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(css .413.1: pseudorandomness - lecture 28)

Prahladh Harsha*

TIFR, Mumbai

In these notes, we give a self-contained exposition of the beautiful result of Nima
Anari, Kuikui Liu, Shayan Oveis-Gharan and Cynthia Vinzant [ALOV19] that
the Glauber Dynamics on spanning trees of a graph mixes in polynomial time.
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1 glauber dynamics on spanning trees

Let G = (V, E) be an unweighted undirected connected graph. Let TG be the
set of spanning trees of G. Note that TG can be exponentially large compared
to the size of the graph (here let n := |V|). Consider the following random walk
on TG, more commonly referred to as the Glauber Dynamics on spanning trees.

• On input T ∈ TG

– Choose a uniformly random edge e ∈ T.
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2. high-dimensional expanders

– Set F← T \ {e}.

– Let A, B ⊂ V be the two components of the forest F.

– Choose a uniformly random edge e′ ∈ E(A, B).

– Set T′ ← F ∪ {e′}.

– Output T′

We will refer to this random walk on the state space TG as GDG. It is easy to
see that the stationary distribution for this walk is the uniform distribution
UTG

on TG, i.e., UTG
· GDG = UTG

.
In a remarkable coming together of ideas from Markov chain sampling and

high-dimensional expanders, Anari, Liu, Oveis-Gharan and Vinzant proved
the following theorem bounding the spectral-gap of the random walk GDG.The spectral gap γ of a ran-

dom walk is defined to be
1 −max{λ2, |λn|}.

1.1 theorem ([ALOV19]). γ(GDG) ≥ 1
n−1 .

This theorem proves that the spectral gap of the Glauber Dynamics is
at least inverse polynomially large (in n) even though the state space of the
random walk could be exponentially large in n. This immediately yields that
the Glauber Dynamics on TG mixes in polynomial time by the following well-
known theorem on the mixing time of random walks in terms of their spectral
gap.

1.2 theorem. Let P be a random walk with stationary distribution π and spectral
gap γ ∈ (0, 1). Then, the mixing time t(ε) of the random walk P is upper bounded
as follows:

t(ε) ≤ 1
γ

[
1
2

log
(

1
πmin

)
+ log

( 1
2ε

)]
.

This gives a fast algorithm to approximately sample a uniformly random
spanning tree in given undirected graph. The above Glauber dynamics hasWe remark that there are

other sampling algorithms
for spanning trees (c.f.,
the extremely clever and
cute sampling algorithm of
Broder [Bro89] and Aldous
[Ald90]).

the advantage that it verbatim extends to random walks on bases of a matroid.
Furthermore, the same approach can be used to give a bound on the modified
log-Sobolev constant of GDG, yielding even better bounds on the mixing time
of the random walk [CGM19]. However, for the purpose of these notes, we
will restrict our attention to sampling spanning trees of a given undirected
graph.

We begin with some preliminaries on high-dimensional expanders (HDXs).

2 high-dimensional expanders

A simplicial complex X is a down-closed collection of sets. We will refer to the
sets in X as faces. The dimension of a face s ∈ X is |s| − 1. The dimension of X,
denoted by dim(X), is the maximal dimension of any face s ∈ X. We let X(i)
denote the set of i-dimensional faces in X, also referred to as the set of i-faces.
Note that if X is non-empty, then X(−1) = {∅}. We will restrict our attention toNote that X(i) refers to the

set of (i + 1)-sized, and not
i-sized, sets in X. In partic-
ular, X(0) refers to the set of
singletons.
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pure simplicial complexes where all maximal faces have the same dimension,
namely dim(X).

Let X be a k-dimensional simplicial complex. The simplicial complexes
X we work with are typically accompanied with a probability distribution
Πk on the set of k-dimensional faces. If no distribution is explicitly specified,
we assume that the distribution is the uniform distribution on X(k). The
distribution Πk induces a joint distribution Π = (Πk ,Πk−1, . . . ,Π0,Π−1) on
X(k) × X(k − 1) × · · · × X(0) × X(−1) as follows: pick a k-face tk ∼ Πk, choose
a random ordering v1, v2, . . . , vk+1 of the k + 1 elements in tk and set ti−1 ←
ti \ {vi+1} for i ← k to 0. Then (tk , tk−1, . . . , t0, t−1 = ∅) ∼ Π. We will refer to the
pair (X,Π) as a weighted simplicial complex.

