it keeps all power series representations of 𝑓 valid as well.

However, once we have made this choice for diagonal matrices, it extends naturally to all diagonalizable,
and in particular, Hermitian matrices. In particular, if 𝐴 = 𝑈𝐷𝑈−1, where 𝐷 is diagonal (and therefore
consists of the eigenvalues of 𝐴), we define 𝑓 (𝐴) ··= 𝑈 𝑓 (𝐷)𝑈−1, where 𝑓 (𝐷) is defined by applying 𝑓

separately to each non-diagonal entry. Note that this definition agrees with the usual definitions of 𝐴𝑛 when 𝑛

is an integer.
Our goal now is to understand the monotonicity and convexity properties of such functions. We first study

the map 𝐴 ↦→ 𝐴−1.

Corollary 3.1. Let 𝑀 and 𝑁 be PD matrices such that 𝑀 � 𝑁 . Then, 𝑁−1 � 𝑀−1. When 𝑀 and 𝑁 are PSD
with identical ranges, 𝑀 � 𝑁 implies 𝑁† � 𝑀†.

Proof. Note that when 𝑆 is PD, 𝑆† = 𝑆−1. The first claim now follows from the equivalence of items 2 and 3
of Proposition 2.3, applied with 𝑋 = 𝐼, 𝐴 = 𝑀 and 𝐵 = 𝑁−1. For the second claim, we recall that for a
Hermitian matrix 𝑆, 𝑆†𝑆 = 𝑆𝑆† is an orthogonal projection onto the range of 𝑆. Since 𝑀 and 𝑁 have identical
ranges we let 𝑃 denote the orthogonal projection onto this common range subspace. The second claim now
follows from the equivalence of items 2 and 3 of Proposition 2.3, applied with 𝑋 = 𝑃, 𝐴 = 𝑀 and 𝐵 = 𝑁†. �

Corollary 3.2. The map 𝐴 ↦→ 𝐴−1 is convex on the set of PD matrices, in the sense that for 𝑠 ∈ [0, 1], and
PD matrices 𝐴 and 𝐵,

(𝑠𝐴 + (1 − 𝑠)𝐵)−1 � 𝑠𝐴−1 + (1 − 𝑠)𝐵−1.

Proof. From items 1 and 2 of Proposition 2.3, we see that the matrices

𝑀 ··=
[
𝐴 𝐼

𝐼 𝐴−1

]
and 𝑁 ··=

[
𝐵 𝐼

𝐼 𝐵−1

]
are PSD. This implies that the matrix

𝑠𝑀 + (1 − 𝑠)𝑁 =

[
𝑠𝐴 + (1 − 𝑠)𝐵 𝐼

𝐼 𝑠𝐴−1 + (1 − 𝑠)𝐵−1

]
is PSD as well. Applying items 1 and 3 of Proposition 2.3, we then see that

𝑠𝐴−1 + (1 − 𝑠)𝐵−1 � (𝑠𝐴 + (1 − 𝑠)𝐵)−1. �

We now consider the map 𝐴 ↦→ 𝐴1/2 defined for positive semi-definite matrices.

Proposition 3.3. Let 𝐴 and 𝐵 be PSD matrices such that 𝐴 � 𝐵. Then 𝐴1/2 � 𝐵1/2.
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Proof. Assume first that 𝐴 and 𝐵 are PD, and hence invertible. Then, by congruence, we have

𝐴 � 𝐵 ⇔ 𝐼 � 𝐴−1/2𝐵𝐴−1/2

Now, 𝑀 = 𝐴−1/2𝐵𝐴−1/2 = 𝑁𝑁∗ (where 𝑁 ··= 𝐴−1/2𝐵1/2) is a PD matrix (by congruence, since 𝐴 and 𝐵 are
PD). Thus 𝑀 � 𝐼 implies that all eigenvalues of 𝑀 are in the interval (0, 1]. This implies that all singular
values of 𝑁 are in the interval (0, 1] (since these are square-roots of the eigenvalues of 𝑀).

