
CSS.318.1 Coding Theory 26 Oct, 2022

Problem Set 3

• Due Date: 9 Nov, 2022

• Turn in your problem sets electronically (LATEX, pdf or text file) by email. If you submit
handwritten solutions, start each problem on a fresh page.

• Collaboration is encouraged, but all writeups must be done individually and must include
names of all collaborators.

• Refering sources other than the text book and class notes is strongly discouraged. But if you do
use an external source (eg., other text books, lecture notes, or any material available online),
ACKNOWLEDGE all your sources (including collaborators) in your writeup. This will not
affect your grades. However, not acknowledging will be treated as a serious case of academic
dishonesty.

• The points for each problem are indicated on the side. The total for this set is 80.

• Be clear in your writing.

• Problem 3 is from a course by Guruswami.

1. [Expander mixing lemma] (10)

For some d ≥ 3 and λ ∈ [0, 1), let G = (V,E) be a d-regular λ-spectral expander on n vertices.
In other words, if 1 = λ1 ≥ λ2 ≥ · · · ≥ λn are the n eigenvalues of the normalized adjacency
matrix A of G, then λ ≥ λ2 ≥ . . . ≥ λn ≥ −|λ|.
Prove that for any sets S, T ⊆ V we have

|Pru∈V,v∈N(v)[u ∈ S, v ∈ T]− µ(S)µ(T)| ≤ λ
√
µ(S)µ(T)(1− µ(S))(1− µ(T)) ≤ λ

where µ(S) = |S|/|V | and similarly for T .

Hint: Consider the indicator vectors χS and χT of the sets S and T . Observe that

Pru∈V,v∈N(v)[u ∈ S, v ∈ T] =
χTSAχT

n
.

Complete the proof by decomposing the vectors χS and χT along the directions parallel and
orthogonal to the first eigenvector, namely the all-one’s vector. You may want to use the fact
that for all vectors x orthogonal to the all-one’s vector, we have ‖Ax‖ ≤ λ‖x‖.

2. [Distance of expander codes using EML] (5+8)

Let G = (V,E) be a d-regular λ-spectral expander as in problem 1 for some d ≥ 3 and λ ∈ [0.1)
and C0 be a [d,R0d, δ0d]2-code where R0 > 1/2 and δ0 > λ.

Let C(G, C0) be the Tanner code: that is, the set of all assignments {c : E(G) → {0, 1}} such
that for every vertex v, c|N(v) ∈ C0, where c|N(v) is seen as a string of length d (by fixing an
arbitrary but fixed ordering on the neighbouring vertices of each vertex).

(a) Prove that the rate R of C(G, C0) is at least 2R0 − 1.

(b) Prove that the fractional distance δ of C(G, C0) is at least δ0(δ0 − λ).

Hint: Consider the minimum weight codeword c in C(G, C0) and let W be the set of
vertices v such that c|N(v) is nonzero. Apply EML with S = T = W .

1

3. [Decoding expander codes] (15)

Let G = (L,R,E) be a (c, d)-regular (γ, c(1− ε))-bipartite expander where n = |L| > |R| = m
for some ε ∈ (0, 1/20). Let C(G) be the corresponding expander code defined as follows:

C(G) =

x : L→ {0, 1} | ∀j ∈ R,
∑

i∈N(j)

c(i) = 0

 .

Recall that in an (γ, c(1− ε))-expander, every subset S ⊂ L of size up to γn nodes has at least
c(1 − ε)|S| neighbours in R. We will refer to the set L of left vertices as variables and set R
of right vertices as constraints. In class, we proved that C(G) is a ”good” code and gave a
linear-time decoder. In this exercise you will analyze the following parallel iterative decoder:

For A log n rounds (for a constant A chosen large enough), do the following in parallel
for each variable node: if the variable is in at least 2c/3 unsatisfied constraints, flip
its value.

Prove that the above algorithm corrects any pattern of γ(1− 3ε)n errors.

4. [Tensor product decoding] (20)

In this problem, we will adapt Forney’s GMD decoding for concatenated codes to unique-
decode tensor-product codes all the way up to their unique-decoding radius.

Given a (n1, k1, d1)q-code C1 and (n2, k2, d2)q-code C2, the tensor-product code C1 ⊗ C2 is the
set of codewords c ∈ [q]n1×n2 , such that for all i ∈ [n1], c(i, ·) ∈ C2 and for all j ∈ [n2],
c(·, j) ∈ C1. Recall from problem set 2 that the distance of the tensor-product code is d1 · d2.
In this problem, we will design a decoder for C1 ⊗ C2 that corrects any pattern of less than
d1 · d2/2 errors. We assume that we have access to two decoders Dec1 and Dec2 with the
following properties.

• Dec1 is a decoder for C1 that can correct any pattern of errors provided the number of
errors is less than d1/2.

• Dec2 is a decoder for C2 that can correct any pattern of errors and erasures provided the
number of erasures plus twice the number of errors is less than d2.

• If the corresponding promises are not met, then Dec1 and Dec2 return some arbitrary
codewords in C1 and C2 respectively.

