
Web-Scripting Languages for Free
�

N. Raja and R.K. Shyamasundar
Tata Institute of Fundamental Research

School of Technology and Computer Science
Mumbai 400 005, India�
raja, shyam � @tifr.res.in

Abstract

Web-scripting languages are languages for program-
ming the World-Wide Web. Cardelli and Davies [6] have
described programming primitives which would be useful
in web-scripting languages. Their model of the Web, relies
predominantly on two observables, namely the notions of
failure and the rate of communication. We demonstrate that
the well developed discipline of reactive programming lan-
guages, which unify asynchrony and perfect synchrony, are
well suited for the development of web-scripting languages.
In particular we show that the paradigm of ESTEREL [4]
and Communicating Reactive Processes [5] provides ready-
made features and constructs for easily prototyping web-
scripting languages.

1. Introduction

Web-scripting languages are languages for programming
the World-Wide Web. One of the most widespread, but
manually carried out activities on the Web, is the act of
browsing the Web for resources. Programs written in web-
scripting languages are meant to simulate the process of
Web browsing as would normally be carried out by a hu-
man being.

Cardelli and Davies [6] have described programming
constructs which would be useful in web-scripting lan-
guages. The constructs proposed by them are based on cer-
tain underlying assumptions about the basic model of com-
putation of the Web. In particular their model of the Web
relies predominantly on two observable properties, namely
the notions of failure and the rate of communication. Pro-
gramming constructs for web-scripting make rather special-
ized demands on the basic error-handling primitives, and

�
Proc. International Conference on Software Engineering Applied

to Networking and Parallel/ Distributed Computing (SNPD’00), Reims,
France (2000) pages 289-296.

also on the concurrency primitives of the underlying lan-
guage. Common languages are ill suited for such situations.

In contrast to common languages, the well developed
discipline of reactive programming languages provides a
convenient launching pad for web-scripting languages. The
reason for this is the fact that these languages have advanced
error-handling primitives, and also sophisticated concur-
rency primitives. They have orthogonal features such as
preemption, concurrent execution, and exception handling.
A specially noteworthy feature of such languages is the way
they unify the notions of asynchronous and synchronous in-
teraction. Another distinct advantage is that a precise se-
mantics has been formulated for these languages, taking
into consideration aspects of reactivity, priority, and other
novel mechanisms. Such languages are ideally suited for
the development of web-scripting languages. In this pa-
per, we demonstrate that the paradigm of ESTEREL [4]
and Communicating Reactive Processes (CRP) [5] provides
ready-made features and constructs for easily prototyping
web-scripting languages. In particular, we show that the
various service combinators for Web computing [6] may be
easily realized [8] in ESTEREL and CRP.

The rest of this paper is organized as follows: Section 2
introduces the paradigm of ESTEREL and CRP; Section 3
demonstrates that service combinators for Web computing
can be easily programmed in CRP; Section 4 discusses the
implementation of the service combinators; Section 5 out-
lines further work; and Section 6 concludes the paper.

2. Communicating Reactive Processes

Communicating Reactive Processes (CRP) proposed
in [5] unifies the capabilities of asynchronous and syn-
chronous concurrent programming languages.

A CRP program consists of a network�����	�
��������	�
���
of ESTEREL [4] reactive programs

or nodes, each having its own input/output reactive signals
and its own notion of an instant. The network is asyn-
chronous, and each node

���
is locally reactively driving

a part of a complex process which is handled globally by
the network. Asynchronous communication between nodes
is achieved through the exec primitive and channel
declarations.

2.1. Basic ESTEREL

The execution of an ESTEREL program associates a se-
quence of output events with a sequence of input events.
The program repeatedly receives an input event � � from its
environment and reacts by building an output event ���� . The
events � � and ���� are synchronous in the sense that the ex-
ternal observer observes the input/output event as a single
event � ��� ���� . The production of an output event from an in-
put event is called a reaction. The flow of time is defined by
the sequence of reactions and hence, reaction is also termed
an instant. Note that at any instant there is at least one input
signal. A signal is present at an instant if and only if it is
either received as input from the environment or it is emit-
ted by the program itself at that instant. At each instant,
each input or local signal is consistently seen as present or
absent by all statements – thus ensuring determinism. By
default, signals are absent. The notion of an instant leads to
consistent definitions of temporal expressions.

