
CSS.413.1 Pseudorandomness 02 Oct, 2021

Problem Set 2

• Due Date: 18 Oct, 2021

• The points for each problem is indicated on the side. This problem set has 100 points but
you may solve any 70 points worth of questions among these for a full score (the remaining 30
points are bonus). Any additional points obtained will still count towards your final aggregate.

• Turn in your problem sets electronically (PDF; either LATEXed or scanned etc.) on Acadly.

• Collaboration is encouraged, but all writeups must be done individually and must include
names of all collaborators.

• Referring to sources other than the text book and class notes is strongly discouraged. But if
you do use an external source (eg., other text books, lecture notes, or any material available
online), ACKNOWLEDGE all your sources in your writeup, with a brief remark on why you
sought that source. This will not affect your grades. However, not acknowledging will be
treated as a serious case of academic dishonesty.

• Be clear in your writing.

1. [The Affine Line graph] (7 + 3)

Let F be a finite field. Consider the following graph G whose vertex set is F2 and edges set E
defined as

E = {((a, b), (c, d)) : ac = b+ d} .

One way to interpret this is the point (a, b) is connected to all points (c, d) on the line y = ax−b.

(a) Show that G is |F|-regular and λ(G) ≤ 1√
|F|

.

[Hint:ItmightbeeasiertounderstandG
2
.]

(b) Starting with this, and using the graph operations seen in class, show that you can
construct a (D8, D, 1/8)-spectral expander for some suitably large constant D.

2. [Chernoff’s bound for expander walks] (3 + 3 + 3 + 6)

In this problem, you will see a generic way to go from a hitting-set tail to a Chernoff tail due
to Kabanets and Impagliazzo which we can instantiate for expander walks.

Lemma 1. Let X1, . . . , Xt ∈ {0, 1} be random variables (possibly correlated) such that for any
subset S ⊆ [t], we have

Pr

[∧
i∈S

Xi = 1

]
≤ µ|S|.

Then, for any ε > 0 with µ+ ε < 1, we also have

Pr

[∑
Xi

t
> µ+ ε

]
≤ e−KL(µ+ε‖µ)·t ≤ exp(−Ω(ε2t)).

Base version: (2021-10-08 19:10:36 +0530) , f704c93

1



The quantity KL(p‖q), called the Kullback-Leibler divergence, or relative entropy, equals p ln p
q + (1 − p) ln 1−p

1−q .

Standard Taylor arguments show that KL(µ+ ε‖µ) = O(ε2).

In this problem, you will prove the above lemma, and then instantiate it with expander random
walks to get the upper-tail bound.

Let p ∈ [0, 1] be a parameter to be chosen shortly. Consider the following event where a set
S ⊆ [t] is chosen at random by adding each element i ∈ [t] to S independently with probability
p. Let M be the following expression:

M = Pr
S,X1,...,Xt

[∧
i∈S

Xi = 1

]

(a) Show that M ≤ (pµ+ (1− p))t.
(b) Show that

M ≥ Pr
[∑

Xi > (µ+ ε) · t
]
· (1− p)(1−µ−ε)t.

[Hint:Whathappensifyouconditionontheeventthat∑Xi>(µ+ε)t?Canyou
lowerboundMunderthatcondition?]

(c) By setting p = ε
(µ+ε)(1−µ) , argue that

Pr
[∑

Xi > (µ+ ε) · t
]
≤

((
µ

µ+ ε

)µ+ε
·
(

1− µ
1− µ− ε

)1−µ−ε
)t

= e−KL(µ+ε‖µ)·t

(d) Instantiate this for expander random walks to prove the following result:

Let G be an (N,D, λ)-expander. Suppose B ⊆ [N ] with µ = |B|
N . Let µ′ =

µ(1 − λ) + λ, and ε > 0 so that µ′ + ε < 1. If v1, . . . , vt is a random walk in G
(pick v1 uniformly at random, and keep choosing a uniformly random neighbour),
then

Pr

[
|{v1, . . . , vt} ∩B|

|B|
> µ′ + ε

]
≤ exp(−Ω(ε2t)).

