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Lecture Notes on Algebra
Lecturer: Madhu Sudan Scribe: Madhu Sudan

These notes describe some basic algebraic structures that we will encounter during this course,
including:

— Finite fields of all sizes (and shapes).
— (Univariate and multivariate) polynomials over finite fields in one or more variables.

— Vector spaces over finite fields (or Linear algebra).

Unfortunately, there is no simple order in which one can present all these objects — their presentation
is interleaved for essential reasons. Polynomials are typically defined with coefficients from fields.
Fields are constructed by constructing polynomial rings and then reducing them modulo irreducible
polynomials. Linear algebra needs to be based on fields. But it also provides convenient ways of
looking at fields. We will try to describe all these connections below. Mostly we are interested in
computational and combinatorial consequences. We would like to see how to represent fields so as
to perform elementary manipulations efficiently. We would also like to know if some computational
problems from linear algebra can be solved efficiently. We are also interested in combinatorial
questions such as: How often can a polynomial evaluate to zero? How does one prove that this can
not happen too often? The notes below present answers to such questions.

1 Main definition

Since we are interested in polynomials over fields, it would be nice to know the basic algebraic
structures which unify both fields and polynomials. Commutative rings are such structures and we
define them below.

Definition 1 (Commutative Rings and Fields) A commutative ring is given by a triple
(R,+,+), where R is an arbitrary set containing two special elements 0 and 1 and +,- are func-
tions mapping R X R to R satisfying the following properties for every triple a,b,c € R:

Associativity: Both + and - are associative, i.e., a+(b+c) = (a+b)+c and a-(b-¢) = (a-b)-c.
Commutativity Both + and - are commutative, i.e., a+b=b+a anda-b=1">"a.
Distributivity: - distributes over +, i.e., a-(b+c)=a-b+a-c.

Identities: a+0=a anda-1=a.

Additive Inverses: For every a € R, there exists an additive inverse —a € R such that
a+(—a)=0.

If in addition, every non-zero element has a multiplicative inverse, then R is a field. (Le., for every
a € R — {0}, there exists an a™' € R such thata-a~1 =1.)
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Often we will skip the operators + and - and simply refer to the set R as the ring (with addition
and multiplication being specified implicitly). Commutative rings form the foundation for much of
the elegant results of algebra and algebraic geometry. Within the class of commutative rings, one
can get nicer and nicer domains (rings with nicer and nicer properties) and this culminates with the
notion of a field. Informally, rings allow the operations of addition, subtraction and multiplication,
while a field also allows division. We will see some of the intermediate notions later. Right now we
turn to polynomials.

2 Polynomial rings

Given any ring R, and a symbol ¢ (usually referred to as an indeterminate, one can create a ring
RJt] of polynomials over R. Such a ring inherits most of the nice properties of the underlying ring.
Below is a formal definition of the ring of polynomials.

Definition 2 Given a commutative ring R and indeterminate t, the set R[t] has as its elements finite
sequences of R, with the sequence f = {fo,..., fi) being interpreted as the formal sum Zi’:o fith.
Addition and multiplication over R[t] are defined accordingly, i.e., if f = (fo,...,f1) and g =
(90,---,gk) withl < k then f+g = (fo+9go0,---,fi +9,91+1,---,9k) and f-g = (ho,..., hits
where h; = Z;:o figi—j. For a polynomial f € RJt], given by f = 2?20 fit!, we define its degree,
denoted deg(f) to be the largest index d' such that fy is non-zero.

Proposition 3 For every commutative ring R and indeterminate t, R[t] is a commutative ring.

The most natural ring of polynomials that we will encounter are the ring of polynomials over some
(finite) field F', say F[z]. Now we can adjoin a new indeterminate y to this ring to another ring
F[z][y]. We will use the notation F[z,y] to denote such a ring whose elements are simply poly-
nomials in two variables z and y. In particular Fly][z] = F|z][y] = F|z,y]. Continuing this way,
adjoining m variables 1, ... ,z,, to F for some integer m, we get the space of m-variate polynomials
Flzy,...,zpy]. Tt is also possible to define this ring directly and we do so in order to define various
notions of degree associated with it.