In order to provide the ability to quantify the progress of
computation as the system evolves, we assume that every
input event or instant consists of a special clock signal of
type real referred to as tick.

The list of ESTEREL kernel statements is given below.
(We have described and used the old syntax of ESTEREL in
this paper. Though our current implementation uses the lat-
est syntax, the ESTEREL compilers still provide backward
compatibility with the old syntax):

nothing
halt
emit S
stat1; stat2
loop stat end
present S then stat1 else stat2 end
do stat watching S Timeout Alarm end
stat1 || stat2
trap T in stat end
exit T
signal S in stat end

The kernel statements are imperative in nature, and most
of them are classical in appearance. Instantaneous con-
trol transmission appears everywhere. The nothing state-
ment is purely transparent: it terminates immediately when
started. An emit S statement is instantaneous: it broad-
casts S and terminates right away, making the emission of
S transient. In emit S1; emit S2, the signals S1 and
S2 are emitted simultaneously. In a signal-presence test

such as present S ..., the presence of S is tested for
right away and the then or else branch is immediately
started accordingly. In a loop stat end statement, the
body stat starts immediately when the loop statement starts,
and whenever stat terminates it is instantaneously restarted
afresh; to avoid infinite instantaneous looping, it is required
that the body of a loop should not terminate instantaneously
when started.

The do-watching and trap-exit statements deal
with behavior preemption – the most important feature
of ESTEREL. In the watchdog statement do stat
watching S Timeout Alarm end, the statement
stat is executed normally up to proper termination, or up to
future occurrence of signal S called the guard. If stat termi-
nates strictly before S occurs, so does the whole watching
statement; then the guard has no action; otherwise, the oc-
currence of S provokes immediate preemption of the body
stat leading to the execution of Alarm statement, and im-
mediate termination of the whole watching statement. Note
that nesting watching statements provides for priorities. For
details on trap and other derived constructs, the reader is
referred to [3, 4].

2.2. Asynchronous tasks

In a very general way, asynchronous tasks are those tasks
which do take time; that is, the time between initiation and
completion is observable. In the terminology of ESTEREL

this can be interpreted to mean that there will be at least
one instant between initiation and completion. The exec
primitive provides the interface between ESTEREL and
asynchronous tasks.

Task Declaration

An asynchronous task is declared as follows:

task task_id (fparlst)
return signal_nm (type);

where
� task id is the name of the task;

� fparlst gives the list of formal parameters (refer-
ence or value);

� the signal returned by the task is given by signal nm
with its type after the keyword return; it is possible
to have multiple return signals.

Task Instantiation

Instantiation of the task is done through the primitive
exec. For example, the above task can be instantiated from
an ESTEREL program as follows:

290

exec task_id (aparlst);

where

� task id is the name of the task;

� aparlst gives the list of actual parameters (vari-
ables/expressions corresponding to reference/value pa-
rameters);

� There is no explicit need to specify the return sig-
nals as it is the same as in the task declaration.

For example, a typical task declaration appears as

task ROBOT_move (ip, fp)
return complete;

and the call appears as

exec ROBOT_move (x,y);

The execution of the above statement in some process
starts task ROBOT move and awaits for the return signal
complete for it to proceed further. Of course, the num-
ber and type of arguments, and the return signal type should
match the task declared. In other words, exec requests the
environment to start the task and then waits for the return
signal (which also indicates the termination of the task).

Since there can be several occurrences of exec T in a
module for the same task T, several simultaneously active
tasks having the same name can coexist. To avoid confusion
among them one can assign an explicit label to each exec
statement; a labeled exec statement is of the form exec
L:T. The label name must be distinct from all other labels
and input signal names. An implicit distinct label is given
to exec statements.