Consider Algorithm 1 based on Forney’s GMD Decoding. This is a randomized algorithm and
can be derandomized as in Forney’s GMD Decoding. Prove either via the following parts or
otherwise that this is a unique-decoder for C1⊗C2 all the way upto half the minumum distance
d1d2.

Let r ∈ [q]n1×n2 be the received word with the promise that there exists a codeword c ∈ C1⊗C2
such that ∆(r, c) < d1d2/2. In this case, we will prove below that the word c′ output by the
algorithm is in fact c.

For each j ∈ [n2], define
Ej := ∆(r(·, j), c(·, j)).

Observe that
∑
j∈[n2]

Ej is the total number of errors which is promised to be less than d1d2/2.

Furthermore, if Ej < d1/2, then the codeword cj obtained in Line 3 is exactly the (row)
codeword c(·, j) ∈ C1.

(a) Prove that if Ej ≥ d1/2, then Ej + Fj ≥ d1. Also show that the number of such j’s for
which Ej ≥ d1/2 is less than d2.

2

Algorithm 1: GMD Decoder for Tensor-product code C1 ⊗ C2
Input: A received word r ∈ [q]n1×n2

Output: The unique codeword c ∈ C1 ⊗ C2 such that

∆(r, c) < d1d2/2

if one exists and ⊥ otherwise.

1 Initialize r′, c′ to be empty words in [q]n1×n2

Comment: r′ will be a partially decoded word while c′ will eventually be the final decoded
codeword.

2 for j ∈ [n2] do
3 Run Decoder Dec1 on word r(·, j) ∈ [q]n1 to obtain (row) codeword cj ∈ C1.
4 Set Fj ← min {∆(r(·, j), cj), d1/2}.
5 With probability 2Fj/d1, set r′(·, j)← ??? . . .?︸ ︷︷ ︸

n1times

, otherwise set r′(·, j)← cj .

6 for i ∈ [n1] do
7 Run Decoder Dec2 on (possibly partially erased) word r′(i, ·) ∈ ([q] ∪ {?})n2 to obtain

(column) codeword c(i) ∈ C2.
8 Set c′(i, ·)← c(i).

9 if ∆(r, c′) < d1d2/2 then
return c′

10 else
return ⊥

(b) Define indicator random variables Uj and Vj for each j ∈ [n2] as follows:

Uj =

{
1 if jth row is erased in Line 5,

0 otherwise.

Vj =

{
1 if jth row is not erased in Line 5 and r′(·, j) 6= c(·, j),
0 otherwise.

Prove that for each j ∈ [n2], E[Uj + 2Vj] ≤ 2Ej/d1.

(c) Conclude that there exists a particular choice of random coins such that∑
j∈[n2]

(Uj + 2Vj) < d2.

(d) Define indicator random variables U
(i)
j and V

(i)
j for each i ∈ [n1] and j ∈ [n2] as follows:

U
(i)
j =

{
1 if r′(i, j) =?,

0 otherwise.

V
(i)
j =

{
1 if r′(i, j) 6=? and r′(i, j) 6= c(i, j),

0 otherwise.

Clearly, U
(i)
j = Uj for each i and j. Prove that furthermore, for each i and j we have

V
(i)
j ≤ Vj .

3

(e) Use the above to argue that there exists a choice of random coins such that simulta-
neously for each i ∈ [n1], the decoded (column) codeword c(i) = c′(i, ·) is in fact the
(column)codeword c(i, ·) ∈ C2 in the tensor-product codeword c. Hence c′ = c.

5. [List-decodability of the Hadamard code via Fourier analysis] (4+2+2+4)

Recall that the Hadamard code is the [2k, k, 2k−1]2-code which consists of the evaluations of
all linear functions. More precisely, the Hadamard codewords are precisely the linear functions

x = (x1, x2, . . . , xn) 7−→
∑

aixi (mod 2)

for each a ∈ {0, 1}k. In this problem, we will prove that the Hadamard code is (1/2− δ, 1/δ2)-
list-decodable using Fourier analysis for every δ ∈ (0, 1).

Let F denote the set of all functions from {0, 1}k to R. Note F is a 2k-dimensional vector
space over R. Define an inner product on this space as follows:

〈f, g〉 := E
x

[f(x)g(x)].

For any a ∈ {0, 1}k, define χa ∈ F as follows: χa(x) := (−1)
∑

i∈[k] aixi (mod 2).

(a) Show that for all a 6= b, we have 〈χa, χb〉 = 0. Conclude that the 2k functions
{χa}a∈{0,1}k form an orthonormal basis of functions for the vector space F .

Hence, conclude that any function f ∈ F can be expressed uniquely as follows:

f(x) =
∑
a

f̂(a) · χa(x).

where f̂(a) = 〈f, χa〉. These real numbers f̂(a) are called the Fourier coefficients of f .

(b) (Parsevals’ equation). Show that for f ∈ F , we have

‖f‖22 = 〈f, f〉 =
∑
a

|f̂(a)|2.

Hence, for any Boolean function f : {0, 1}k → {1,−1}, we have
∑

a |f̂(a)|2 = 1.