Definition 4 (Multivariate polynomial rings) Given a ring R and indeterminates 1, ... ,Tp,
the m-variate polynomial ring over R, denoted R[z1,... ,zn] has as its elements finite sequences
indexed by d-tuple of non-negative integers f = (fi, ... i,.)o<i;<a;. The element represents the formal
sum Zil,._ i firreoim m’f - glm - Addition and multiplication are interpreted appropriately. The ;-
degree of f, denoted degx]_(f), is the largest index d;- such that there exist indices iy,... ,im Such
that fi, .. ;1 .dji;1.....im 18 mon-zero. The total degree of f is the largest sum Z;nzl ij, among
tuples iy, ... ,im for which fi .. . 1is non-zero.

We will come back to multivariate polynomials later. Right now we move on to descriptions of fields
and this will need univariate polynomials.

3 Finite Fields

Fields are the nicest of algebraic structures. that allow all sorts of manipulations efficiently. In
particular we can not only define addition and multiplication, but also subtraction (a —b = a+ (—b))
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and division (a/b = a-b~'). The most familiar examples of fields are the field of rational numbers Q
and the field of real numbers R. For our purposes fields that have only a finite number of elements
are much more important. The following theorem tells us what kind of finite fields exist.

Theorem 5 For a positive integer q, a field F of cardinality q exists if and only if ¢ = p' for a
prime p and positive integer [.

We use the notation F, to denote the field with ¢ elements. Since we eventually intend to use the
fields computationally, we will need to know a little more about such fields. Specifically, given ¢ how
can one represent the elements of the field F,? Given (such representations of elements) «, 8 € F,,
how can we compute (representation of) a+ 8, a — 3, a - 8 and a/B? We answer these questions
below:

Prime fields. If ¢ = p for a prime p, then the field F, is simply the field of arithmetic modulo
p. Thus the natural way to represent the elements of F, is using the integers {0,... ,p — 1}. It is
easy to carry out addition, multiplication, and subtraction in the field can be carried out in time
poly log . Fermat’s little theorem also tell us that if 3 # 0, then ~! = BP=2( mod p) and by using
a fast modular exponentiation algorithm, 3~! can also be computed in time polylogq. (Actually
addition, multiplication, and subtraction can be computed in time O(log gpoly log log q).)

Before going on to describing fields of cardinality p!, where > 2, we need to define the notion of
irreducible polynomials.

Definition 6 (Irreducible polynomials) Given a ring F[t] of polynomials over a field F', a poly-
nomial f € F[t] is said to be reducible if there exist polynomials g and h in F[t] of degree at least
one such that f = g-h. f is said to be irreducible if no such polynomial exists.

We are now ready to describe the remaining finite fields.

Prime power fields. Let g = p' for prime p and positive integer I. Suppose f is an irreducible
polynomial of degree I in F, [t]. Then F, = F,[t]/(f), i.e., the ring of polynomials in ¢ reduced modulo
f. Specifically, the elements of F,[t]/(f) are polynomials of degree strictly less than I. (Note that
there are exactly p! such polynomials.) Addition is straightforward polynomial addition. (Note that
the degree of the sum is less than [ if both polynomials have degree less than [.) Multiplication is
performed modulo f, i.e., given g and h we compute p = gh using regular polynomial multiplication
and then compute the remainder when p is divided by f. This is a polynomial  of degree less than
I and we define g-h to be r in the “field” F,[t]/(f). Fermat’s little theorem applied to groups shows
that ¢—! = ¢g?72 in this field also.

Exercise: Verify that I, as described above satisfies the definitions of a field.

The above construction is would not be very useful, if it weren’t for the fact that irreducible poly-
nomials exist and can be found efficiently.

Theorem 7 (cf. [5]) For every prime p and positive integer 1, there exists an irreducible polynomial
of degree l over F,[t]. Furthermore such a polynomial can be found deterministically in time poly(l, p)
and probabilistically in expected time poly(l,logp).
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Given the above we see that we can pre-compute a representation of a field in expected time poly log g
and then perform all field operations deterministically in time poly log q. In certain scenarios it may
be useful to have irreducible polynomial explicitly. In F»[¢] an infinite sequence of such polynomials
is known (cf. [6, Theorem 1.1.28]).

3

Theorem 8 For every | > 0, the polynomial 223" + 23 £ 1 is irreducible over s [z].

Thus we can construct fields of size 223 for every integer [ totally explicitly. Thus if we were
interested in a field of size at least ¢ = 2™, and m is not of the form 2 - 3!, we can find an m' of
the right form with m’ < 3m and the resulting field would be of size less than ¢*, which is only
polynomially larger than our lower bound.

4 Evaluations of polynomials

We introduced polynomials merely as formal sums — syntactic expressions with no semantics asso-
ciated with them. Evaluations associate some semantics to them.