The primitive exec provides an interface between ES-
TEREL and the asynchronous environment that can be seen
by the following interpretation. Given an exec state-
ment labeled L, the asynchronous task execution is con-
trolled from ESTEREL by three implicit signals sL (output
signal), L (input signal), and kL (output signal) cor-
responding to starting the task, completion, and killing the
execution of the task respectively. The output start signal
sL is sent to the environment when the exec statement
starts. It requests the start of an asynchronous incarnation
of the task. The input return signalL, is sent by the environ-
ment when the task incarnation is terminated; it provokes
instantaneous termination of the exec statement. The out-
put kill signal kL is emitted by ESTEREL if the exec state-
ment is preempted before termination, either by an enclos-
ing watching statement or by concurrent exit from an en-
closing trap. The return signals corresponding to the exec
label can be used for declaring incompatibility with other
input signals (this becomes handy in declaring channels).

2.3. Interpretation of a global clock in terms of exec

Consider a task CLOCK which accesses a global clock
and sends the alarm signals at the times requested. Declara-
tion of the task CLOCK in CRP takes the form:

task CLOCK(d)
return alarm (real);

Now, an alarm after l units can be instantiated by

exec CLOCK(l);

Since the exec statement is not instantaneous, it is neces-
sary that l ��� . The semantics of exec permits the use
of multiple instantiations on the same and different nodes.
This feature makes it possible to use CLOCK as a global
clock for different components. That is, different compo-
nents can instantiate CLOCK to give them alarm at appro-
priate times without any interference.

2.4. Timed statements

The primitive timed statements of CRP are given below
where tick denotes the clock signal.

a. await with ticks:
await tick(d): This statement delays the next re-
action till the instant t+d is crossed where t is the
value of CLOCK at the current instant. In other words,
it corresponds to a delay of d. await tick(0) is
not valid as it instantaneously terminates. In ESTEREL

await tick corresponds to awaiting for the next in-
put signal or the instant.

b. watching with ticks:
do stat watching tick(d): This statement
gives a time limit to the execution of its body stat. Let
us assume d ��� . In this case, the body starts as soon
as the watching statement starts. If the body ter-
minates or exits a trap strictly before a timeout of d
from the current instant, so does the watching state-
ment; otherwise the watching statement terminates
as soon as the value of tick signal reaches t+d. As
the watching statement is active at the current in-
stant, d ��� corresponds to the instantaneous termi-
nation of the body without being executed.

Restrictions: As tick is always present, the following re-
strictions are placed:

1. It is not permitted to use tick in expressions
of await immediate and watch immediate
statement constructs.

2. The expressions in the present statement constructs
are not allowed to reference clocks explicitly.

291

2.5. Using timed statements

1. Specifying Time Bounds

(a) await tick(l) specifies a delay of l.

(b) Specifying timeout (maximum duration) of u can
be done by:
do S watching tick(u)

(c) Enforcing a time interval of ��������� for producing a
good part in the usual producer-consumer prob-
lem is given below:

do
[exec good_part || await tick(l)]

watching tick(u)

2. Actual time for the transition/task with a timeout of d
is specified below:

x:=0;
do
exec T (* Let us assume that rT *)

(* is the return signal *)
watching tick(d)
timeout abort (* aborted due to *)

(* timeout *)
end
present rT then x := ?tick

In the above program, x would have the actual value
of time taken on proper termination; if aborted due
to timeout then x will have value zero and also signal
abort will be emitted.

3. Specifying time for multiple rendezvous and interrupt
servicing can be done in the same manner.

2.6. Illustrative examples

In this subsection, we provide a couple of illustrative ex-
amples [7] of programming in CRP.