It will be convenient to express the range of a Boolean function as {1,−1} instead of
{0, 1}. We move from {0, 1} to {1,−1} using the transformation b 7→ (−1)b. Observe
that with this notation in place, the χa’s exactly correspond to all the linear functions
(and thus all the Hadamard codewords).

(c) Let f : {0, 1}k → {1,−1} be any Boolean function and a ∈ {0, 1}k such that Prx[f(x) =

χa(x)] ≥ (1+δ)
2 . Conclude that f̂(a) ≥ δ.

(d) Let f : {0, 1}k → {1,−1} be any Boolean function. Conclude that there at most 1/δ2

linear functions which have agreement at least (1+δ)
2 with f .

We have thus proved that for any Boolean function f , there are at most 1/δ2 linear
functions which are within 1−δ

2 fractional distance from f . We will give an alternate
proof of this fact via the Goldreich-Levin list-decoding algorithm later in the course.

4

The remaining two problems are based on the list-recovery problem, a generalization of the list-
decoding problem, defined as follows:

List-recovery problem: Let C be a (n, k)q-code. Given n subsets Si ⊆ [q], 1 ≤ i ≤ n where
|Si| ≤ `, output all codewords c = (c1, . . . , cn) such that ci /∈ Si for at most e values of i. If for
every valid input the number of such codewords is at most L, then the corresponding code is called
(e/n, `, L)-list recoverable.

Clearly, (ρ, L)-list-decodable codes are (ρ, 1, L)-list-recoverable codes.

6. [Polynomial reconstruction and list-recoverability of RS codes] (15)

In this problem, we will show that the Guruswami-Sudan list-decoding algorithm discussed in
lecture can be modified to prove list-recoverability of the Reed-Solomon code.

Recall the setting of the Guruswami-Sudan algorithm.

Input: • A finite field F, integers n ≥ k ≥ 1 and an agreement parameter t ≤ n.

• n points (α1, β1), (α2, β2), . . . , (αn, βn) ∈ F× F such that all the αi’s are distinct.

Output: List of all polynomials P (X) ∈ F<k[X] of degree strictly less than k such that

|{i ∈ [n] : P (αi) = βi}| ≥ t.

The Guruswami-Sudan algorithm used the method of multiplicities to reduce the agreement
parameter t to d

√
(k − 1)ne.

(a) The Guruswami-Sudan used the same multiplicity parameter r for all points (αi, βi).
Suppose the algorithm were instead given different multiplicity parameters, say ri for
the ith point (αi, βi). Show that that this generalization outputs all polnomials P (X) of
degree strictly less than k such

∑
i:P (αi)=βi

ri >

√√√√(k − 1)

n∑
i=0

(
ri + 1

2

)
.

(b) In this part, we observe that the αi’s need not be distinct for the Guruswami-Sudan
algorithm to work. In fact, it suffices if the n points (αi, βi) are distinct. Combining
with the above, show that if we are given n distinct points α1, . . . , αn and multiplicity
weights ri,β for each i ∈ [n] and β ∈ F, the Guruswami-Sudan can be modified to find all
polynomails P (X) of degree strictly less than k such

∑
i

ri,P (αi) >

√√√√(k − 1)

n∑
i=0

∑
β∈F

(
ri,β + 1

2

)
.

(c) Use the above part to show that the [n, k]q-Reed-Solomon code is (1 − t/n, `,poly(n))-

list-recoverable provided t >
√

(k − 1)`n.

7. [Obtaining efficient binary list-decodable codes via code concatenation] (15)

In Problem 5, we showed that the [2k, k, 2k−1]2-Hadamard code is (1/2− δ, 1/δ2)-list-decodable.
This code has excellent distance and list-decodability but has inverse exponential rate. In
this problem, we will construct, for every δ ∈ (0, 1), explicit codes over the binary alphabet
with rate poly(1/δ) and (1/2− δ, poly(n))-list-decodability (accompanied with an efficient list-
decoder).

5

(a) Show that if

i. Couter is a (N,K,D)qk -code and is (µ, `, L)-list-recoverable and

ii. Cinner is a (n, k, d)q-code and is (τ, `)-list-decodable,

then

• the concatenated code Couter ◦ Cinner is (ρ, L)-list-decodable provided ρ ≤ µ · τ .

(b) Instantiate the outer and inner codes Couter and Cinner as follows:

• Couter is a Reed-Solomon code with distance (1−ε) and appropriate list-recoverability
given by Problem 6c [you may use the results of 6c as blackbox (even if you have not
proved it)].

• In lecture, we showed for every η ∈ (0, 1) a random binary code with rate R =
1 − h2(1/2 − η) − 1/L is (1/2 − η, L)-list-decodable. Use this as the inner code Cinner.
(Note that we do not if this code is efficiently list-decodable.)

(c) Given δ ∈ (0, 1), choose the parameters ε, η, L appropriately to show that the con-
catenated code is an explicit code over the binary alphabet with rate poly(1/δ) and
(1/2− δ, poly(n))-list-decodability (accompanied with an efficient list-decoder).

6