For each −1 ≤ i ≤ k, we define the function spaces C(i) as follows:

C(i) := {f : X(i)→ C}.

We equip these complex vector spaces C(i)’s with inner products as follows.
Given functions f , g ∈ C(i), the inner product 〈· , ·〉Πi

is defined as

〈f , g〉Πi
:= E

s∼Πi

[
f (s) · g(s)

]
.

We will drop the subscript Πi if the domain of the functions f , g are clear
from context.

2.1 definition (link). Let (X,Π) be a weighted simplical complex. Given
any face s ∈ X, the link of s, denoted by (Xs,Π

(s)), is the following weighted
simplicial complex.

Xs := {t \ s : t ⊃ s, t ∈ X}.

If s is an i-face then Xs is a (k − i − 1)-dimensional simplical complex. The
joint distribution Π(s) of the link Xs is the distribution Π conditioned on the
facing containing s. More precisely, for any −1 ≤ j ≤ k − i − 1, we have

Π
(s)
j (t′) :=

Πj+i+1(t′ ∪ s)∑
t∈X(j+i+1) : t⊃s

Πj+i+1(t)
.

Given a simplicial complex (X,Π) of dimension at least 1, the underlying
graph of X, also referred to as the 1-skeleton of X and denoted by G(X) , is the
(weighted) graph given by (X(0), X(1),Π1). There is a natural random walk
PG(X) on the vertices of this graph, induced by the edge distribution Π1. For
any u, v ∈ X(0),

PG(X)[u → v] :=
Π1({u, v})∑

e∈X(1) : e3u
Π1(e)

.

Thus, in the language of links, we have PG(X)[u → v] = Π
(u)
0 (v). Hence, for

any function f : X(0)→ C, we have PG(X)f : X(0)→ C given by the following
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2. high-dimensional expanders

expression.
(PG(X)f )(u) = E

v∼Π(u)
0

[f (v)] .

This gives the following nice expression for inner products of the form
〈f , PG(X)g〉 where f , g ∈ C(0).

〈f , PG(X)g〉 = E
u∼Π0

[
f (u) · (PG(X)g)(u)

]
= E

u∼Π0

f (u) · E
v∼Π(u)

0

[
g(v)

]
= E

u∼Π0

E
v∼Π(u)

0

[
f (u) · g(v)

]
= E
{u,v}∼Π1

[
f (u) · g(v)

]
.

A similar calculation for 〈PG(X)f , g〉 shows that 〈f , PG(X)g〉 = 〈PG(X)f , g〉. In
other words, PG(X) is self-adjoint (with respect to the inner product 〈· , ·〉Π0

) and
hence has a complete eigen decomposition and real eigenvalues. We denote
these eigenvalues by 1 = λ1(G(X)) ≥ λ2(G(X)) ≥ · · · ≥ λn(G(X)) ≥ −1.

The following proposition is an easy consequence of the definition of inner
product and link. Given any f : X(0)→ C and u ∈ X(0), let fu : Xu(0)→ C be
the restriction of the function f to Xu(0).

2.2 proposition. For f , g : X(0)→ C, we have

〈f , g〉Π0
= E

u∼Π0

[
〈fu , gu〉Π(u)

0

]
,

〈PG(X)f , g〉Π0
= E

u∼Π0

[
〈PG(Xu)fu , gu〉Π(u)

0

]
.

Proof.

〈f , g〉Π0
= E

v∼Π0

[
f (v) · g(v)

]
= E
{u,v}∼Π1

[
f (v) · g(v)

]
= E

u∼Π0

E
v∼Π(u)

0

[
f (v) · g(v)

]
= E

u∼Π0

[
〈fu , gu〉Π(u)

0

]
.

