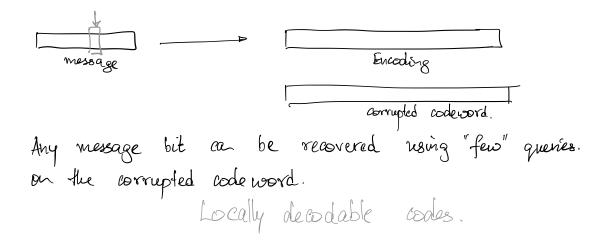
Pseudorandomness - Lecture 18.
Agendar - PRGs from weaker assumptions
(an exposition).
Recape > G:
$$\{0,1\}^d \rightarrow \{0,1\}^m$$
 for a class C. (typiculy, size m
 $\forall A \in C$
 $\left| \sum_{\alpha \in V_{M}} [A(\alpha)] - \sum_{\gamma \in V_{M}} [A(G(\gamma))] \right| \leq C.$
> An explicit REG \Rightarrow obviousdomisation in \approx poly(\mathbb{C}^d, m) time.
> An explicit REG \Rightarrow obviousdomisation in \approx poly(\mathbb{C}^d, m) time.
> An explicit REG \Rightarrow obviousdomisation in \approx poly(\mathbb{C}^d, m) time.
> $\{h_{\gamma}: \{0,1\}^{\sim} \rightarrow \{0,1\}^{\sim}\}$ is chard to guess for
size $\mathcal{S}(x)$ if for any arout $C_{\alpha}: \{0,1\}^{\sim} \rightarrow \{0,1\}$
> $g_{\alpha}:\mathbb{R} \subseteq C(\alpha) = h_{\alpha}(\alpha)] \leq \frac{1}{2} + C$
> Them [Nissan-Wigdersen]: If there is a family g friz
 $\{h_{\alpha}: \{0,1\}^{\sim} \rightarrow \{0,1\}^{\sim}\}$ that is compatable in d times
that is hard-to-guess for size m etts
G: $\{0,1\}^{\sim} \rightarrow \{0,1\}^{\sim}$
 $right d(m) = O(\frac{1}{\log m} \cdot (S^{\sim}(m^{\circ}))^{\circ})$
If $S(x) = 2^{T/100} \Rightarrow S^{\sim}(m^{\circ}) - \log\log(m^{\circ})$
 $S(x) = 2^{(T)} \Rightarrow S^{\sim}(m^{\circ}) - (\log m^{\circ})^{\circ}$

 $f^{\oplus k}(\mathcal{X}^{(1)}, \mathcal{X}^{(k)}) = f(\mathcal{X}_1) \oplus \cdots \oplus f(\mathcal{X}_k)$ is $E + (1-8)^{k}$ - strongly hard to grees for size $5 = O(\epsilon^{2}s^{2}s)$ of Finding a weakly hard for is sufficient as we can "boost" the hardness. $h_{o} \{ o_{s}(3^{n} \rightarrow \beta o_{s}(3^{k})) \neq h_{o} \}$ Might be easier to find multi-output hard fins. $f \in \{o, i\}^m \rightarrow \{o, i\}^k$ Lemma [Goldreich-Levin] Let $g: \{o_{,1}\}^m \times \{o_{,1}\}^m \rightarrow \{o_{,1}\}$ given by $g(x, r) = \langle r, f(x) \rangle \mod 2$. Then, if f is weakly hard, then g is strongly hard. . Finding a weakly hard multi-output for is sufficient. A different perspective with approx computation. 2.7 {0,13_ fo {o,1} (o,1) $C \in \{o_{\mathfrak{I}}\}^{\mathfrak{M}} \rightarrow \{o_{\mathfrak{I}}\}$ W these two vectors differ in ≤ 103 . $\mathcal{P}_{0}\left[(02) = f(02)\right] \geq 90\%$ that approx. f 90%. Can we "amplify" a single mistake into "many" Smell like an error correcting disagreements?

f:

$$C \circ \underbrace{\overline{z}}_{\overline{z}} \underbrace{zz}_{\overline{z}} \underbrace{zz}_{\overline{z}}$$

Le agrees with \tilde{f} an 90%.
Thun, if the code is efficiently
decodable, then we can "decode" f
Using \tilde{C} not so fast.
Suppose $\tilde{f} = \text{Enc}(f)$, and \tilde{C} is a sige s circuit
that satisfies $Po[\tilde{C}(y) = \tilde{f}(y).] \ge 1-\varepsilon$.
Ne would to build a circuit C (not too large)
that nees \tilde{C} and computes f correctly every where.
Input to C : $z \in \{o,i\}^m$.
Ward to use the TT \tilde{g} \tilde{C} spaningly



Leves There are codes
$$\operatorname{Enc}: [0,3^{L} \rightarrow [0,3^{L'}]$$
 with
 $L' = \operatorname{poly}(L)$ that locally decodable from Y_{50} errors.
roing just $\operatorname{polylog}(L)$ many queries.
Core Suppose for $[0,1]^{M} \rightarrow [0,1]$ is any fin, and say
 $\operatorname{Enc}(f) = \tilde{f}: [0,1]^{D(m)} \rightarrow [0,1]$. Then, $\#$ given any size s
eircuit \tilde{L} such that $P_{S}(\tilde{L}(Y) = \tilde{f}(Y)] \ge 1 - \frac{1}{50}$, we
can build a circuit C of $\operatorname{size} \le 5$. $\operatorname{poly}(m)$
that exactly computes f.
 $f - \operatorname{wort}$. case
 hard .
 $f = \operatorname{Enc}(f)$
is $Y_{50} - \operatorname{weably}$ hard.
 $\operatorname{K}(f)$
 Fell^{k} is strangly
hard

Thm: [Impagliazzo-Wigderson] Suppose h:
$$\{o,i\}^* \rightarrow \{o,i\}$$
 is
a language in $E = TIME(2^{O(n)})$ that cannot
be computed by circuits of size $S(n)$.
Then
BPP $\subseteq TIME(2^{O(d(n))}, poly(n))$
where $d(n) = S^{T}(poly(n))^{T}/log(n)$.

(same trade-offs like in NW).
... J. there are "hard functions", then randomness is "easy!
Other PRGs from hard functions:
Then [Umans]: Given a for f:
$$\{0,1\}^{\log n} \rightarrow \{0,1\}$$
 with
Grewit complexity > s, there is a PRG
Gg: $\{0,1\} \rightarrow \{0,1\}^m$ against circuits ?
Size m: $s^{2(1)}$.
(optimal hardness-randomness trade offs).
Gg (y) = $(f(y), f(A_y), f(A_y), \dots, f(A_y^m))$
roughy...
Do PRGs imply hardness? Yes! Pset 3.
Next class: What about PRGs against all tests?
ie $\int E[A(x)] - E[A(G(y))] | \leq \epsilon$
for all As $\{0,1\}^m \rightarrow [-1,1]$?
 $\int G(U_d) \stackrel{TV}{\approx} U_m$. $\rightarrow \text{Extractors.}$
contracting randomness

from weak sources.