CSS.205.1: Toolkit for TCS

HW1: Spectral Methods

Out: 13 Feb, 2025

- This homework has problems worth 30 points.
- Please take time to write clear and concise solutions. You are STRONGLY encouraged to submit LaTeXed solutions.
- Collaboration is OK, but please write your answers yourself, and include in your answers the names of EVERY-ONE you collaborated with and ALL references other than class notes you consulted. However, not acknowledging your collaborators and references will be treated as a serious case of academic dishonesty.

1. [bipartite]

Let *A* be the adjacency matrix of an *n*-vertex undirected *connected* graph *G* and $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$ be the *n* eigenvalues of *A* arranged in non-increasing order. In lecture, we had shown that $\mu_1 > -\mu_n$.

- (a) (2 points) Prove that if $\mu_1 = -\mu_n$, then the graph is bipartite.
- (b) (1 point) Prove that if the graph is bipartite, then $\mu_1 = -\mu_n$.

2. [Colouring using largest eigenvector]

Let A be the adjacency matrix of an undirected graph connected G, and let ϕ be its top eigenvector with eigenvalue κ . Note that $\kappa \geq 0$ and ϕ can be so chosen as to have non-negative entries. Let us assume further that we write ϕ so that its entries are arranged in descending order (so that $\phi_1 \leq \phi_2 \leq \cdots \leq \phi_n$). Note that this induces an ordering on the vertices of *G*.

Consider now the following colouring procedure, which is based on the above order. We start with an empty list *L* of colours. We then process the vertices u_1, u_2, \ldots, u_n in order, and for any given *i*, construct the set S of the colours assigned to neighbors u_j of u_i with j < i. If S = L, then we create a new color c, set $L = L \cup \{c\}$ and assign the colour c to u_i . Otherwise, if $L \setminus S$ is non-empty, we choose a color from $L \setminus S$ (according to some pre-defined choice rule) and assign it to u_i . Note that this procedure produces a proper coloring of the graph.

How large can L can be at the end of the algorithm? Show that your bound is tight by giving an appropriate example.

3. [Hall's drawing of graphs]

Let $L_G = D_G - A_G$ be the Laplacian of an undirected graph G = (V, E) with eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ λ_n and corresponding eigenvectots $\Psi_1 = 1/\sqrt{n}, \Psi_2, \ldots, \Psi_n$. For any positive integer k < n, Let x_1, \ldots, x_k be orthonormal vectors that are all orthogonal to 1. Then prove that

$$\sum_{i=1}^k \langle x_i, L_G x_i \rangle \ge \sum_{i=2}^{k+1} \lambda_i,$$

and this inequality is tight only when $\langle x, \Psi_j \rangle = 0$ for all *j* such that $\lambda_j > \lambda_{k+1}$.

4. [Trevisan's robust characterization of bipartiteness]

Let G = (V, E) be an undirected unweighted connected graph. Let W be the random-walk matrix and L = I - W be the Laplacian. Recall that $W = D^{-1}A$ where D = Diag(deq) is the diagonal matrix of degrees and A is the adjacency matrix of G. Let π be the stationary distribution and $\langle \cdot, \cdot \rangle_{\pi}$ the corresponding $\pi\text{-inner}$ product. Recall that the quadratic form corresponding to the Laplacian satisfies the following.

$$\langle f, Lf \rangle_{\pi} = \sum_{\{i,j\}} \pi(i) \cdot W(i,j) \cdot (f(i) - f(j))^2,$$

where π the stationary distribution of this random walk matrix The largest eigenvalue of the normalized Laplacian, denoted by γ_n , satisfies / C T C

$$\gamma_n = \max_{f \neq 0} \frac{\langle f, Lf \rangle_{\pi}}{\langle f, f \rangle_{\pi}}.$$

Jan-May 2025

Due: 27 Feb, 2025

(4 points)

(10 points)

(3 points)

(a) (1 point) [**bipartite** $\Leftrightarrow \gamma_n = 2$]

Prove that $\gamma_n \leq 2$. Furthermore, prove that equality holds iff the graph *G* is bipartite.

(b) (2 points) [almost bipartite $\Rightarrow \gamma_n$ almost 2]

Suppose the MAXCUT in *G* has normalized cost at least $1 - \varepsilon$. That is, there exists a cut $(S, V \setminus S)$ such $|E(S, V \setminus S)| \ge (1 - \varepsilon)|E|$ where $E(S, V \setminus S) = \{\{u, v\} \in E : u \in S, v \notin S\}$. Prove that there is a non-zero vector $f : V \to R$ such that

$$\langle f, Lf \rangle_{\pi} \ge 1 - \varepsilon,$$

 $\langle f, f \rangle_{\pi} = \pi(S) \le \frac{1}{2},$

Hence, conclude that $\gamma_n \ge 2(1 - \varepsilon)$.