〈PG(X)f , g〉Π0
= E
{v,w}∼Π1

[
f (v) · g(w)

]
= E
{u,v,w}∼Π2

[
f (v) · g(w)

]
= E

u∼Π0

E
{v,w}∼Π(u)

1

[
f (v) · g(w)

]
= E

u∼Π0

[
〈PG(Xu)fu , gu〉Π(u)

0

]
.

We now study various types of random walks on the faces of the simplicial
complex.
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2.1. up-down and down-up walks

2.1 Up-down and Down-up walks

There are two natural walks we can define on a the set X(i) of i-faces.

• Up-Down walk P4i :

– On input s ∈ X(i)

* Choose a random t ∈ X(i + 1) from the distribution Πi+1 con-
ditioned on t ⊃ s.

* Choose a random v ∈ t and set s′ ← t \ {v}.
* Output s′

• Down-Up walk PO
i :

– On input s ∈ X(i)

* Choose a random v ∈ s and set r ← s \ {v}.
* Choose a random s′ ∈ X(i) from the distribution Πi condi-

tioned on s′ ⊃ r.

* Output s′

The stationary distribution for both these walks is the distribution Πi on
layer X(i). It is not hard to see that both these walks have a lazy component,
i.e., for each i-face s there is a non-zero probability that the walk returns to the
i-face s. We let P∧i and P∨i be the corresponding non-lazy walks. The up-down
walk P4i has a lazy 1/i+2 lazy component. More precisely, rhe up-down walk P4i
has the following nice decomposition into its lazy and non-lazy components. The down-up walk PO

i does
not necessarily have such
a clean decomposition in
terms of the corresponding
non-lazy walk P∨i . Why?

P4i =
1

i + 2
IX(i) +

i + 1
i + 2

P∧i . (1)

The (lazy) up-down and down-up walks can be further broken down in
terms of a down and up walks as follows:

• Up walk Ui→i+1:

– On input s ∈ X(i)

* Choose a random t ∈ X(i + 1) from the distribution Πi+1 con-
ditioned on t ⊃ s.

* Output t ∈ X(i + 1)

• Down walk Di→i−1:

– On input s ∈ X(i)

* Choose a random v ∈ s and set r ← s \ {v}.
* Output r ∈ X(i − 1)
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2. high-dimensional expanders

It follows from the definitions that P4i = Ui→i+1Di+1→i while PO
i+1 =

Di+1→iUi→i+1. An immediate consequence of this decomposition of the up-
down and down-up walks in terms of the up and down walks is the following.

If A and B are r × s and s ×
r matrices respectively, then
AB and BA share all non-
zero eigenvalues.

λ2(P4i ) = λ2(PO
i+1). (2)

This decomposition can be further used to show that the operators P4i and
PO
i+1 are positive semidefinite operators.

〈PO
i f , f 〉Πi

= E
s∼Πi

[
(PO

i f )(s) · f (s)
]

= E
s∼Πi

[
(Di→i−1Ui−1→if )(s) · f (s)

]
= E

s∼Πi

[
E

r∼Πi−1 : r⊂s

[
E

s′∼Πi : s′⊃r

[
f (s′)

]]
· f (s)

]

= E
r∼Πi−1

[
E

s′∼Πi : s′⊃r

[
f (s′)

]
· E
s∼Πi : s⊃r

[f (s)]
]

(3)

= E
r∼Πi−1

[
(Ui−1→if )(r) · (Ui−1→if )(r)

]
= 〈Ui−1→if , Ui−1→if 〉Πi−1

.

A similar calculation shows 〈P4i f , f 〉Πi
= 〈Di+1→if , Di+1→if 〉Πi+1

. Hence, both
these operators are positive semidefinite.

2.2 Link expansion

2.3 definition (Link-HDX). A weighted simplicial complex (X,Π) is said to
be a λ-onesided link-HDX if for every −1 ≤ i < dim(X) and s ∈ X(i), we have
that the underlying graph G(Xs) of the link (Xs,Π

(s)) satisfies λ2(G(Xs)) ≤ λ.