As a first example, consider the specification of an air-
traffic control system which should provide final clearance
for a pilot to land within 60 seconds after clearance is re-
quested. Otherwise, the pilot will abort the landing proce-
dure. Assuming that there is no global clock, the program
to achieve the above activity is given below.

emit req_clearance;
do
trap T in
[exec CLOCK(60) || await get_clearance;
exit T]
end trap

watching time_up
timeout abort_landing
end

where the asynchronous task CLOCK is declared as follows:

task CLOCK(l) return time_up;

with the interpretation that the return-signal time up will
be sent from the asynchronous medium after 	 units of time.

Assuming that there is a global clock which sends tick
signals at appropriate settings, the program takes the form:

emit req_clearance;
do
await get_clearance

watching tick(60)
timeout abort_landing
end

As a second example, consider a telephone network in
which switches periodically monitor other switches to de-
tect node failures. Each switch sends an I am alive message
to a subset of switches in the network. This subset is re-
ferred to as cohorts of a switch. If a switch does not receive
an I am alive message once every period of duration p sec-
onds, from each of its cohorts, it suspects that the cohort
may be down and initiates fault detection and recovery. If
for any reason a switch is shutdown, a SHUTDOWN message
is sent to all its cohorts. Each switch creates processes, one
per cohort, to monitor the cohorts. These processes execute
a code segment of the form:

do
await p;
trap T in

loop
do
exec cohort(id);
watching p
timeout exit T;
end

end %loop
end %trap

watching SHUTDOWN

where emitting p corresponds to the cycle given by,

every p_secs do
emit p

end

The asynchronous task cohort is given by

task cohort (id) return ‘‘I AM ALIVE’’;

whose activity is to send the return signals periodically.

292

���������	���
�����������������

�������! #"%$'&)(%�! *$ +�,)-/.10 ,�2�354768 ��9)$':#��;%� 2�3�<�=�> -/.10 ,�2/354 �?.10 ,�2�354 �@647A 0 =�BCA%DE4�= 0@-�.�0 ,�2�354 �FG< � �H.�0 ,�2�354 � �@I�I@IFG< � �J.10 ,�2�354 � 647A 0 =�BCA%D�K�L�M 0@-�.�0 ,�2�354 �FG< � �H.�0 ,�2�354 � �@I�I@IFG< � �J.10 ,�2�354 � 6"7$*N%O�$*P%9)�Q��R . �TS . �UWV P� *O�&�&)$*P%9 . ��X . �Y��!Z[$]\1�!Z^�!9 0 2�_^=�L�+ 0@-`0 �a. 6bE��9�$T\��!Z^�!9 	 2�_^2 0@-!0 � , �c. 6bd$*e�$*9)�!9)� V P ,�=�K�=�A 0@-�. 6f V PgY�$*&�Z^�!P��h9)� V P M 0 A 	 	i����!R!O�&�$ j�A�2 	

Figure 1. Service combinators for the Web

3. Service combinators for Web computing

In this section, we demonstrate that the well developed
discipline of reactive programming languages provides a
convenient launching pad for web-scripting languages. In
particular, we show that the paradigm of ESTEREL [4]
and Communicating Reactive Processes [5] provides ready-
made features and constructs for easily prototyping web-
scripting languages.

One of the most predominant activities on the Web,
which is carried out manually, is the act of browsing the
Web for resources. Cardelli and Davies [6] have proposed a
number of primitives which would be useful in developing
programs for automating the act of browsing the Web. Fig-
ure 1 contains a complete list of these primitives. They call
these primitives as services and service combinators, and
define them as follows.

Definition 3.1 A service is an HTTP information provider
wrapped in error-detection and handling code.

Definition 3.2 A service combinator is an operator for
composing services, both in terms of their information out-
put and of their error output; and possibly involving con-
currency. The error recovery policy and concurrency are
thus modularly embedded inside each service.

In the following subsections, we demonstrate that the
service combinators for Web computing, may be easily
translated to ESTEREL and CRP.