Definition 9 The evaluation of a polynomial f = Z?:o fit' € R[t] at the point a € R, denoted

f(a), is given by 2?20 fiat. Ewvaluations of multivariate polynomials are defined analogously; the
evaluation of f € Rl[x1,...,Tm] and a = (aq, ... ,an) is denoted f(a) or f(ai, ..., am).

Evaluations carry natural semantics, i.e., f(a) + g(a) = (f + g)(a) and f(a) - g(a) = (f - g)(a). We
are interested in knowing how often a polynomial can evaluate to zero. To answer this question, we
first introduce the notion of division of polynomials.

Proposition 10 (Division Algorithm) Given polynomials f,g € F|[t] for some field F, there
exists a unique pair of polynomials q and r (for quotient and remainder) in F[t] satisfying deg(r) <
deg(g) and f = g-q +r. Further the polynomial q satisfies deg(q) = deg(f) — deg(g) if deg(f) >
deg(g).

The name of the proposition above is due to the fact that the proposition is proved by simply
performing long division in the usual manner. Applying the above proposition with ¢ = t — « for
some a € F, we get that f = ¢- (¢t — @) + r where r has degree zero and hence r € F'. Furthermore
evaluating the expression above at « yields f(a) = ¢(a) - (& — @) + r, and thus r = f(«). Thus we
have f = ¢q- (t — a) + f(«) for some ¢ of degree deg(f) — 1. The following proposition then follows.

Proposition 11 The polynomial t — a divides f if and only if f(a) = 0.

Thus we get that if distinct elements «;. ... ,ay are all zeroes of a polynomial f (i.e., f(a;) =0 for

i € [k]) then the polynomial h = Hle(t — «;) divides f. Since the degree of h is k it follows that

the degree of f is at least k. So we get;:

Theorem 12 For a field F, an element f € F[t] evaluates to zero on at most deg(f) points in F.
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We now move onto estimating the number of zeroes of multivariate polynomials. To do so, we need
a variant of Theorem 12 for multivariate polynomials. We obtain such a result by expanding the
scope of the theorem above. We first need a definition.

Definition 13 A commutative ring R is an integral domain if it does not contain any zero divisors,
i.e., there do not exist non-zero elements a,b € R such that a-b= 0.

Note that the rings F[z1, ... ,zn] are integral domains. Integral domains are of interest in that they
are almost as nice as fields. Specifically, the following construction gives a field that contains any
given integral domain.

Definition 14 For an integral domain R, its field of fractions, denoted R, is the ring whose elements
are pairs (a,b) with a € R and b € R— {0}, modulo the equivalence (a,b) = (¢,d) if a-d="b-c. The
element (a,b) is interpreted as the ratio a/b. Addition and multiplication are defined analogously
with (a,b) + (¢,d) = (a-d+b-¢,b-d) and (a,b) - (¢,d) = (a-c,b-d).

The following proposition is easily verified.
Proposition 15 For every integral domain R, R is a field. Further, R is contained in R.

The field of fractions of F|zi,...,%,] is usually denoted F(z1,...,z,,) and its elements are the
rational functions (ratios of polynomials) in z1, ..., Zp,.

The following lemma is now an easy consequence of the notions of integral domains, fields of fractions,
and Theorem 12.

Lemma 16 The polynomial g(x) € FI[x] is a zero of the polynomial f(x,t) € FI[x]|[t] (i.e.,
f(x,9(x)) = 0) if and only if t — g(x) divides the polynomial f(x,t). Hence the polynomial f
has at most deg,(f) zeroes in Flx1,... ,%m].

Proof The proof is simple. We simply view f as a polynomial in K[t], where K = F(z1,... ,Zp)
is the field of fractions of Flxi,...,xy]. Since g € K, it follows that f(g) = 0 iff t — g divides
f (from Proposition 11). Furthermore, Theorem 12, applied to f € K[t], says that f has at most
deg,(f) roots in K, which contains Fzy,... ,2,]. B

The following theorem is now an easy inductive consequence of Lemma 16.

Theorem 17 A non-zero polynomial f € Fy[z1,... ,2p)] is non-zero on at least [T}~ (¢ — deg,, (f))
points in FJ".