Similarly, (X,Π) is said to be a λ-twosided link-HDX if every face s sat-
isfies max{λ2(G(Xs)), |λn(G(Xs))|} ≤ λ (i.e, eigenvalue bounds on both sides).
However, we won’t need twosided link expansion for these notes.

The following theorem shows that if a simplical complex (X,Π) is a λ-
onsided-link-HDX, then the non-lazy up-down walk can be λ-approximated
by the down-up walk on the same layer (at least in one direction).

2.4 theorem ([KO20, DDFH18]). If (X,Π) is a λ-onesided-link-HDX, then for
every 0 ≤ i < dim(X), we have

P∧i − PO
i 4 λI.

Proof. For any function f : X(i)→ C and (i−1)-face r ∈ X(i−1), let fr : Xr(0)→
C be the restriction of f to Xr(0) defined as: fr(u) := f (r ∪ {u}).

To show that P∧i − PO
i 4 λI, it suffices to show that for every f ∈ C(i),
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2.2. link expansion

we have 〈(P∧i − PO
i )f , f 〉Πi

≤ λ〈f , f 〉Πi
. To this end, we first express the inner

products 〈P∧i f , f 〉 and 〈PO
i f , f 〉 in terms of links r ∼ Πi−1.

We begin with the inner product 〈PO
i f , f 〉. We know from (3) that

〈PO
i f , f 〉 = E

r∼Πi−1

[
E

s′∼Πi : s′⊃r
[f (s)] · E

s∼Πi : s⊃r
[f (s)]

]

= E
r∼Πi−1

 E
u∼Π(r)

0

[fr(u)] · E
v∼Π(r)

0

[fr(v)]


= E

r∼Πi−1

 E
v∼Π(r)

0

[
(Jr fr )(v) · fr(v)

] where (Jr fr )(v) := E
u∼Π(r)

0

[fr(u)]

= E
r∼Πi−1

[
〈Jr fr , fr〉Π(r)

0

]
. (4)

Observe that (Jr fr )(v) is independent of v and hence Jr fr = E
u∼Π(r)

0
[fr(u)] ·1Xr (0)

where 1Xr (0) : Xr(0)→ C is the constant one function on Xr(0).

We now move to the other inner product 〈P∧i f , f 〉. Let us first try to
understand the non-lazy operator P∧i . For any s ∈ X(i), we have

(P∧i f )(s) = E
u∼Π(s)

0

E
v∈s

f (s ∪ {u} \ {v}) = E
r∼Πi−1 : r⊂s

E
u∼Π(s)

0

f (r ∪ {u}).

Hence, Recall that G(Xr ) refers to
the underlying graph of the
link (Xr ,Π

(r)) and PG(Xr )
the random walk on this
graph.

〈P∧i f , f 〉Πi
= E

s∼Πi


 E
r∼Πi−1 : r⊂s

E
u∼Π(s)

0

f (r ∪ {u})

 · f (s)


= E

r∼Πi−1

E
{u,v}∼Π(r)

1

[
f (r ∪ {u}) · f (r ∪ {v})

]
= E

r∼Πi−1

E
{u,v}∼Π(r)

1

[
fr(u) · fr(v)

]
= E

r∼Πi−1

[
〈PG(Xr )fr , fr〉Π(r)

0

]
. (5)

For any r ∈ X(i − 1), we can decompose the vector fr as

fr = E
u∼Π(r)

0
[fr(u)] · 1Xr (0) + f ⊥r = Jr fr + f ⊥r

where 〈f ⊥r ,1Xr (0)〉Π(r)
0

= 0. Applying the operator PG(Xr ) to fr , we have

PG(Xr )fr = Jr fr + PG(Xr )f
⊥
r . (6)

Since X is a λ-onesided-link-HDX, we have that 〈PG(Xr )g, g〉Π(r)
0
≤ λ〈g, g〉

Π
(r)
0

for
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2. high-dimensional expanders

any g satisfying 〈g,1Xr (0)〉Π(r)
0

= 0. We are now ready to bound 〈(P∧i − PO
i )f , f 〉.

