
CSS.205.1: Toolkit for TCS Jan-May 2025
HW2 : MWUM and Linear Algebraic Method

Out: 7 Mar, 2025 Due: 21 Mar, 2025

• This homework has problems worth 30 points.

• Please take time to write clear and concise solutions. You are strongly encouraged to submit LATEXed solutions.

• Collaboration is OK, but please write your answers yourself, and include in your answers the names of every-

one you collaborated with and all references other than class notes you consulted. However, not acknowl-
edging your collaborators and references will be treated as a serious case of academic dishonesty.

1. [From Satish Rao’s homework assignments] (8 points)
In the experts framework, we compared an online algorithm that was allowed to pick among 𝑛 (expert)
strategies, with the best choice of a single expert in hindsight. In this question we first introduce a different
measure of performance of the online algorithm, called regret. The regret is how much worse the online
player does than the best offline player. i.e. if the best expert suffers a loss of 𝐿 while the expected loss of
the online player is E [𝐿(𝐴)], then the regret is E [𝐿(𝐴)] − 𝐿.
Assume that the game lasts for 𝑇 rounds, and the loss in each round is in the interval [0, 1].

(a) (4 points) Show that the regret suffered by the experts algorithm (with appropriate parameters) com-
pared to the best expert is 𝑂

(√︁
𝑇 · log𝑛

)
.

(b) (4 points) How important was it that the online player was allowed to switch between experts, while
the offline player had to stick to a single expert? To answer this, let us consider the regret suffered
by the online player compared to an offline player who is allowed to switch between experts at every
step. Construct an example where 𝐿∗, the loss suffered by the offline player is 0, while the expected
regret of A is at least 𝑇 · (1 − 1/𝑛).

2. [Lower bound of 2 for any deterministic algorithm] (5 points)
In the lectures, we showed that the weighted-majority (𝑊𝑀𝜂) algorithm satisfies the following bound. For
any positive integer 𝑇 , let𝑚 (𝑇 )

𝑖
be the number of mistakes made by expert 𝑖 upto step 𝑇 and 𝑀 (𝑇 ) be the

number of mistakes made by𝑊𝑀𝜂 algorithm with parameter 𝜂 ∈ (0, 1/2]. Then, for any expert 𝑖 ∈ [𝑛], we
have

𝑀 (𝑇 ) ≤ 2(1 + 𝜂) ·𝑚 (𝑇 )
𝑖
+ 2 ln𝑛

𝜂
.

In other words, the𝑊𝑀𝜂 algorithm makes no more than approximately twice the number of mistakes
made by any expert. Show that no deterministic online algorithm can guarantee a perfomance better than
twice the number of mistakes made by the best expert.

3. [𝜀-Nets & Hitting Sets (modified from Anupam Gupta and Ryan O’Donnell’s psets)] (7 points)
Let (𝑈 , F ) be a set system, where the universe 𝑈 is of size 𝑛 (i.e, |𝑈 | = 𝑛), and F is a collection of𝑚 sets
{𝑆1, 𝑆2, . . . , 𝑆𝑚} where each 𝑆𝑖 ⊆ 𝑈 . Define the following two quantities:

Hitting Set: The set 𝐻 ⊆ 𝑈 is a hitting set for F if 𝐻 ∩ 𝑆𝑖 ≠ ∅ for all 𝑖 ∈ [𝑚]. Let 𝑐 be the size of the
smallest hitting set for F ; note that this is NP-hard to compute.

𝜀-net: Given non-negative weights 𝑤𝑒 for each element 𝑒 ∈ 𝑈 , define the weight of a set 𝐴 as 𝑤 (𝐴) =∑
𝑒∈𝐴𝑤𝑒 . A set 𝑁 ⊆ 𝑈 is an 𝜀-net for (F ,𝑤) if for all sets 𝑆𝑖 such that 𝑤 (𝑆𝑖 ) ≥ 𝜀 · 𝑤 (𝑈 ), we have

𝑁 ∩ 𝑆𝑖 ≠ ∅. (In other words, 𝑁 hits all the “heavy-weight” sets.)

(a) (2 points) For any parameter 𝜀 > 0, give a polynomial-time algorithm that given any set system
(𝑈 , F ) with𝑚 sets and a weight function𝑤 : 𝑈 → R≥0 finds an 𝜀-net of size at most 𝑂 ( (log𝑚)/𝜀).

Hint: Check if a greedy algorithm (or even a randomized algorithm) works.



(b) (4 points) In this part, we will use the above algorithm for 𝜀-nets to construct a hitting set that is not
too large compared the size of the optimal hitting set.
Suppose you are given an algorithm 𝐸𝜀 that when given a set family (𝑈 , F ) and an associated weight
function 𝑤 , finds an 𝜀-net of size 𝑇 (𝜀,𝑚). (This could be, for instance the algorithm designed in
part 3a).
Consider the following algorithm that uses 𝐸𝜀 to compute a hitting set for F :

Data: (𝑈 , F ) - a set system
Result: A hitting set 𝐻

1 Set𝑤 (𝑒) ← 1 for all 𝑒 ∈ 𝑈 ;
2 repeat
3 Use algorithm 𝐸𝜀 to find an 𝜀-net 𝐻 for (F ,𝑤);
4 Let 𝑆 be any set in F such that 𝑆 ∩ 𝐻 = ∅. If no such set exists, set 𝑆 ← ∅;
5 for all elements 𝑒 ∈ 𝑆 do
6 𝑤 (𝑒) ← 2 ·𝑤 (𝑒) (i.e., double its weight);
7 end
8 until 𝐻 is a hitting set for F ;
9 Ouput 𝐻 ;

Algorithm 1: Hitting Set Algorithm From 𝜀-nets
Let 𝑐 be the size of an optimal hitting set 𝑆∗ of (𝑈 , F ) (note that it is NP-hard to determine this
quantity). Show that if 𝜀 < 21/𝑐 − 1, then the above algorithm terminates within

log2
(
𝑛
𝑐

)
1
𝑐
− log2 (1 + 𝜀)

iterations of the return loop at which point it outputs a hitting set of size at most 𝑇 (𝜀,𝑚).
One such choice of 𝜀 is 1/2𝑐, which gives a bound of 𝑂 (𝑐 · log(𝑛/𝑐)) on the number of iterations.