Now, note that 𝑁 = 𝐴−1/4𝑊𝐴1/4, where 𝑊 ··= 𝐴−1/4𝐵1/2𝐴−1/4 is a PD matrix (by congruence, since 𝐴 and
𝐵 are PD). Thus, all 𝑁 is diagonalizable with positive real eigenvalues. Since all the singular values of 𝑁
lie in (0, 1], it then follows that all its eigenvalues must also lie in the same interval. Thus, the eigenvalues
of 𝐴, and hence of 𝑊 , are in (0, 1]. Since 𝑊 is Hermitian, this implies that 𝑊 = 𝐴−1/4𝐵1/2𝐴−1/4 � 𝐼. By
congruence (since 𝐴 and 𝐵 are PD), this implies 𝐵1/2 � 𝐴1/2.

We have thus proved that whenever 𝐴 and 𝐵 are PD such that 𝐴 � 𝐵, we also have 𝐴1/2 � 𝐵1/2. When 𝐴

and 𝐵 are only PSD (so that they may not be invertible, we consider, for each 𝜖 > 0, the matrices 𝐴𝜖 ··= 𝐴 + 𝜖 𝐼
and 𝐵𝜖 ··= 𝐵 + 𝜖 𝐼. Since these matrices are PD, we get 𝐴𝜖 � 𝐵𝜖 for each 𝜖 > 0. The claim 𝐴 � 𝐵 then
follows by taking limits on both sides of the inequality 𝐴𝜖 � 𝐵𝜖 as 𝜖 ↓ 0, and using the fact that the map
𝐴 → 𝐴1/2 is continuous on the set of PD matrices. �

Remark 3.1. It is a good exercise to check which step in the above proof fails for the map 𝐴 ↦→ 𝐴2. Indeed,
the map 𝐴 ↦→ 𝐴2 is not monotone on PSD (or PD) matrices.

4. The matrix logarithm

In this section, we will prove that the logarithm is both monotone and concave on PD matrices. For this, it
will be convenient to define, for every positive definite matrix, the following functions on the interval [0, 1]:

𝑓𝐴(𝑡) ··= log(𝐼 + 𝑡𝐴)
𝑔𝐴(𝑡) ··= 𝐴(𝐼 + 𝑡𝐴)−1.

(2)

Note that
d 𝑓𝐴(𝑡)

d𝑡
= 𝑔𝐴(𝑡),

where the derivative of a matrix-valued function is defined entry-wise. Similarly, by entry-wise integration,
we have

log(𝐼 + 𝐴) = log(𝐼 + 𝐴) − log 𝐼 = 𝑓𝐴(1) − 𝑓𝐴(0) =
1∫

0

𝑔𝐴(𝑡)𝑑𝑡.

From the above considerations, we get the following proposition:

Proposition 4.1. Suppose that for given PSD matrices 𝐴, 𝐵 such that 𝐴 � 𝐵, and for all 𝑡 ∈ [0, 1], 𝑔𝐴(𝑡) �
𝑔𝐵 (𝑡). Then, we also have

log(𝐼 + 𝐴) � log(𝐼 + 𝐵).
Similarly, suppose that for PSD matrices 𝐴 and 𝐵, 𝜆 ∈ [0, 1], and all 𝑡 ∈ [0, 1], we have

𝑔𝜆𝐴+(1−𝜆)𝐵 (𝑡) � 𝜆𝑔𝐴(𝑡) + (1 − 𝜆)𝑔𝐵 (𝑡).
Then, we also have

log(𝐼 + 𝜆𝐴 + (1 − 𝜆)𝐵) � 𝜆 log(𝐼 + 𝐴) + (1 − 𝜆) log(𝐼 + 𝐵).

To apply this proposition, we now prove the required properties of the function 𝑔.

Proposition 4.2. Let 𝐴, 𝐵 be PSD matrices, and suppose 𝜆 ∈ [0, 1]. Then, for all 𝑡 ∈ [0, 1], we have the
following:

(1) 𝑔𝜆𝐴+(1−𝜆)𝐵 (𝑡) � 𝜆𝑔𝐴(𝑡) + (1 − 𝜆)𝑔𝐵 (𝑡).
(2) if 𝐴 � 𝐵 then 𝑔𝐴(𝑡) � 𝑔𝐵 (𝑡).

4



Proof. Note that both items are trivially true when 𝑡 = 0. For 𝑡 ∈ (0, 1], we use the representation

𝑔𝐴(𝑡) ··= 𝐴(𝐼 + 𝑡𝐴)−1 =
1
𝑡
(𝐼 + 𝑡𝐴 − 𝐼) (𝐼 + 𝑡𝐴)−1 =

1
𝑡

{
𝐼 − (𝐼 + 𝑡𝐴)−1} .