3.1. Basic service

Service: url(String)
Specification: The service url(String) fetches the resource
associated with the URL indicated by the string. The ser-
vice fails if the fetch fails, and the rate of the service while
it is running is the rate at which the data for the resource is
being received, measured in kilobytes per second.
Translation:

% Comments begin with a percentage symbol
% Task Invocation
exec url(String);

% Where the Task Declaration is as given below
task url(String)
return k success(contents), failure l ;

Interpretation: The translation consists of two steps.
There is a declaration of task url(String) which
fetches the content of the URL String. This task
may return two different kinds of signals, namely
success(contents) or failure. The invoca-
tion of the declared task is achieved using the exec
url(String) command.

3.2. Gateways

Services:
2/3�<%=�> -�.10 ,�2/354 �?.10 ,�2�354 � 647A 0 =�BCA%Dm47= 0@-/.10 ,�2�354 � FG< � � .10 ,�2/354 � ��I�I@I FG< � �

.10 ,�2/354 � 647A 0 =�BCA%DnK�L�M 0@-/.10 ,�2�354 � FG< � � .10 ,�2�354 � ��I�I@I FG< � �
.10 ,�2/354 � 6
Specification: Each of these services is similar to the ser-
vice

+�,)-/.10 ,�2�35476 , except that the URL String should be
associated with a CGI gateway having the corresponding
type (

2�3�<%=@> � 4�= 0 � or
K�L�M 0). The arguments are passed to

the gateway according to the protocol for this gateway type.
Translation:

% Task Invocations
exec index(String, String1);
exec gateway get(String, Id1=String1, I�I@I Idn=Stringn);
exec gateway post(String, Id1=String1, I�I@I Idn=Stringn);

% Task Declarations follow
task index(String, String1)

return k success(contents), failure l ;
task gateway get(String, Id1=String1 I@I�I Idn=Stringn)

return k success(contents), failure l ;
task gateway post(String, Id1=String1 I@I�I Idn=Stringn)

return k success(contents), failure l ;
Interpretation: Similar to the translation of the service
url(String), there is a declaration part followed by the
invocation part.

293

3.3. Sequential execution

Service: . �]S . �
Specification: The combinator “

S
” allows a secondary ser-

vice to be consulted in the case that the primary service fails
for some reason. Thus, the service . ��S . � acts like the ser-
vice . � , except that if . � fails then it acts like the service
. � .
Translation:

do
exec S1

watching S1.failure
timeout S2
end
% where S1.failure is the failure signal
% returned by service S1

Interpretation: The translation begins with invoking ser-
vice S1. If S1 succeeds then the rest of the statements are
not executed. However, if S1 fails (corresponds to the emis-
sion of S1.failure) then service S2 is invoked.

3.4. Concurrent execution

Service: . � X . �
Specification: The “

X
” combinator allows two services to

be executed concurrently. The service . � X . � starts both
services . � and . � at the same time, and returns the result
of whichever succeeds first. If both . � and . � fail, then
the combined service also fails. The rate of the combined
service is always the maximum of the rates of . � and . � .
Translation:

do
exec S1

watching (S2.success and not S1.success)
% where S2.success is the success signal
% returned by service S2, and
% not S1.success denotes that the
% signal S1.success is not currently present

X X

do
exec S2

watching (S1.success)
% where S1.success is the success signal
% returned by service S1

Interpretation: Both S1 and S2 are begun concurrently,
and if at most one of them succeeds then the result confirms
to the specification. However, on the rare occasions when
both S1 and S2 succeed at the same instant, S1 is accorded
higher priority and is chosen as the resultant service.

3.5. Time limit

Service: 0 2/_[=@L�+ 0@-!0 �a. 6
Specification: The 0 2�_^=�L�+ 0 combinator allows a time limit
to be placed on a service. The service 0 2/_[=@L�+ 0@-!0 ��. 6 acts
like . except that it fails after 0 seconds if . has not com-
pleted within that time.
Translation:

do
exec S

watching tick(t)

Interpretation: The tick(t) denotes the passage of
time duration t on the Clock. The value of the time du-
ration 0 has to be greater than zero.

