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HW1 : Spectral Methods

Out: 13 Feb, 2025 Due: 27 Feb, 2025

• This homework has problems worth 30 points.

• Please take time to write clear and concise solutions. You are strongly encouraged to submit LATEXed solutions.

• Collaboration is OK, but please write your answers yourself, and include in your answers the names of every-

one you collaborated with and all references other than class notes you consulted. However, not acknowl-
edging your collaborators and references will be treated as a serious case of academic dishonesty.

1. [bipartite] (3 points)
Let 𝐴 be the adjacency matrix of an 𝑛-vertex undirected connected graph𝐺 and 𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝑛 be the
𝑛 eigenvalues of 𝐴 arranged in non-increasing order. In lecture, we had shown that 𝜇1 > −𝜇𝑛 .

(a) (2 points) Prove that if 𝜇1 = −𝜇𝑛 , then the graph is bipartite.
(b) (1 point) Prove that if the graph is bipartite, then 𝜇1 = −𝜇𝑛 .

2. [Colouring using largest eigenvector] (4 points)
Let 𝐴 be the adjacency matrix of an undirected graph connected 𝐺 , and let 𝜙 be its top eigenvector with
eigenvalue 𝜅. Note that 𝜅 ≥ 0 and 𝜙 can be so chosen as to have non-negative entries. Let us assume
further that we write 𝜙 so that its entries are arranged in descending order (so that 𝜙1 ≤ 𝜙2 ≤ · · · ≤ 𝜙𝑛).
Note that this induces an ordering on the vertices of 𝐺 .
Consider now the following colouring procedure, which is based on the above order. We start with an
empty list 𝐿 of colours. We then process the vertices 𝑢1, 𝑢2, . . . , 𝑢𝑛 in order, and for any given 𝑖 , construct
the set 𝑆 of the colours assigned to neighbors 𝑢 𝑗 of 𝑢𝑖 with 𝑗 < 𝑖 . If 𝑆 = 𝐿, then we create a new color 𝑐 ,
set 𝐿 = 𝐿 ∪ {𝑐} and assign the colour 𝑐 to 𝑢𝑖 . Otherwise, if 𝐿 \ 𝑆 is non-empty, we choose a color from
𝐿 \ 𝑆 (according to some pre-defined choice rule) and assign it to 𝑢𝑖 . Note that this procedure produces a
proper coloring of the graph.
How large can 𝐿 can be at the end of the algorithm? Show that your bound is tight by giving an appropriate
example.

3. [Hall’s drawing of graphs] (3 points)
Let 𝐿𝐺 = 𝐷𝐺−𝐴𝐺 be the Laplacian of an undirected graph𝐺 = (𝑉 , 𝐸) with eigenvalues 0 = 𝜆1 ≤ 𝜆2 ≤ · · · ≤
𝜆𝑛 and corresponding eigenvectots Ψ1 = 1/

√
𝑛,Ψ2, . . . ,Ψ𝑛 . For any positive integer 𝑘 < 𝑛, Let 𝑥1, . . . , 𝑥𝑘

be orthonormal vectors that are all orthogonal to 1. Then prove that

𝑘∑︁
𝑖=1

⟨𝑥𝑖 , 𝐿𝐺𝑥𝑖⟩ ≥
𝑘+1∑︁
𝑖=2

𝜆𝑖 ,

and this inequality is tight only when ⟨𝑥,Ψ𝑗 ⟩ = 0 for all 𝑗 such that 𝜆 𝑗 > 𝜆𝑘+1.

4. [Trevisan’s robust characterization of bipartiteness] (10 points)
Let 𝐺 = (𝑉 , 𝐸) be an undirected unweighted connected graph. Let𝑊 be the random-walk matrix and
𝐿 = 𝐼 −𝑊 be the Laplacian. Recall that𝑊 = 𝐷−1𝐴 where 𝐷 = Diag(𝑑𝑒𝑔) is the diagonal matrix of degrees
and 𝐴 is the adjacency matrix of 𝐺 . Let 𝜋 be the stationary distribution and ⟨·, ·⟩𝜋 the corresponding
𝜋-inner product. Recall that the quadratic form corresponding to the Laplacian satisfies the following.

