CSS.205.1: Toolkit for TCS

Out: 13 Feb, 2025

HW1 : Spectral Methods

Jan-May 2025

Due: 27 Feb, 2025

« This homework has problems worth 30 points.

« Please take time to write clear and concise solutions. You are STRONGLY encouraged to submit BIgXed solutions.

« Collaboration is OK, but please write your answers yourself, and include in your answers the names of EVERY-

ONE you collaborated with and ALL references other than class notes you consulted. However, not acknowl-
edging your collaborators and references will be treated as a serious case of academic dishonesty.

. [bipartite] (3 points)

Let A be the adjacency matrix of an n-vertex undirected connected graph G and yy > pz > -+ > p, be the
n eigenvalues of A arranged in non-increasing order. In lecture, we had shown that py > —py,.

(a) (2 points) Prove that if yy = —pp, then the graph is bipartite.
(b) (1 point) Prove that if the graph is bipartite, then p; = —p,.

. [Colouring using largest eigenvector] (4 points)

Let A be the adjacency matrix of an undirected graph connected G, and let ¢ be its top eigenvector with
eigenvalue k. Note that k > 0 and ¢ can be so chosen as to have non-negative entries. Let us assume
further that we write ¢ so that its entries are arranged in descending order (so that ¢; < ¢ < -+ < ¢y).
Note that this induces an ordering on the vertices of G.

Consider now the following colouring procedure, which is based on the above order. We start with an
empty list L of colours. We then process the vertices uy, uy, . . ., 4, in order, and for any given i, construct
the set S of the colours assigned to neighbors u; of u; with j < i. If S = L, then we create a new color c,
set L = L U {c} and assign the colour ¢ to u;. Otherwise, if L \ S is non-empty, we choose a color from
L\ S (according to some pre-defined choice rule) and assign it to u;. Note that this procedure produces a
proper coloring of the graph.

How large can L can be at the end of the algorithm? Show that your bound is tight by giving an appropriate
example.

. [Hall’s drawing of graphs] (3 points)

Let Lg = Dg—Ag be the Laplacian of an undirected graph G = (V, E) with eigenvalues0 = 4; < A; < --- <
An and corresponding eigenvectots ¥; = 1/Vn,¥,,...,¥,. For any positive integer k < n, Let xy,..., Xk
be orthonormal vectors that are all orthogonal to 1. Then prove that

k+1

k
Z(xi, Loxi) 2 Z/li,
i=1 i=2

and this inequality is tight only when (x, ¥;) = 0 for all j such that A; > A;.

. [Trevisan’s robust characterization of bipartiteness] (10 points)

Let G = (V,E) be an undirected unweighted connected graph. Let W be the random-walk matrix and
L = I—W be the Laplacian. Recall that W = D™!A where D = Diag(deg) is the diagonal matrix of degrees
and A is the adjacency matrix of G. Let n be the stationary distribution and (., -), the corresponding
s-inner product. Recall that the quadratic form corresponding to the Laplacian satisfies the following.

(FrLf)m= Y w() - Wi j) - (F(G) = FG))S
{i.j}
where 7 the stationary distribution of this random walk matrix The largest eigenvalue of the normalized

Laplacian, denoted by y,, satisfies
S Lf)n
v = max L LD
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(a) (1 point) [bipartite & y, = 2]
Prove that y,, < 2. Furthermore, prove that equality holds iff the graph G is bipartite.
(b) (2 points) [almost bipartite = y,, almost 2]

Suppose the MAXCUT in G has normalized cost at least 1 — ¢. That is, there exists a cut (S,V \ S)
such |[E(S,V \ S)| > (1 — ¢)|E| where E(S,V \'S) = {{u,v} € E : u € S,v ¢ S}. Prove that there is a
non-zero vector f : V.— R such that

foLf)r=1—¢
(f fdn=n(S) <

[NCR Y

Hence, conclude that y,, > 2(1 — ¢).
(c) (7 points) [y, almost 2 = almost bipartite]
In this part, we will prove the following theorem.

Theorem. Lety, > 2(1 — ¢) or equivalently there exists a non-zero vector f: V. — R such that
(f, (T+W)f)p < 2 (f, f)n. Then there exists non-zero vectory € {—1,0,1}" such that

L. Uy
Z{z,]}eE |yl yjl < \/g
ZieV dilyi|

To this end, we define the following randomized process that constructs a random non-zero vector
Y € {-1,0,1}V given a non-zero vector f: V — R satisfying (f, (I+W)f), < 2¢- (f, f)». Since this
latter condition is scale-invariant, we may assume wlog. that max; |f(i)| = 1 and let i, € V such that
lfGol=1.

« Pick a value t uniformly in [0, 1].