(c) (7 points) [γ_n almost 2 \Rightarrow almost bipartite]

In this part, we will prove the following theorem.

Theorem. Let $\gamma_n \ge 2(1 - \varepsilon)$ or equivalently there exists a non-zero vector $f: V \to \mathbb{R}$ such that $\langle f, (I+W)f \rangle_{\pi} \le 2\varepsilon \cdot \langle f, f \rangle_{\pi}$. Then there exists non-zero vector $y \in \{-1, 0, 1\}^V$ such that

$$\frac{\sum_{\{i,j\}\in E} |y_i + y_j|}{\sum_{i\in V} d_i |y_i|} \le \sqrt{8\epsilon}.$$

To this end, we define the following randomized process that constructs a random non-zero vector $Y \in \{-1, 0, 1\}^V$ given a non-zero vector $f: V \to \mathbb{R}$ satisfying $\langle f, (I+W)f \rangle_{\pi} \leq 2\varepsilon \cdot \langle f, f \rangle_{\pi}$. Since this latter condition is scale-invariant, we may assume wlog. that $\max_i |f(i)| = 1$ and let $i_* \in V$ such that $|f(i_*)| = 1$.

- Pick a value *t* uniformly in [0, 1].
- Define $Y \in \{-1, 0, 1\}^V$ as follows:

$$Y_i = \begin{cases} -1 & \text{if } f(i) < -\sqrt{t}, \\ 1 & \text{if } f(i) > \sqrt{t}, \\ 0 & \text{otherwise, i.e., } |f(i)| \le \sqrt{t}. \end{cases}$$

- i. (1 point) Prove that $\mathbf{P} [\exists i \in V, Y_i \neq 0] = 1$.
- ii. (2 points) Prove that for any $i, j \in V$, $\mathbb{E}[|Y_i|] = f(i)^2$ and $\mathbb{E}[|Y_i + Y_j|] \le |f(i) + f(j)| \cdot (|f(i)| + |f(j)|)$.
- iii. (3 points) Prove that $\mathbb{E}\left[\sum_{\{i,j\}\in E} |Y_i + Y_j|\right] \le \sqrt{8\epsilon} \cdot \mathbb{E}\left[\sum_i d_i |Y_i|\right]$. Hint: Cauchy-Schwarz Inequality.
- iv. (1 point) Hence, conclude that there exists a non-zero vector $y \in \{-1, 0, 1\}^V$ such that $\sum_{\{i,j\}\in E} |y_i + y_j| \le \sqrt{8\epsilon} \cdot \sum_{i\in V} d_i |y_i|$.

Discussion. It is known that G is connected iff $\gamma_2 \neq 0$. Or equivalently, $\phi(G) \neq 0$ iff $\gamma_2 \neq 0$. Cheeger's inequalities give a "quantitative strengthening" of this statement by showing that

$$\sqrt{2\gamma_2} \ge \phi(G) \ge \gamma_2/2.$$

The problem is similar in spirit but works with γ_n and "bipartiteness" instead of γ_2 and "connectedness". Define the bipartiteness ratio number of a graph G to be

$$\beta(G) := \min_{y \in \{-1,0,1\}^V} \frac{\sum_{\{u,v\} \in E} |y_u + y_v|}{2d \sum_{u \in V} |y_u|},$$

which is equivalent to

$$\beta(G) = \min_{S \subseteq V, (L,R) \text{ partition of } S} \frac{2\partial(L,L) + 2\partial(R,R) + \partial(S,V \setminus S)}{d|S|}$$

Observe that $\beta(G) = 0$ iff G is bipartite. Problem 4a shows that $\beta(G) = 0$ iff $\gamma_n = 2$. Problems 4b-4c are a quantitative strengthening of this claim as they demonstrate that

$$\sqrt{2(2-\gamma_n)} \ge \beta(G) \ge \frac{1}{2} \cdot (2-\gamma_n).$$

This result is due to Luca Trevisan.

5. [Chernoff bound for Expander Random-Walks]

In lecture, we proved the following hitting-set lemma for random-walks on spectral expanders.

Lemma (hitting-set lemma for expanders). Let W be a reversible random walk on a set V of n vertices and $1 = \lambda_1 \ge \lambda_2 \ge \cdot \ge \lambda_n \ge -1$ be its eigenvalues and π the stationary distribution. Let $\lambda = \max{\{\lambda_2, |\lambda_n|\}}$. Let $B \subseteq V$ such that $\mu := \pi(B)$. Let X_1, \ldots, X_t be a random-walk of length t according to W where the first vertex X_1 is chosen according to the stationary distribution. Then

$$\mathbf{P}\left[\bigwedge_{i\in[t]} (X_i\in B)\right]\leq \mu\cdot(\mu+\lambda(1-\mu))^{t-1}.$$

The proof discussed in class actually proves the following more general lemma.