Hint: Compare the weight 𝑤 (𝑈 ) of the universe𝑈 and the weight 𝑤 (𝑆∗ ) of the optimal hitting set 𝑆∗ at the end
of each iteration of the return loop.

(c) (1 point) The above algorithm requires knowledge of the optimal hitting set size 𝑐 . Use a doubling
argument or otherwise, to give an efficient 𝑂 (log𝑚)-approximation algorithm of the size of the
optimal hitting set size

4. [3-AP-free sets in F𝑛3 via the polynomial method] (10 points)
Let 𝐴 ⊆ F𝑛3 . We say that 𝐴 is 3-AP-free if there does not exist 𝑥 ≠ 𝑦 ∈ F𝑛3 such that 𝑥, (𝑥 + 𝑦)/2, 𝑦 ∈ 𝐴

(i.e., 𝐴 does not contain any non-trivial arithmetic progression of length 3). In this problem, we will use
the polynomial method to show that any 3-AP-free set is of size at most 𝑐𝑛 for some fixed 𝑐 ∈ (2, 3).

(a) (2 points) Let 0 ≤ 𝑑 ≤ 2𝑛. Let𝑉𝑑 (𝑛) denote the set of all functions from F𝑛3 to F3 expressible as degree
𝑑 polynomials. In other words, if 𝑓 ∈ 𝑉𝑑 , then 𝑓 can be expressed as a polynomial of the form

𝑓 (𝑥1, . . . , 𝑥𝑛) =
∑︁

a=(𝑎1,...,𝑎𝑛 ) ∈{0,1,2}𝑛 :
∑
𝑎𝑖≤𝑑

𝑐a

𝑛∏
𝑖=1

𝑥
𝑎𝑖
𝑖
.

Let𝑚𝑑 (𝑛) = dim(𝑉𝑑 (𝑛)). Prove the following facts about𝑚𝑑 .
i. 𝑚2𝑛 (𝑛) = 3𝑛 .
ii. For all 0 ≤ 𝑑 ≤ 2𝑛,𝑚2𝑛−𝑑 (𝑛) = 3𝑛 −𝑚𝑑 (𝑛).
iii. There exists 𝑐 ∈ (2, 3) such that𝑚2𝑛/3 (𝑛) ≤ 𝑐𝑛 .

(b) (3 points) Let 𝐴 ⊆ F𝑛3 be 3-AP-free.
i. Show that if𝑚𝑑 > 3𝑛 − |𝐴|, then there exists a non-zero 𝑓 ∈ 𝑉𝑑 such that 𝑓 (x) = 0 for all x ∉ 𝐴.
ii. Strengthen the above to show that if𝑚𝑑 > 3𝑛−|𝐴|, then there exists an 𝑓 ∈ 𝑉𝑑 such that 𝑓 (x) = 0

for all x ∉ 𝐴 and 𝑓 is non-zero on at least (𝑚𝑑 + |𝐴| − 3𝑛) points in 𝐴.
iii. Let 𝑓 : F𝑛3 → F3 such that 𝑓 (x) = 0 for all x ∉ 𝐴. Define the matrix 𝑀𝑓 ∈ F𝐴×𝐴3 as follows:

𝑀𝑓 (𝑥,𝑦) := 𝑓 ((𝑥 +𝑦)/2) for all 𝑥,𝑦 ∈ 𝐴. Show that the rank of𝑀𝑓 is exactly |{x ∈ 𝐴|𝑓 (x) ≠ 0}|.



(c) (4 points) Let𝑔 : F𝑛3 → F3 be a function in𝑉𝑑 (𝑛). Consider thematrix𝑀𝑔 given by𝑀𝑔 (𝑥,𝑦) := 𝑔(𝑥+𝑦).
Prove the following facts about the rank of the matrix𝑀𝑔.
i. rank(𝑀𝑔) ≤ 𝑚𝑑 (𝑛).
ii. Strenghten the above to show that rank(𝑀𝑔) ≤ 2 ·𝑚𝑑/2 (𝑛).

Hint: Recall that if a 𝑡 × 𝑡-matrix𝑀 can be decomposed as𝑀 = 𝑈𝑉 where𝑈 is a 𝑡 × 𝑟 -matrix and 𝑉
is a 𝑟 × 𝑡 matrix (or equivalently there exists 2𝑡 𝑟 -dimensional vectors u1, . . . , u𝑡 , v1, . . . , v𝑡 such that
𝑀 (𝑖, 𝑗) = 𝑢𝑇𝑖 𝑣𝑖 ), then rank(𝑀) ≤ 𝑟 .

(d) (1 point) Conclude from the above parts that if 𝐴 is 3-AP-free, then |𝐴| ≤ 𝑚2𝑛−𝑑 + 2𝑚𝑑/2. Setting
𝑑 = 4𝑛/3 show that |𝐴| ≤ 3𝑐𝑛 where 𝑐 is as in Part 4(a)iii