Now, when 𝑡 ≥ 0 and 𝐴 � 𝐵 � 0, we have 𝐼 + 𝑡𝐴 � 𝐼 + 𝑡𝐵 � 0. Since the map 𝐴 ↦→ 𝐴−1 is monotone
decreasing for positive definite matrices, we get (𝐼 + 𝑡𝐴)−1 � (𝐼 + 𝑡𝐵)−1. This immediately gives

𝑔𝐴(𝑡) =
1
𝑡

{
𝐼 − (𝐼 + 𝑡𝐴)−1} � 1

𝑡

{
𝐼 − (𝐼 + 𝑡𝐵)−1} = 𝑔𝐵 (𝑡),

which establishes the second item. For the first item, we use the convexity of the map 𝐴 ↦→ 𝐴−1 (Corollary 3.2)
for PD matrices to get

(𝐼 + 𝑡 (𝜆𝐴 + (1 − 𝜆)𝐵))−1 = (𝜆(𝐼 + 𝑡𝐴) + (1 − 𝜆) (𝐼 + 𝑡𝐵))−1 � 𝜆(𝐼 + 𝑡𝐴)−1 + (1 − 𝜆) (𝐼 + 𝑡𝐵)−1

This gives

𝑔𝜆𝐴+(1−𝜆)𝐵 (𝑡) =
1
𝑡

(
𝐼 − (𝐼 + 𝑡 (𝜆𝐴 + (1 − 𝜆)𝐵))−1

)
� 1

𝑡

(
𝐼 − 𝜆(𝐼 + 𝑡𝐴)−1 − (1 − 𝜆) (𝐼 + 𝑡𝐵)−1

)
=

1
𝑡

(
𝜆(𝐼 − (𝐼 + 𝑡𝐴)−1) + (1 − 𝜆) (𝐼 − (𝐼 + 𝑡𝐵)−1)

)
= 𝜆𝑔𝐴(𝑡) + (1 − 𝜆)𝑔𝐵 (𝑡),

(3)

and this establishes the first item. �

Now, we can prove the required monotonicity and concavity properties of the matrix logarithm.

Theorem 4.3. Let 𝐴, 𝐵 be strictly positive definite matrices, and fix 𝜆 ∈ [0, 1]. Then, we have the following:
(1) log(𝜆𝐴 + (1 − 𝜆)𝐵) � 𝜆 log 𝐴 + (1 − 𝜆) log 𝐵.
(2) if 𝐴 � 𝐵 then log 𝐴 � log 𝐵.

Proof. Assume first that 𝐴, 𝐵 � 𝐼. From Propositions 4.1 and 4.2, we then get
log(𝜆𝐴 + (1 − 𝜆)𝐵) = log(𝐼 + 𝜆(𝐴 − 𝐼) + (1 − 𝜆) (𝐵 − 𝐼)) � 𝜆 log 𝐴 + (1 − 𝜆) log 𝐵, (4)

To prove this for general positive definite matrices, we note that when 𝐴 and 𝐵 are strictly positive definite,
there exists a positive real 𝑐 such that 𝑐𝐴, 𝑐𝐵 � 𝐼. Equation (4) applied to 𝑐𝐴, 𝑐𝐵 then gives the first item of
the theorem.

For the second item, we again consider first the case 𝐴 � 𝐵 � 𝐼. Again from Propositions 4.1 and 4.2, we
then get

log 𝐴 = log(𝐼 + (𝐴 − 𝐼)) � log(𝐼 + (𝐵 − 𝐼)) = log 𝐵. (5)
To prove this for general positive definite matrices, we again note that when 𝐴 and 𝐵 are strictly positive
definite, there exists a positive real 𝑐 such that 𝑐𝐴, 𝑐𝐵 � 𝐼. Equation (5) applied to 𝑐𝐴, 𝑐𝐵 then gives the
second item of the theorem. �

Remark 4.1. Bhatia [2007] proves the above properties of the logarithm as direct corollaries of the fact
that for every 𝑠 ∈ (0, 1], the functions 𝐴 ↦→ 𝐴𝑠 are monotone non-decreasing and concave over the set of
PSD matrices. I recommend going through that approach as well; especially since it involves the interesting
notion of the matrix geometric mean. We, however, will not be needing these ideas for our immediate goal of
studying matrix concentration inequalities, and hence, I prefer the above, perhaps more direct, approach.
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