Lemma (generalized hitting-set lemma for expanders). Let $W^{(1)}, \ldots, W^{(t-1)}$ be (t-1) reversible random walk matrices all on the same set V of n and sharing the same stationary distribution π . Let $1 = \lambda_1^{(i)} \ge \lambda_2^{(i)} \ge$ $\cdot \ge \lambda_n^{(i)} \ge -1$ be the eigenvalues of the *i*-th random walk $W^{(i)}$. Let $\lambda = \max_i \{\lambda_2^{(i)}, |\lambda_n^{(i)}|\}$. Let $B \subseteq V$ such that $\mu := \pi(B)$. Let X_1, \ldots, X_t be a random sequence of t vertices where the first vertex X_1 is chosen according to the (common) stationary distribution π and X_i is a random neighbour of X_{i-1} according to the random walk $W^{(i)}$. Then

$$\mathbf{P}\left[\bigwedge_{i\in[t]} (X_i\in B)\right] \le \mu \cdot (\mu + \lambda(1-\mu))^{t-1}.$$
(1)

In this problem, we will extend this to obtain the following Chernoff-like bound on expander randomwalks.

Theorem. Let W be a reversible random walk on a set V of n vertices and $1 = \lambda_1 \ge \lambda_2 \ge \cdot \ge \lambda_n \ge -1$ be its eigenvalues and π the stationary distribution. Let $\lambda = \max\{\lambda_2, |\lambda_n|\}$. Let $B \subseteq V$ such that $\mu := \pi(B)$. Let X_1, \ldots, X_t be a random-walk of length t according to W where the first vertex X_1 is chosen according to the stationary distribution. Then for any $\delta \in (0, 1)$, we have

$$\mathbf{P}\left[\#\{i: X_i \in B\} \ge (\mu + \lambda(1-\mu) + \delta)t\right] \le \exp\left(-\lambda(\delta^2 t)\right).$$

Let $S \subseteq [t]$ be a random subset chosen as follows: for each $i \in [t]$, independently add i to S with probability q. This satisfies that for any fixed set $s \subseteq [t]$, we have $\mathbf{P}[S = s] = q^k \cdot (1 - q)^{t-k}$ where k = |s|.

(a) (2 points) Use (1) to conclude that for each integer $0 \le k \le t$

$$\mathbf{P}_{X_1,\cdots,X_t,S}\left[\bigwedge_{i\in S} (X_i\in B) \mid |S|=k\right] \le \mu \cdot (\mu + \lambda(1-\mu))^{k-1} \le (\mu + \lambda(1-\mu))^k.$$

Note that the above probability is over the random choice of the walk X_1, \ldots, X_t as well as the set *S* conditioned on the fact that |S| = k.

(b) (4 points) Show that

$$\mathbf{P}_{X_1,\cdots,X_t,S}\left[\bigwedge_{i\in S} (X_i\in B)\right] \leq \left(q\cdot (\mu+\lambda(1-\mu))+1-q\right)^t.$$

(10 points)

(c) (3 points) Let X_B be the random subset of [t] defined as follows:

$$X_B := \{i \in [t] : X_i \in B\}.$$

Show that

$$\mathbf{P}\left[|X_B| \ge (\mu + \varepsilon)t\right] \le \left(\frac{q \cdot (\mu + \lambda(1 - \mu)) + 1 - q}{(1 - q)^{1 - \mu - \varepsilon}}\right)^t.$$

(d) (1 point) Let $\varepsilon > \lambda(1 - \mu)$. Use calculus to show that the right hand side of the above expression is minimized when

$$q = \frac{\varepsilon - \lambda(1 - \mu)}{(1 - \mu - \lambda(1 - \mu)) \cdot (\mu + \varepsilon)},$$

to obtain

$$\mathbf{P}\left[|X_B| \ge (\mu + \varepsilon)t\right] \le \left[\left(\frac{mu + \lambda(1-\mu)}{\mu + \varepsilon}\right)^{\mu + \varepsilon} \cdot \left(\frac{1-\mu - \lambda(1-\mu)}{1-\mu - \varepsilon}\right)^{1-\mu - \varepsilon}\right]^t$$
$$= \exp\left(-D_{KL}(\mu + \varepsilon)\|\mu + \lambda(1-\mu)\right) \cdot t\right].$$

Discussion. This proof of the Chernoff bound on expander random-walks is due to Impagliazzo and Kabanets. A proof can of the standard Chernoff bound can also be obtained along similar lines. For expander random-walks, a stronger Chernoff bound is known due to Gillman.