Although this problem worked with only indicator random variables (where Xi = 1[vi ∈ B]), one can work with more

general “weight” functions f : V → [−1, 1] and expander random walks give a pretty good estimate for Ev[f(v)]. For

more details see Thm 4.22 in Vadhan’s manuscript.

3. [An optimal non-averaging sampler] (4 + 4 + 12)

Suppose f : {0, 1}m → {0, 1} is some function and µ = Ex[f(x)]. An (ε, δ)-sampler is a
randomized algorithm that queries f at various points and outputs some estimate µ̂ with the
property that

Pr[|µ̂− µ| > ε] ≤ δ.

We are primarily interested in two parameters of such samplers — how many queries did it
make, and how many random bits did it use. For this entire problem, assume that we have a
super-explicit (2m, d, 0.5)-spectral expander for some constant d.

(a) Using expanders, show how one can obtain an (ε, δ)-sampler that makes at most
O
(

1
ε2 log 1

δ

)
queries and uses at most

m+O

(
log(1/ε)

ε2
· log

1

δ

)
random bits.
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(You may assume Theorem 4.22 from Vadhan’s manuscript, which is a stronger form of
the previous question, for this problem. You may also assume that there are strongly
explicit constant-degree expanders on 2m vertices.)

(b) Suppose we have an (ε, (1/8))-sampler S that makes Q queries and uses R random bits.
Consider the following “median of averages sampler” built from S:

Run the sampler S for t independent trials to obtain µ̂1, . . . , µ̂t. Output the
median of these estimates.

Prove that this new sampler will be an (ε, δ)-sampler if t = O
(
log 1

δ

)
.

(c) Construct an (ε, δ)-sampler that makes at most O
(

1
ε2 log 1

δ

)
queries and uses at most

O

(
m+ log

1

ε
+ log

1

δ

)
random bits.

[Hint:Recallthesamplerusingpairwiseindependence.Canweworkwithmedian
ofcorrelatedestimatesin(2)?]

You have now seen a sampler that has optimal number of queries and random bits used (up to constants) but is NOT

an averaging sampler! Obtaining an averaging sampler with the same performance is an open problem.

4. [Spectral gap of general regular graphs] (4 + 1 + 2 + 4 + 4 + 3 + 2)

In this problem we will show that λ(G) ≤ 1− 1
poly(n,d) for any d-regular n-vertex non-bipartite

graph. In the process also learn about a very useful object called the Laplacian of a graph.

For an n-vertex d-regular undirected graph, define the Laplacian of the graph G (denoted by
LG) as

LG = d · I −AG
where AG is the adjacency matrix of G.

(More commonly, the version studied is the normalised Laplacian given by I − M where M is the random walk

matrix, since this also makes sense in the non-regular case. However, for this question, it would be more convenient

to work with the above form.)

For a symmetric matrix M , we shall write M � 0 to mean that xTMx ≥ 0 for all x ∈ Rn.
This is equivalent to stating that all eigenvalues of M are non-negative, and such matrices are
also called positive semi-definite matrices (PSD) matrices.

We will extend this to a partial order between matrices to say that A � B if and only if
A−B � 0.

(a) Show that for any x ∈ Rn, we have

xTLGx =
∑

(i,j)∈G

(xi − xj)2.

Hence, in some sense, the quadratic form corresponding to LG measures the total “vari-
ation” of x across edges. Sometimes this is also called the energy of x.

As a corollary, observe that LG � 0.

(b) If H is a subgraph of G, show that LG � LH .

(c) If Kn is the complete graph on n-vertices (without self-loops), what are the eigenvalues
of LKn?
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(d) If Pn is a path graph consisting of edges {(1, 2), (2, 3), . . . , (n− 1, n)} and E1,n is the
graph with a single edge (1, n), show that

LPn
� 1

n− 1
· LE1,n

.