⟨𝑓 , 𝐿𝑓 ⟩𝜋 =
∑︁
{𝑖, 𝑗 }

𝜋 (𝑖) ·𝑊 (𝑖, 𝑗) · (𝑓 (𝑖) − 𝑓 ( 𝑗))2,

where 𝜋 the stationary distribution of this random walk matrix The largest eigenvalue of the normalized
Laplacian, denoted by 𝛾𝑛 , satisfies

𝛾𝑛 = max
𝑓 ≠0

⟨𝑓 , 𝐿𝑓 ⟩𝜋
⟨𝑓 , 𝑓 ⟩𝜋

.



(a) (1 point) [bipartite ⇔ 𝛾𝑛 = 2]
Prove that 𝛾𝑛 ≤ 2. Furthermore, prove that equality holds iff the graph 𝐺 is bipartite.

(b) (2 points) [almost bipartite ⇒ 𝛾𝑛 almost 2]
Suppose the MAXCUT in 𝐺 has normalized cost at least 1 − 𝜀. That is, there exists a cut (𝑆,𝑉 \ 𝑆)
such |𝐸 (𝑆,𝑉 \ 𝑆) | ≥ (1 − 𝜀) |𝐸 | where 𝐸 (𝑆,𝑉 \ 𝑆) = {{𝑢, 𝑣} ∈ 𝐸 : 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆}. Prove that there is a
non-zero vector 𝑓 : 𝑉 → 𝑅 such that

⟨𝑓 , 𝐿𝑓 ⟩𝜋 ≥ 1 − 𝜀,

⟨𝑓 , 𝑓 ⟩𝜋 = 𝜋 (𝑆) ≤ 1
2
.

Hence, conclude that 𝛾𝑛 ≥ 2(1 − 𝜀).
(c) (7 points) [𝛾𝑛 almost 2⇒ almost bipartite]

In this part, we will prove the following theorem.
Theorem. Let 𝛾𝑛 ≥ 2(1 − 𝜀) or equivalently there exists a non-zero vector 𝑓 : 𝑉 → R such that

⟨𝑓 , (𝐼 +𝑊 ) 𝑓 ⟩𝜋 ≤ 2𝜀 · ⟨𝑓 , 𝑓 ⟩𝜋 . Then there exists non-zero vector 𝑦 ∈ {−1, 0, 1}𝑉 such that∑
{𝑖, 𝑗 }∈𝐸 |𝑦𝑖 + 𝑦 𝑗 |∑

𝑖∈𝑉 𝑑𝑖 |𝑦𝑖 |
≤
√
8𝜖.

To this end, we define the following randomized process that constructs a random non-zero vector
𝑌 ∈ {−1, 0, 1}𝑉 given a non-zero vector 𝑓 : 𝑉 → R satisfying ⟨𝑓 , (𝐼 +𝑊 ) 𝑓 ⟩𝜋 ≤ 2𝜀 · ⟨𝑓 , 𝑓 ⟩𝜋 . Since this
latter condition is scale-invariant, we may assume wlog. thatmax𝑖 |𝑓 (𝑖) | = 1 and let 𝑖∗ ∈ 𝑉 such that
|𝑓 (𝑖∗) | = 1.

• Pick a value 𝑡 uniformly in [0, 1].
• Define 𝑌 ∈ {−1, 0, 1}𝑉 as follows:

𝑌𝑖 =


−1 if 𝑓 (𝑖) < −

√
𝑡,

1 if 𝑓 (𝑖) >
√
𝑡,

0 otherwise, i.e., |𝑓 (𝑖) | ≤
√
𝑡 .

i. (1 point) Prove that P [∃𝑖 ∈ 𝑉 ,𝑌𝑖 ≠ 0] = 1.
ii. (2 points ) Prove that for any 𝑖, 𝑗 ∈ 𝑉 , E [|𝑌𝑖 |] = 𝑓 (𝑖)2 and E

[
|𝑌𝑖 + 𝑌𝑗 |

]
≤ |𝑓 (𝑖) + 𝑓 ( 𝑗) | · ( |𝑓 (𝑖) | +

|𝑓 ( 𝑗) |).
iii. (3 points) Prove that E

[∑
{𝑖, 𝑗 }∈𝐸 |𝑌𝑖 + 𝑌𝑗 |

]
≤
√
8𝜖 · E [∑𝑖 𝑑𝑖 |𝑌𝑖 |].