3.6. Rate limit

Service: 	 2/_[2 0@-`0 � , �?. 6
Specification: The 	 2/_[2 0 combinator provides a way to
force a service to fail if the rate ever drops below a certain
limit

,
. A start-up time of 0 seconds is allowed, since gener-

ally it takes some time before a service begins receiving any
data. The service 	 2�_^2 0@-!0 � , �?. 6 acts like service . , except
that each physical connection is considered to have failed
if the rate ever drops below

,����*D 0 =@M��GM�=�� after the first 0
seconds of the connection. Physical connections are created
by invocations of

+�, 	 � 2�3�<%=@> and
47A 0 =@BEA%D combinators.

Translation:

do
exec SX X
[await tick(t);
emit Start-Limit]

watching LIMITX!X
await Start-Limit;
trap T in

loop
await rate;
if ?rate � r
then [emit LIMIT;

exit T]
end % end loop

end % end trap

Interpretation: A utility that is added to CRP is the ability
to compute the rate of a basic service, namely the rate of
arrival of the incoming data stream on fetching an URL. As
suggested by Cardelli and Davies [6], the data-rate is com-
puted using an ad hoc but nevertheless effective mechanism
of taking the average over the previous two seconds as cal-
culated by samples done five times a second. The statement

294

?rate provides information about the current rate of ar-
rival of input data. The above translation forces the service
to fail if (after an initial start-up time of 0 seconds) the rate
ever drops below the desired rate. Given the ability of CRP
to count the number of occurrences of events, it is easily
possible to have variants of the above scenario, such as forc-
ing the service to fail, not the first time the rate drops below,

(after initial start-up time), but the third (say) time the rate
drops below

,
:

do
exec S
...

watching 3-rate-limit
...

3.7. Repetition

Service:
,�=�K�=�A 0@-/. 6

Specification: The
,�=�K�=�A 0 combinator provides a way to

repeatedly invoke a service until it succeeds. The service,�=)K�=@A 0@-/. 6 acts like . , except that if . fails,
,�=�K�=�A 0@-�. 6

starts again.
Translation:

trap T in
loop

exec S;
if ?S.success then exit T

end % end loop
end % end trap

Interpretation: In a loop, the body should not terminate
instantaneously. This means that the exec S should con-
sume at least one instant of time for execution.

3.8. Non-termination

Combinator:
M 0 A 	 	

Specification: The combinator
M 0 A 	 	 never completes or

fails and always has a rate of zero.
Translation: halt
Interpretation: The halt command continues forever,
and the only way to terminate it is through preemption.

3.9. Failure

Combinator:
j�A�2 	

Specification: The
j�A%2 	 combinator fails immediately.

Translation:

do
await tick(1)

watching immediate tick(0)

Interpretation: The translation of fail involves awaiting
tick(1) on the clock, but is preempted if tick(0) oc-
curs earlier. As tick(0) does always precede tick(1),
the entire construct fails at the same instant.

4. Implementation

We have implemented a laboratory prototype of the ser-
vice combinators for Web computing in the language of
Communicating Reactive Processes (CRP) [9] . The com-
binators have been implemented on top of an existing com-
piler of CRP [9], which in turn is based on an ESTEREL [4]
compiler.

In order to implement the service combinators in CRP,
a few enhancements had to be made to the existing CRP
implementation. In particular we had to enrich the CRP im-
plementation with capabilities for interaction on the World-
Wide Web [1]. In other words we had to endow it with
functions for supporting the HTTP [2] protocol.

Another important utility that was added to CRP was the
ability to compute the rate of a basic service, namely the rate
of arrival of the incoming data stream on fetching an URL.
As suggested by Cardelli and Davies [6], the data-rate is
computed using an ad hoc but nevertheless effective mech-
anism of taking the average over the previous two seconds
as calculated by samples done five times a second.