〈(P∧i − PO
i )f , f 〉Πi

= E
r∼Πi−1

[
〈(PG(Xr ) − Jr )fr , fr〉Π(r)

0

]
[By (4) and (5)]

= E
r∼Πi−1

[
〈PG(Xr )f

⊥
r , fr〉Π(r)

0

]
[By (6)]

= E
r∼Πi−1

[
〈PG(Xr )f

⊥
r , f ⊥r 〉Π(r)

0

]
≤ E

r∼Πi−1

[
λ · 〈f ⊥r , f ⊥r 〉Π(r)

0

]
≤ λ E

r∼Πi−1

[
〈fr , fr〉Π(r)

0

]
= λ · E

r∼Πi−1

E
u∼Πr

0

[
f (r ∪ {u} · f (r ∪ {u})

]
= λ · E

s∼Πi

[
f (s) · f (s)

]
= λ · 〈f , f 〉Πi

.

Hence, P∧i − PO
i 4 λI. Thus, proved.

2.3 Oppenheim’s Trickle-down Theorem

Theorem 2.4 tells us that in order to show that the non-lazy up-down walk
is close to the down-up walk, it suffices to show that X is a λ-onesided-link-
HDX. The following theorem, due to Oppenheim [Opp18], says that it further
suffices to show that the links corresponding to X(k − 2) are expanding.

2.5 theorem ([Opp18]). Suppose (X,Π) is a k-dimensional weighted simplicial
complex with the following properties.

• For all s ∈ X(k − 2), the link (Xs,Π
(s)) is a λ-onesided-link-HDX.

• The 1-skeleton of every link is connected.

Then, (X,Π) is a
(

λ
1−(d−1)λ

)
-onesided-link-HDX.

This theorem is in turn proved by proving the following 2-dimensional
version.

2.6 theorem. Suppose (X,Π) is weighted 2-dimensional simplicial complex with
the following two properties

• the 1-skeleton of X is connected and,

• for every vertex v ∈ X(0) and for all f : Xv(0)→ C with f ⊥ 1Xv(0), we have

〈PG(Xv)f , f 〉Π(v)
0
≤ λ · 〈f , f 〉

Π
(v)
0
.
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2.3. oppenheim’s trickle-down theorem

Then, for any g : X(0)→ C with g ⊥ 1X(0), we have

〈PG(X)g, g〉Π0
≤ λ

1 − λ
· 〈g, g〉Π0

.

Let us first see how the 2-dimensional version implies the general trickle-
down Theorem 2.5.

Proof of Theorem 2.5. For any i ≤ k − 2, let

λi := min
v∈X(i)

max
g:Xv(0)→C
g⊥1Xv (0)

〈PG(Xv)g, g〉Π(v)
0

〈g, g〉
Π

(v)
0

,

the smallest link expansion with respect to X(i). From repeated applications
of Theorem 2.6, we obtain

λ−1 ≤
λ0

1 − λ0
≤ λ1/(1 − λ1)

1 − (λ1/(1 − λ1))
=

λ1

1 − 2λ1
≤ · · · ≤ λd−2

1 − (d − 1)λd−2

which eventually completes the proof of the trickle-down theorem.

We now prove the 2-dimensional trickle-down Theorem 2.6

Proof of Theorem 2.6. Let g : X(0)→ C be an eigenvector that that maximises
〈PG(X)g, g〉Π0

while satisfying 〈g, g〉Π0
= 1 and g ⊥ 1X(0). Let η := 〈PG(X)g, g〉Π0

be the maximal value attained. In particular, PG(X)g = η · g. From Theorem 2.2

we have η = 〈PG(X)g, g〉Π0
= Ev∼Π0

[
〈PG(Xv)gv , gv〉Π(v)

0

]
.

Let gv : Xv(0) → C be the restriction of g to Xv(0), i.e., gv(u) = g(u).
Even though g ⊥ 1X(0), the local component gv need not be perpendicu-
lar to 1Xv(0). Hence, let us write gv = αv1Xv(0) + g⊥v where g⊥v ⊥ 1Xv(0). Here
αv = 〈gv ,1Xv(0)〉Π(v)

0
= E

u∼Π(v)
0

[g(u)] = (PG(Xv)g)(v) . We can now use this de-

composition as follows.