Proof We start by viewing F,[z1,...,%n] as a polynomial in F,[z1,...,Zm_1][zm]. By
Lemma, 16, there are at most deg, (f) choices of ay € Fylz1,... ,Tm-1] and hence in F, such
that f(z1,...,Zm—1,am) = 0. For an a,, such that f(z1,...,Zm—1,am) # 0 (and there exist
q—deg, (f)such ay,’s),let fo, (z1,... ,2m 1) = f(Z1,... ,Tm—1,n). Since f,,, is a polynomial
in Flzy,... Ty 1] with deg,.(fa,,) < deg,.(f), it follows (by induction on m) that f,,, is non-zero
on at least [T, " (¢ — deg,, (f)) points in Fy»~!. The theorem follows. I

Notes on Algebra-5



We can derive other variants of the theorem above. One such variant that is quite popular in the CS
community, often termed Schwartz’s lemma or the DeMillo-Lipton-Schwartz-Zippel lemma [1, 4, 7],
is the following:

Theorem 18 A non-zero polynomial f € Fy[x] of total degree d is zero on at most a d/q fraction
of the points in IF* .

Remark: Both Theorems 17 and 18 can also be extended to count the number of zeroes in some
space of the form S™ for S C F,, but we don’t do so here.

Proof The proof again goes by induction, but this time in the reverse order. Let d,, be the
degree of f in x,, and let f,, € F[21,...,2Zm_1] be the coefficient of 2% in f, where we view f as
an element of F[z1,...,Zm_1][Tm]. Note that the total degree f,, is at most d — d,,. For a random
choice of a1, ... ,am—1 € Fy, by induction we have that the probability that fn(a1,...,am-1) =0
is at most (d — d,,)/q. If this event happens, then we give up (and assume f(aq,...,Qnm—1,am) =0
for all a,y,). Else we get a polynomial g(xm)déff(al, -ve s Qm_1,Ty) in one variable of degree d,,,. By
Theorem 12 a random choice of ay, is a zero of g with probability at most d,,/q. For f(ai,... ,an)
to be zero, it must be the case that f,(a1,...,am—1) =0 or g(ay,) = 0, Thus by the union bound,
we find that f(ay,...,qm,) = 0 with probability at most (d — d,,)/q+ dwm/q=d/q. B

Finally we describe yet another variant that was the version used in the classical Reed-Muller codes.

Theorem 19 If f € Fy[z1,... 2] has individual degree at most | in each variable and has total
degree d = Ik + 7, then it is non-zero on at least (1 —1/q)*(1 —r/q) fraction of the inputs from F".

The proof of the theorem is a simple variant of the two proofs above and so we won’t repeat it. It
is more interesting to see a consequence. Suppose we have a multilinear polynomial of total degree
k over Fy. Then it is non-zero on at least a 27* fraction of the domain Fj*. This is exactly the kind
of result that was used in the original Reed-Muller codes.

5 Vector spaces over fields

Here we relay some basic definitions and results about linear algebra that form the basis of linear
codes.

We will be considering subspaces of the vector space I/ , which is endowed with an addition operator
“+” and a scalar-vector product “”, where if x = (z1,... ,2,) and y = (y1,... ,yn), then x +y =
(1 + Y1, ,xp +yp) and for a € Fy, a-x = (a - z1,... ,a - Tp).

Definition 20 (Linear subspace) A subset L C [} is a linear subspace of I} if for everyx,y € L

and every o € Fy it is the case that x +y € L and a-x € L.

Definition 21 (Basis, Dimension) The span of vectors X1, ... ,Xy, denoted span(xy,... ,Xg), is
the set {Zle - X | oq,...,ar € By}, A set of vectors x1,...,Xy is linearly independent if
Zle a; - x; = 0 implies a1 = -+ = ar = 0. For a linear subspace L C T, a set of vectors
X1,...,Xx € L forms a basis if the vectors are linearly independent and their span equals L. The
dimension of L, denoted dim(L), is the size of the largest basis for L.
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Playing around with the definitions, one can show easily that the span of a set of vectors is a linear
subspace, that every linear subspace has a basis, and that all bases for a given subspace have the
same size. One way to describe a linear subspace is to give its basis. A different way is to give
constraints satisfied by elements of the subspace. We move towards this notion next. To do so, we
need the notion of an dot product of vectors. For x = (z1,... ,z,) and y = (y1,... ,Yn), the dot
product of x and y, denoted (x,y), equals > 1" | z;y;.

Definition 22 (Null Space) For a linear subspace L C I, it null space, denoted L*, is the set
{y eFy | (x,y) =0}

Proposition 23 The null space of a linear subspace L C Iy is also a linear subspace of I} and has
dimension n — dim(L).

