Pseudorandomness: Lecture 23.
Agenda: - Ranney graphs
- An exposition g aust.
g 2. cource extractors.
Recape - Extractors: Ext: [N] × [D]
$$\rightarrow$$
 [M]
is a (k,e)-extractor if for every k-source x,
Ext(X, U) ~ Um.
Tone [GUV] For all k≤n EN, QE>O, Have is an
explicit (k,e)-extractor Ext: [N]×[D] \rightarrow [M] with
m - (1-u)k + Ollog Me) and d: Ollog Me)
ID
[N]
- Strong - extractors s (Ext(X,Y),Y), ut ~ Uma
IN
- Strong - extractors s (Ext(X,Y),Y), ut ~ Uma
Remsey Graphs:
Obse Any graph on 6 vertices either satains a clique or
ind. set g size 3.

Rn's For some k>0, is there an n large erough
such that any graph as n vertices nucle either
have a k-clique is a k-ind set?
R(k) = smallest n s.t all n-reverse graphs
have either a b-clique or a k-ind set.
How large is R(k)?

$$\lambda^{\frac{k}{2}}() \leq R(k) \leq 4^{\frac{k}{2}}/()$$
.
Rofn: A k-Ramsey graph is one that has no k-clique or
k-indigendent set.
A bipartile k-Ramsey graph is one with no K_{kxk outgraph
or no kxk indep. set.
As a matrix:
N Mode & Os & 1s s.t there is no
k×k submatrix that is constant.
How large can use make k?
3 such matrices for k= AbgN.
Can you find an explicit such matrix?
Stronger ask: Every K×k submatrix is nearly balanced.

The source Extractors:
The source Extractors:
Ext:
$$[N_1] \times [N_2] \rightarrow [M]$$

is a $(k_1, k_2, c) - 2$ -source ext
if for every k_1 -sire X_1 & k_2 -sire X_2
is a $(k_1, k_2, c) - 2$ -source ext
if for every k_1 -sire X_2 & k_2 -sire X_2
is X_1, X_2 indeps $Ext(X_1, Y_2) \xrightarrow{2} U$.
($k_1, k_2, c)$ -extractor with
a 1-bit output.
* or If we can build 2-source extractors, then we
can find Ramsey graphs.
History 8
Chox-Goldreich 88% ($\times \frac{N}{2}$, $\times \frac{N}{2}$)-extractor. $K = \sqrt{N}$.
Bourgain os : (> 0.49n, >0.49n)-extractor. $K = N^{0.49...}$
Raz os : (> 0.59n, clogn)-ext.
Chattopadhyay- : (polyboln), polyboln)- ext.
Zuckerman is
:
Li '16 : (logn bylogn, logn bylogn) $K \approx (logn)^{bylogN}$
extracts age bits.

If # bad players
$$\leq \sqrt{E}$$
, then Majority still works!
[Viola].
Can use arrange for this situation to happen?
Defn (Non-malleable extractors). Ext: [N] × [D] \rightarrow [M].
is a (t, k, e). n.m. ext if for every k-source X,
there is a set G \leq (D) & abusity \geq (t \leq) s.t
for every $y \in G$ and y_{13} , $y_{t} \in$ [D] $\setminus \{y\}$,
we have that $Ext(X, y)$, even conditioned on
 $Ext(X, y_{1})_{3}$., $Ext(X, y_{t})$, looks e-close to reniform.
[Dodis-Wichs]

$$[C2]: nmExt(X_{1}, *) = 0 t. Cannot work!(We haven't used source 2at all!)(C2]: nmExt(X_{1}, *) = 0 use x_2 to subsample 1 the function 1$$

$$\begin{split} & \text{nm} \mathbb{E} \mathbb{E} \left[\mathbb{N}_{1} \right] \times [\mathbb{D}] \to \left\{ \mathbb{O}_{2} \right\}^{m}, \quad \text{t-n.m. extractor. with error} \\ & \mathbb{E} \\ & \Gamma: \left[\mathbb{N}_{2} \right] \times \left[\mathbb{E} + 1 \right] \longrightarrow [\mathbb{D}], \quad a \quad (\mathbb{E} \mathbb{K}_{2}, \mathbb{E} \mathbb{D}) - \text{disperser} \\ & \mathbb{E} \\$$

Why should this work? D rows, and at most ED bad rows. (B) $\int_{0}^{[N_{1}]} \int_{D}^{[N_{1}]} \int_{D}^{[N_{1}]} \langle EK_{2}.$

Since
$$x_2 - X_2$$
, a k_2 -source, w.p. 1-E we will
"hit" a good row. : say row y.
o's nmExt (X,y) is E-close to reniform even cond.
on t other rows!
o's The parity for ensures that final output is close
to mightin.