η = 〈PG(X)g, g〉Π0
= E

v∼Π0

[
〈PG(Xv)gv , gv〉Π(v)

0

]
= E

v∼Π0

[
α2
v + 〈PG(Xv)g

⊥
v , g

⊥
v 〉Π(v)

0

]
. (7)

To further simplify the above expression, we make two observations.

• By the hypothesis, since g⊥v ⊥ 1Xv(0), we have

〈PG(Xv)g
⊥
v , g

⊥
v 〈Π(v)

0
≤ λ·〉g⊥v , g⊥v 〉Π(v)

0
. (8)

• Since αv = (PG(Xv)g)(v), we have

E
v∼Π0

[α2
v] = 〈PG(X)g, PG(X)g〉Π0

= η2. (9)
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3. glauber dynamics as a hdx random walk

Continuing where we left off at (7), we have

η = E
v∼Π0

[
α2
v + 〈PG(Xv)g

⊥
v , g

⊥
v 〉Π(v)

0

]
≤ E

v∼Π0

[
α2
v + λ〈g⊥v , g⊥v 〉Π(v)

0

]
[By (8)]

= E
v∼Π0

[
(1 − λ)α2

v + 〈gv , gv〉Π(v)
0

]
[Since 〈gv , gv〉 = α2

v + 〈g⊥v , g⊥v 〉]

= (1 − λ)η2 + λ. [By (9)]

This implies that

η(1 − η) ≤ λ(1 − η2)

=⇒ η ≤ λ(1 + η) [Since X is connected, we have η < 1]

=⇒ η ≤ λ

1 − λ
.

Thus proved.

This proof is from the exposition of Harsha and Saptharishi [HS22] on
HDX constructions, which is in turn adapted from Yotam Dikstein’s lectures
notes [Dik19].

3 glauber dynamics as a hdx random walk

We now return to the question of analysing the Glauber Dynamics GDG on
the set TG of spanning trees. To this end, let F be the (n − 2)-dimensional
simplicial complex consisting of the forests of the graph G. Observe that
the set of maximal dimensional faces in F is precisely the set of spanning
trees of G, namely TG and furthermore that the Glauber Dynamics GDG is the
down-up walk on the top-most layer F (n − 2). Thus, to prove Theorem 1.1,
it suffices to understand the spectral gap of the down-up walk PO

n−2 of the
weighted simplical complex (F ,Π) on the (n − 2)th layer (here Π is the joint
distribution induced by the uniform distribution on F (n − 2) = TG).

The key insight of Anari, Liu, Oveis-Gharan and Vinzant is the following
lemma which shows that F is a 0-onesided-link-HDX.

3.1 lemma ([ALOV19]). F is a 0-onesided-link-HDX.

Let us first see how this lemma implies Theorem 1.1.

Proof of Theorem 1.1. The down-up walk PO
n−2 on F (n− 2) is positive semidefi-

nite. Hence, to bound its spectral gap γ(PO
n−2) it suffices to consider 1−λ2(PO

n−2).
Since F is a 0-link-HDX, applying Theorem 2.4, we have P∧i 4 PO

i for every
0 ≤ i < n − 2. This implies that λ2(P∧i ) ≤ λ2(PO

i ) for every i.

10



3.1. matroidal graphs are 0-onesided-link-hdxs

γ(PO
n−2) = 1 − λ2(PO

n−2) [Since PO
n−2 is positive semidefinite]

= 1 − λ2(P4n−3) [By (2)]

= 1 − λ2

( 1
n − 1

IF (n−3) +
n − 2
n − 1

P∧n−3

)
[By (1)]

=
n − 2
n − 1

(
1 − λ2(P∧n−3)

)
≥ n − 2

n − 1

(
1 − λ2(PO

n−3)
)

[Since λ2(P∧n−3) ≤ λ2(PO
n−3)]

≥ n − 2
n − 1

· n − 3
n − 2

(
1 − λ2(PO

n−4)
)

[Applying the same argument again]

...