A full proof of this assertion turns out to be somewhat complicated, and seems to involve proving
the well-known but non-trivial fact that the row rank of a matrix equals its column rank. Instead
of proving this, we will give a sense of how the proof goes, by essentially giving an algorithm to
compute the basis of the null space L', given a basis of the space L. The description in the following
paragraph is not self-contained — reading this paragraph is not suited for all audiences. A better
approach may be to read a chapter on linear algebra from a text on algebra (e.g., [3]).

Suppose x1,...,X; form a basis for L. Let G € ]F’;X” be the matrix whose ith row is x;. Since
Xi,...,X are linearly independent, it follows that the rank of G is k. (Note that we didn’t really
define the rank of a matrix — there will be other such transgressions in this paragraph.) In particular
this means there is an invertible k& x k submatrix in G. By permuting the columns of G, we can
write it as G = [A|B] where A is an invertible square matrix and B is the rest. Note that we are
interested in a basis of the space L+ = {y | yG = 0}. Writing all vectors y € [y asy = (ya,¥B)
where y4 € F¥ and yp € F77%, we get y4A + ypB = 0 for all y € L. This essentially yields
L+ ={(-ygBA ', yp)|lys € ngk}, Taking yp to be all the unit vectors gives n — k vectors that

generate L= .

The correct way to think of the null space L' is that its members give linear constraints on the
members of L. E.g., the vector y € L' enforces the constraint Z?:l y;x; = 0 on the vectors x in
L. Since it suffices to satisfy the constraints given by any basis of L+ (the other constraints get
satisfied automatically), the basis of L+ gives an alternate succinct representation of L.

We now move on to computational versions of the above results: Most of these computational results
just build on the essential fact that Gaussian elimination works over any field (and not just rationals
or reals or complexes).

Theorem 24 Given a matriz G whose rows are the wvectors xi,...,x; € T2, let L =

q’
span(Xq,...,Xx). Then, the following problems can be solved in time O((n + k)?):
1. For n =k, compute the determinant of G.
2. Compute the rank of G.

3. If rank G =k, then a pseudo-inverse matriz G~' such that GG = I, where I, is the k x k
identity matriz.

4. Given a vector b € F, compute a vector x and a matriz H such that the set {zy =x+yH |y}
is the set of solutions to zG = b if such a solution exists.
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6 Representing fields by matrices

We have already encountered one representation for element of a field F,, where ¢ = pt for some
prime (power) p — namely, the elements of [F, are polynomials over F,. However it is often to know
about other representations. Here we describe two (actually one and a half) representations.

The first representation is only semi-adequate in that it describes how to do addition in Iy, but not
how to multiply. But it is useful to get to the second representation. Further it is often useful to
think of the two simultaneously. We now start with the simple representation.

Fields as vector spaces. A simple way to think of F; is as IE‘; - i.e., field elements are just vectors
over F,, and field addition is just vector addition. Formally, there is an invertible transformation L :
F, — F,, that o € F,; is represented by the element L() € F,. such that L(ar+ 8) = L(a) + L(f).
However this representation does not give a clue on how to do field multiplication.

Field elements as linear transformations. One way to think of a field element is that the
element « defines a map 8 — «a - 3. Now if we represent § by its linear representation, then we
get that « is a linear map from F, to F,. In other words, if we fix the linear representation L,
then corresponding to a, we can define a map M, : F, — F,, with M,(L(8)) = L(a - B). Note
that this map satisfies My (L(8) + L(7)) = My (L(8)) + My (L(7)). Since this is a linear map, this
says there is a matrix My € FF** such that My(x) = xM,. Furthermore, in this case we have
Ma, 0, = My, - M,,. and My, 14, = My, + M,,. Thus the transformation o — M, maps Iy
to IE";X’“ and has the property that addition and multiplication in the field are just addition and
multiplication of matrices! This representation (of & by M, ) can be quite useful at times.

7 Conclusions

Not all the descriptions above were intended to be complete. The idea is to list facts that (a) are
true and (b) are assumed to be true in this course. Hopefully we won’t use stuff that is not in these
notes — but if we do we will try to make explicit note of this later. If you are planning to learn from
this class you should either (a) be completely comfortable with assuming the facts stated, or (b) read
appropriate algebra texts to review the material on fields and linear algebra. Some recommendations
(this may be expanded later) include the text by Lidl and Neidereitter on finite fields [2] and by
MacLane and Birkhoff on algebra in general [3].
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