(e) For a connected graph G on n-vertices, show that

LG �
1

(n− 1) ·
(
n
2

)LKn

[Hint:Foreachpairofvertices(i,j),takethepathPi,jinthegraphGandsumup

theprevioussubdivisionoverallsuchpairs(i,j)∈([n] 2).]

(f) Let G be an n-vertex d-regular, all of whose eigenvalues are non-negative. Show that
λ(G) ≤ 1− Ω

(
1
dn2

)
.

(g) Let G be an n-vertex d-regular non-bipartite graph. Show that

λ(G) ≤ 1− Ω

(
1

d2n2

)

[Hint:ConsiderG′=G
2
.]

One of the exercises in Vadhan’s notes is a far shorter way to get the above spectral gap bound, but we felt

that perhaps the above route shines more light on some of the steps.

5. [Hitting Set Lemma via Expander Mixing Lemma] (4 + 4 + 7)

In this problem, we will try to give an alternate proof of the hitting set lemma for random walks
on expanders via the expander mixing lemma. This alternate proof is due to Silas Richelson
and Sourya Roy

Recall the Expander Mixing Lemma. Let G = (V,E) be an undirected N -vertex D-regular
graph1 with spectral gap γ = 1−λ and stationary distribution π. Let f, g : V → R be any two
functions. Then ∣∣∣∣ E

{u,v}∼E
[f(u) · g(v)]− µ(f) · µ(g)

∣∣∣∣ ≤ λ · σ(f) · σ(g), (EML)

where µ(f) and σ(f) are the mean and standard-deviation respectively of the function f with
respect to the distribution π (i.e., µ(f) := Ev∼π[f(v)] and σ2(f) := Ev∼π[f2(v)]− µ2(f)).

Let B ⊆ V such that π(B) = µ. For any positive integer t, define the function gt : V → R as
follows:

gt(v) := E
v=V0,V1,V2,··· ,Vt

[∀i , Vi ∈ B] ,

where V0, V1, V2, · · · , Vt is a t-step random walk starting at the fixed vertex V0 = v. In other
words, gt(v) is the probability that a t-step random walk starting at v lies completely in the
set B.

Let µt := µ(gt) and σt := σ(gt).

(a) Prove that σ2
t + µ2

t = Ev∼π[g2t (v)] = µ2t.

1The result holds for the more general setting of reversible Markov chains, but let’s only deal with undirected
regular graphs here.
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[Hint:Doesthedistributionofchoosingtwolengthtrandomwalksstartingfroma
vertexv∼πlookfamiliar?]

(b) Let r, s, t be non-negative integers such that r + s = t. Prove that

µt+1 = E
{u,w}∼E

[gr(u) · gs(w)] .

[Hint:Doesthedistributionofchoosingauniformlyrandomedge{u,v}andthen
choosingtwowalksoflengthrandsstartingatuandvrespectivelylookfamiliar?]

(c) Conclude that

µt+1 ≤
√

(1− λ) · µ2
r + λ · µ2r ·

√
(1− λ) · µ2

s + λ · µ2s.

[Hint:TheexpandermixinglemmaandCauchy-Schwarzinequalitymightcome
usefulhere.]

(With a bit more work, you can prove the Hitting Set Lemma from the above statement by inducting on t. The

inductive step for the case of odd t is easy but the case of even t requires a bit more work.)

6. [Cayley graphs and epsilon-biased sets] (3 + 4 + 4 + 4 + 5)

In this problem, we will show how to generate graphs from a finite group and understand their
spectrum.

Let G be a finite group, not necessarily abelian. Given such a group G and a set S closed
under inverses (i.e., s ∈ S ⇐⇒ s−1 ∈ S), the Cayley graph of G and S, denoted by C(G,S),
is the (undirected) graph (V,E) defined as follows:

V := G,

E := {{g, gs} | g ∈ G, s ∈ S} .