5. Further work

From our translation it can be seen that we have real-
ized the scripting language with ESTEREL [4] and tasks,
where CLOCK is a special task. We intend to use the
rendezvous feature of CRP to show the possible inter-
actions that one could have between various agents. In im-
plementing the service combinators, we have so far utilized
only a small fraction of the interaction power of CRP. As
mentioned earlier, a CRP program consists of a number of
independent ESTEREL reactive programs or nodes which
interact with each other through asynchronous operations.
The implementation of the service combinators makes use
of only one ESTEREL node, which interacts with its envi-
ronment, namely with the rest of the world wide Web.

The next logical step would be to allow the migration
of CRP programs over the Web to other sites, and exploit
the interaction between the CRP agents at the local site and
the external sites. So far we have modeled the interaction
of a single CRP program with its environment, using the
notions of asynchronous tasks and the exec primitive.

295

In the case where there are multiple nodes, interaction be-
tween them would be based on the more powerful mecha-
nism of rendezvous on channels, using the send and
receive constructs for asynchronous operations. The ba-
sic service of fetching the contents of an URL by the local
agent from a remote agent would be translated to CRP as
follows.

module local-agent:
output channel url: string;
input channel contents: string;

rendezvous url(?Address);
rendezvous contents(?File)

end module

module remote-agent:
input channel url: string;
output channel contents: string;

rendezvous url(?Address);
rendezvous contents(?File)

end module

We are in the process of developing a package for use in
distant education courses, which makes use of such au-
tonomous CRP agents interacting over the world wide Web.
The presence of such agents helps in tailoring the education
programs to the specific needs of every individual learner,
and also for easy monitoring of the learners’ progress. It
also helps in retaining the flexibility of the teaching process
itself by tailoring further lessons depending on the detailed
feedback obtained from the agents.

6. Conclusion

We have shown that the well developed paradigm of
reactive programming provides an ideal base for launch-
ing web-scripting languages. We have shown that service
combinators for Web computing can be easily implemented
in the language of ESTEREL and Communicating Reactive
Processes.

A number of features which are unique to reactive lan-
guages, support the embedding of primitives suitable for
Web programming. Among these features of reactive pro-
gramming, are the unification of synchronous and asyn-
chronous interaction provided by them; their concurrency
capabilities, and also the rich set of error-handling primi-
tives.

From the experience obtained so far, we have good
reasons to believe that further exploration of the reactive
paradigm for web-scripting languages could prove to be
a fruitful endeavor. Such web-scripting languages would

help in the construction of novel applications over the Web.
They would also help in exploiting the resources available
over the Web by migrating autonomous agents over the Web
to other sites, and thus assist in tailoring the Web to suit
the needs and requirements of each individual user of the
World-wide web.

References

[1] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and
A. Secret. The world-wide web. Commun. ACM, 37(8):76–
82, August 1994.

[2] T. Berners-Lee and D. Connolly. Hypertext Markup Language
– 2.0. RFC 1866, MIT/W3C, 1995.

[3] G. Berry. Preemption in concurrent systems. In Proc.
FSTTCS’93, Lecture Notes in Computer Science 761,
Springer, pages 72–93, December 1993.

[4] G. Berry and G. Gonthier. The ESTEREL synchronous pro-
gramming language: Design, semantics, implementation. Sci-
ence of Computer Programming, 19(2):87–152, November
1992.

[5] G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicat-
ing reactive processes. In Proc. ACM Symposium on Princi-
ples of Programming Languages, pages 85–99, January 1993.

[6] L. Cardelli and R. Davies. Service Combinators for Web Com-
puting. SRC Research Report 148, Digital Equipment Corpo-
ration Systems Research Center, June 1, 1997.

[7] N. Gehani and K. Ramamritham. Real-Time Concurrent C:
A Language for Programming Dynamic Real-Time Systems.
Technical Report, University of Massachusetts, 1991.

[8] N. Raja and R. K. Shyamasundar. Web-Scripting Languages
for Free. TIFR Research Report, Computer Science Group,
Tata Institute of Fundamental Research, 1998.

[9] B. Rajan and R. K. Shyamasundar. An implementation of
communicating reactive processes. In Proc. ICPDCN, 1997.

296