Hint: Cauchy-Schwarz Inequality.

iv. (1 point) Hence, conclude that there exists a non-zero vector𝑦 ∈ {−1, 0, 1}𝑉 such that
∑

{𝑖, 𝑗 }∈𝐸 |𝑦𝑖+
𝑦 𝑗 | ≤

√
8𝜖. ·∑𝑖∈𝑉 𝑑𝑖 |𝑦𝑖 |.

Discussion. It is known that 𝐺 is connected iff 𝛾2 ≠ 0. Or equivalently, 𝜙 (𝐺) ≠ 0 iff 𝛾2 ≠ 0. Cheeger’s
inequalities give a “quantitative strengthening” of this statement by showing that√︁

2𝛾2 ≥ 𝜙 (𝐺) ≥ 𝛾2/2.

The problem is similar in spirit but works with 𝛾𝑛 and “bipartiteness” instead of 𝛾2 and “connectedness”.

Define the bipartiteness ratio number of a graph 𝐺 to be

𝛽 (𝐺) := min
𝑦∈{−1,0,1}𝑉

∑
{𝑢,𝑣}∈𝐸 |𝑦𝑢 + 𝑦𝑣 |
2𝑑

∑
𝑢∈𝑉 |𝑦𝑢 |

,

which is equivalent to

𝛽 (𝐺) = min
𝑆⊆𝑉 ,(𝐿,𝑅) partition of 𝑆

2𝜕(𝐿, 𝐿) + 2𝜕(𝑅, 𝑅) + 𝜕(𝑆,𝑉 \ 𝑆)
𝑑 |𝑆 | ,



Observe that 𝛽 (𝐺) = 0 iff 𝐺 is bipartite. Problem 4a shows that 𝛽 (𝐺) = 0 iff 𝛾𝑛 = 2. Problems 4b–4c are a

quantitative strengthening of this claim as they demonstrate that√︁
2(2 − 𝛾𝑛) ≥ 𝛽 (𝐺) ≥ 1

2
· (2 − 𝛾𝑛).

This result is due to Luca Trevisan.

5. [Chernoff bound for Expander Random-Walks] (10 points)
In lecture, we proved the following hitting-set lemma for random-walks on spectral expanders.

Lemma (hitting-set lemma for expanders). Let𝑊 be a reversible random walk on a set 𝑉 of 𝑛 vertices and

1 = 𝜆1 ≥ 𝜆2 ≥ · ≥ 𝜆𝑛 ≥ −1 be its eigenvalues and 𝜋 the stationary distribution. Let 𝜆 = max{𝜆2, |𝜆𝑛 |}. Let
𝐵 ⊆ 𝑉 such that 𝜇 := 𝜋 (𝐵). Let 𝑋1, . . . , 𝑋𝑡 be a random-walk of length 𝑡 according to𝑊 where the first vertex

𝑋1 is chosen according to the stationary distribution. Then

P

∧
𝑖∈[𝑡 ]

(𝑋𝑖 ∈ 𝐵)
 ≤ 𝜇 · (𝜇 + 𝜆(1 − 𝜇))𝑡−1 .

The proof discussed in class actually proves the following more general lemma.

Lemma (generalized hitting-set lemma for expanders). Let𝑊 (1), . . . ,𝑊 (𝑡−1)
be (𝑡 − 1) reversible random

walk matrices all on the same set𝑉 of 𝑛 and sharing the same stationary distribution 𝜋 . Let 1 = 𝜆
(𝑖 )
1 ≥ 𝜆

(𝑖 )
2 ≥

· ≥ 𝜆
(𝑖 )
𝑛 ≥ −1 be the eigenvalues of the 𝑖-th random walk𝑊 (𝑖 )

. Let 𝜆 = max𝑖 {𝜆 (𝑖 )
2 , |𝜆 (𝑖 )

𝑛 |}. Let 𝐵 ⊆ 𝑉 such

that 𝜇 := 𝜋 (𝐵). Let 𝑋1, . . . , 𝑋𝑡 be a random sequence of 𝑡 vertices where the first vertex 𝑋1 is chosen according

to the (common) stationary distribution 𝜋 and 𝑋𝑖 is a random neighbour of 𝑋𝑖−1 according to the random

walk𝑊 (𝑖 )
. Then

P

∧
𝑖∈[𝑡 ]

(𝑋𝑖 ∈ 𝐵)
 ≤ 𝜇 · (𝜇 + 𝜆(1 − 𝜇))𝑡−1 . (1)

In this problem, we will extend this to obtain the following Chernoff-like bound on expander random-
walks.