« Define Y € {~1,0,1}" as follows:

-1 if f(i) < =V,
;=41 if f(i) > V¢,
0  otherwise, ie., |f(i)] < Vt.

i. (1 point) Prove that P [Ji e V,Y; # 0] = 1.
ii. (2 points ) Prove that forany i, j € V, E [|Y;|] = f(i)? and E [IYi + YJI] <|f@+ M- AfG|+
LFHD-
i. (3 points) Prove that E [¥; ;e |Y; + Y;|] < V8e-E[X; dilYil].
Hint: Cauchy-Schwarz Inequality.

=
=

i
iv. (1 point) Hence, conclude that there exists a non-zero vectory € {-1,0,1}" such that 2ijyek lyit
yjl < V8e.- Yiey dilyil.

Discussion. It is known that G is connected iff y» # 0. Or equivalently, $(G) # 0 iff yo # 0. Cheeger’s
inequalities give a “quantitative strengthening” of this statement by showing that

V22 2 $(G) 2 ya/2.

The problem is similar in spirit but works with y, and “bipartiteness” instead of y, and “connectedness’.

Define the bipartiteness ratio number of a graph G to be

Yituo + Yo
5(G)= min (woyekE [Yu +y |’
ye{-10,1}V  2d Xev lyul

which is equivalent to

29(L, L) + 20(R,R) + a(S,V \ S)
min 5
SCV,(L,R) partition of S d|5|

B(G) =



Observe that f(G) = 0 iff G is bipartite. Problem 4a shows that f(G) = 0 iff y, = 2. Problems 4b—4c are a
quantitative strengthening of this claim as they demonstrate that

2=y 2 G) > 5+ (2= 1),

This result is due to Luca Trevisan.

. [Chernoff bound for Expander Random-Walks] (10 points)

In lecture, we proved the following hitting-set lemma for random-walks on spectral expanders.

Lemma (hitting-set lemma for expanders). Let W be a reversible random walk on a set V of n vertices and
1=A; =2 A > - > A, > -1 be its eigenvalues and r the stationary distribution. Let A = max{A,, |A,|}. Let
B C V such that i := n(B). Let X3, . .., X; be a random-walk of length t according to W where the first vertex
Xj is chosen according to the stationary distribution. Then

PIAXieB)| <p (ura(1-p)'

ie(t]

The proof discussed in class actually proves the following more general lemma.

Lemma (generalized hitting-set lemma for expanders). Let W(1),..., W=D pe (t — 1) reversible random
walk matrices all on the same set V of n and sharing the same stationary distribution . Let 1 = Afi) > Agi) >
-2 /L(li) > —1 be the eigenvalues of the i-th random walk W) Let A = maxi{/léi), |/1,(1i) |}. Let B C V such
that pp .= m(B). Let Xy, ..., X; be a random sequence of t vertices where the first vertex X1 is chosen according

to the (common) stationary distribution w and X; is a random neighbour of X;_; according to the random
walk W Then

Pl A XieB)| <p (ura(1-p) ™ M
ie[t]

In this problem, we will extend this to obtain the following Chernoff-like bound on expander random-
walks.

Theorem. Let W be a reversible random walk on a set V of n verticesand 1 = A; > A, > - > A, > —1 be
its eigenvalues and 7 the stationary distribution. Let A = max{A,, |A,|}. Let B € V such that u := n(B). Let
Xj, ..., X; be a random-walk of length t according to W where the first vertex X, is chosen according to the
stationary distribution. Then for any § € (0,1), we have

P [#{i: X; € B} > (u+A(1 - p) +8)t] < exp (—A(5°1)).

LetS C [t] be arandom subset chosen as follows: for each i € [¢], independently add i to S with probability
q. This satisfies that for any fixed set s C [t], we have P [S = 5] = ¢* - (1 — q)* 7% where k = [s|.

(a) (2 points) Use (1) to conclude that for each integer 0 < k < ¢

Px,,.. x.s

/\(Xi € B) | S| = kl <pe (A=) < (A= )k
ieS

Note that the above probability is over the random choice of the walk X, ..., X; as well as the set S
conditioned on the fact that |S| = k.
(b) (4 points) Show that

<(g-(u+A(1-p)+1-gq)".

/\(Xl- € B)

i€S

Px, ... x,.s




(c) (3 points) Let Xp be the random subset of [¢] defined as follows:
Xg :={i € [t]: X; € B}.

Show that

g - (u+A1-p)+1-q\'
G-gir )

(d) (1 point) Let ¢ > A(1 — p). Use calculus to show that the right hand side of the above expression is
minimized when
e—A(1-p)

T A-p-A1-p)-(pre)

P[Xp| 2 (u+e)t] <

q

to obtain

mu+ A(1 —y))”“ _ (1—,1—/1(1—,1))1“]’

PHXMZ(F+QHS[( e —

=exp (—Dxr(p+ellp+ A1 —-p)-1).

Discussion. This proofofthe Chernoff bound on expander random-walks is due to Impagliazzo and Kabanets.
A proof can of the standard Chernoff bound can also be obtained along similar lines. For expander random-
walks, a stronger Chernoff bound is known due to Gillman.