A subset S ⊆ G is said to be a generating set of the group G (which is not necessarily abelian),
if every g ∈ G can be generated using elements from S. In other words, g = s1 · s2 · · · sk for
some non-negative integer k and (not necessarily distinct) s1, s2, · · · , sk ∈ S.

(a) Show that if S is a generating set of G (closed under inverses), the corresponding Cayley
graph C(G,S) is connected.

A function χ : G → C is said to be a character of G if χ preserves all group operations (also
called a homomorphism), i.e. for all g, h ∈ G, we have χ(gh) = χ(g) · χ(h), and χ(g−1) =
(χ(g))−1. The character that maps every group element to 1 is called the trivial (or empty)
character.

(b) i. Let G be the group {0, 1}n with the binary operation addition. For each α ∈ {0, 1}n,
define the parity function χα : G→ R as follows:

χα(x) := (−1)
∑

i αi·xi .

Show that the χα’s are characters of G and χ0n is the trivial character.

ii. Let G be the group Z/mZ = {0, 1, 2, , . . . ,m− 1} with the binary operation addition
(modulo m). Let ωm := e2πi/m (i.e., a primitive m-th root of unity). For each h ∈ G,
define χh : G→ R as follows:

χh(g) := ωhgm .

Show that the χh’s are characters of G and χ0 is the trivial character.
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(c) i. Show that for any non-trivial character χ of a group, we have Eg∈G[χ(g)] = 0.

ii. Show that if χ1 and χ2 are characters so is χ1 ·χ2. (Here (χ1 ·χ2)(g) := χ1(g) ·χ2(g)
and a denotes the complex conjugate of a).

iii. Show that Eg∈G[χ1(g) · χ2(g)] = 1[χ1 = χ2].

Hence, the set of characters are pairwise orthogonal under the inner product 〈f, h〉 :=
Eg∈G[f(g) · h(g)].

It is known that for any finite abelian group G, the set Ĝ of all characters are in 1-1
correspondence with G. Combining this with the above part, we get that the set Ĝ of
characters of an abelian group form an orthonormal basis for the |G|-dimensional C-vector
space consisting of all functions f : G→ C.

We will now study the random-walk matrix MG,S corresponding to the Cayley graph C(G,S).

(d) Show that the characters of G are the (right) eigenvectors of the random-walk matrix
MG,S for every S. In other words, show that MG,S ·χ = λS,χ ·χ for some λS,χ ∈ R. What
are the corresponding eigenvalues λS,χ?

We now extend the definition of ε-biased sets to arbitrary groups. Let ε ∈ (0, 1) A set S ⊂ G
is said to be an ε-biased set of G if for every non-trivial character χ of G, we have

1

|S|
·

∣∣∣∣∣∑
s∈S

χ(s)

∣∣∣∣∣ ≤ ε.
(Note: There might be a discrepancy of a factor of 2, like there was in problem set 1, depending
on what you think of as the definition of an ε-biased set.)

(e) Let G be an abelian group. Show that S is an ε-biased set of G if and only if the
corresponding Cayley graph C(G,S) is an |S|-regular (1− ε)-spectral expander (i.e. the
spectral gap is 1− ε).

This suggests a natural way to construct an expander graph with spectral gap 1− ε. Choose
an ε-biased set of G and construct the Cayley graph C(G,S). In particular, if we instantiate
this scheme with the AGHP construction of ε-biased sets for the group {0, 1}n, we get an
n2/ε2-regular (1 − ε)-spectral expander on 2n vertices. Unfortunately, this is not a constant-
degree graph; the degree is logarithmic. The lower bound from Problem 7 in Problem Set 1
says that this is unavoidable. On the contrary, if one works with non-abelian groups, we can
in fact construct constant degree Cayley graphs that are also “good” expanders.
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