Theorem. Let𝑊 be a reversible random walk on a set 𝑉 of 𝑛 vertices and 1 = 𝜆1 ≥ 𝜆2 ≥ · ≥ 𝜆𝑛 ≥ −1 be
its eigenvalues and 𝜋 the stationary distribution. Let 𝜆 = max{𝜆2, |𝜆𝑛 |}. Let 𝐵 ⊆ 𝑉 such that 𝜇 := 𝜋 (𝐵). Let
𝑋1, . . . , 𝑋𝑡 be a random-walk of length 𝑡 according to𝑊 where the first vertex 𝑋1 is chosen according to the

stationary distribution. Then for any 𝛿 ∈ (0, 1), we have

P [#{𝑖 : 𝑋𝑖 ∈ 𝐵} ≥ (𝜇 + 𝜆(1 − 𝜇) + 𝛿)𝑡] ≤ exp
(
−𝜆(𝛿2𝑡)

)
.

Let 𝑆 ⊆ [𝑡] be a random subset chosen as follows: for each 𝑖 ∈ [𝑡], independently add 𝑖 to 𝑆 with probability
𝑞. This satisfies that for any fixed set 𝑠 ⊆ [𝑡], we have P [𝑆 = 𝑠] = 𝑞𝑘 · (1 − 𝑞)𝑡−𝑘 where 𝑘 = |𝑠 |.

(a) (2 points) Use (1) to conclude that for each integer 0 ≤ 𝑘 ≤ 𝑡

P𝑋1,· · · ,𝑋𝑡 ,𝑆

[∧
𝑖∈𝑆

(𝑋𝑖 ∈ 𝐵)
��� |𝑆 | = 𝑘

]
≤ 𝜇 · (𝜇 + 𝜆(1 − 𝜇))𝑘−1 ≤ (𝜇 + 𝜆(1 − 𝜇))𝑘 .

Note that the above probability is over the random choice of the walk 𝑋1, . . . , 𝑋𝑡 as well as the set 𝑆
conditioned on the fact that |𝑆 | = 𝑘 .

(b) (4 points) Show that

P𝑋1,· · · ,𝑋𝑡 ,𝑆

[∧
𝑖∈𝑆

(𝑋𝑖 ∈ 𝐵)
]
≤

(
𝑞 · (𝜇 + 𝜆(1 − 𝜇)) + 1 − 𝑞

)𝑡
.



(c) (3 points) Let 𝑋𝐵 be the random subset of [𝑡] defined as follows:

𝑋𝐵 := {𝑖 ∈ [𝑡] : 𝑋𝑖 ∈ 𝐵}.

Show that

P [|𝑋𝐵 | ≥ (𝜇 + 𝜀)𝑡] ≤
(
𝑞 · (𝜇 + 𝜆(1 − 𝜇)) + 1 − 𝑞

(1 − 𝑞)1−𝜇−𝜀

)𝑡
.

(d) (1 point) Let 𝜀 > 𝜆(1 − 𝜇). Use calculus to show that the right hand side of the above expression is
minimized when

𝑞 =
𝜀 − 𝜆(1 − 𝜇)

(1 − 𝜇 − 𝜆(1 − 𝜇)) · (𝜇 + 𝜀) ,

to obtain

P [|𝑋𝐵 | ≥ (𝜇 + 𝜀)𝑡] ≤
[(
𝑚𝑢 + 𝜆(1 − 𝜇)

𝜇 + 𝜀

)𝜇+𝜀
·
(
1 − 𝜇 − 𝜆(1 − 𝜇)

1 − 𝜇 − 𝜀

)1−𝜇−𝜀 ]𝑡
= exp (−𝐷𝐾𝐿 (𝜇 + 𝜀∥𝜇 + 𝜆(1 − 𝜇)) · 𝑡) .

Discussion. This proof of the Chernoff bound on expander random-walks is due to Impagliazzo andKabanets.

A proof can of the standard Chernoff bound can also be obtained along similar lines. For expander random-

walks, a stronger Chernoff bound is known due to Gillman.