≥ n − 2
n − 1

· n − 3
n − 2

· · · 1
2

(
1 − λ2(PO

0 )
)

=
1

n − 1
.

3.1 Matroidal graphs are 0-onesided-link-HDXs

In this section, we prove Theorem 3.1 by showing that for every −1 ≤ i ≤ n − 4
and F ∈ F (i), we have that the 1-skeleton of the link of F is a 0-onesided-
link-HDX. By Oppenheim’s trickle down theorem, it suffices to show this for
i = n − 4. Let F be a forest in F (n − 4) and (FF,Π

(F)) be the corresponding link. This is the only place in the
proof where we use the fact
that the underlying state
space is the set of spanning
trees. The proof given here
works verbatim if the set of
spanning trees is replaced
with the set of bases of a ma-
troid.

Let us understand the 1-skeleton G(F) = (FF(0), FF(1),Π(F)
1 ) of the link of

F. Observe that Π(F)
1 is the uniform distribution on the edges of G(F). F is a

forest with n − 3 edges. Let the 3 components of the forest be V1, V2, V3 ⊆ V.
The vertices of G(F) are precisely the edges in the graph G across these 3
components. In other words FF(0) = E(V1, V2) ∪ E(V2, V3) ∪ E(V3, V1). What
are the edges FF(1) of G(F)? Two vertices in G(F) (equivalently two edges of
E(V1, V2)∪E(V2, V3)∪E(V3, V1)) are connected iff they together with F combine
to form a spanning tree of G. It immediately follows that the graph G(F) is
the complete 3-partite graph. The following theorem shows that the second
eigenvalue of any complete k-partite graph with the uniform distribution on
the edges is at most 0.

3.2 theorem (eigenvalues of complete k-partite graph). Let G = (V , E ,π1) be a

complete k-partite graph with parts V =
k⋃

i=1
Vi and Vi ∩ Vj = ∅ if i , j and π1 the

uniform distribution on the edges E. Then, λ2(G) ≤ 0.

Proof. Let ni = |Vi | be the size of the k parts and n =
k∑

i=1
ni . The degree of any

11



3. glauber dynamics as a hdx random walk

vertex in part Vi is n − ni . Since π1 is the uniform distribution on the edges,
the induced distribution π0 on the vertices is proportional to the degree of
vertices. Hence, the vertex distribution π0 is given as follows: If v ∈ Vi , then

π0(v) =
n − ni∑

j
nj(n − nj )

=
n − n1

n2 −
∑
j
n2
j

.

Let f : V → C be any vector orthogonal to the all one’s vector 1V . In other
words, 〈f , 1V 〉π0

= 0 or equivalently,
∑
i

(n − ni)
∑
v∈Vi

f (v) = 0. Let Fi =
∑
v∈Vi

f (v).

Hence, we have ∑
i

(n − ni)Fi = 0. (10)

Now, let us consider the inner product 〈PGf , f 〉π0
.

〈PGf , f 〉π0
= E
{u,v}∼π1

[f (u)f (v)]

=
1∑

1≤i<j≤k
ninj

·
∑

1≤i<j≤k

∑
v∈Vi

f (v)


∑
v∈Vj

f (v)


=

1∑
1≤i<j≤k

ninj
·

∑
1≤i<j≤k

Fi · Fj

=
1

2

 ∑
1≤i<j≤k

ninj

 ·

∑

i

Fi

2

−
∑
i

F2
i



=
1

2

 ∑
1≤i<j≤k

ninj

 ·


∑
i
niFi

n


2

−
∑
i

F2
i

 [By (10)]

≤ 1

2

 ∑
1≤i<j≤k

ninj

 ·


∑
i
niF

2
i

n

 −∑
i

F2
i

 [By Jensen’s inequality]

=
1

2

 ∑
1≤i<j≤k

ninj


−

∑
i

(n − ni)F2
i

n


≤ 0.

Hence, λ2(G) ≤ 0.
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