
Algebra and Computation

Ramprasad Saptharishi∗

TIFR, Mumbai

January 16th, 2017 – May 15th, 2017

Contents

I Group theoretic algorithms 4

1 Introduction 4
1.1 Bringing in group theory . 5

2 Crash course on Group Theory 5
2.1 Homomorphisms, kernels, normal subgroups etc. 6
2.2 Group Actions . 6
2.3 Orbits and stabilizers . 7

3 Studying huge groups 9
3.1 Algorithmic tasks given a succinct group 9
3.2 Computing orbits and the orbit graph 10
3.3 Computing stabilizers . 11
3.4 Membership testing . 15
3.5 Computing the size of a group . 18
3.6 Normal closures and subnormality 19
3.7 Commutators and solvability . 20

4 Towers of subgroups 23
4.1 Set stabilizers, group intersection, and graph isomorphism 23
4.2 Descending towers . 24
4.3 Revisiting the group intersection problem 25
4.4 Solving an Automorphism Problem 27

5 Divide and Conquer techniques. 29
5.1 Intransitive case . 29
5.2 Blocks . 29
5.3 Block systems and structure forests 31
5.4 Sylow Theorems and p-groups . 33
5.5 Divide and conquer via blocks . 35

∗ramprasad@tifr.res.in

1

mailto:ramprasad@tifr.res.in

Contents

6 Colour Stabilizer for special groups 36
6.1 If G is not transitive . 36
6.2 If G is not primitive . 36

7 Graph isomorphism for bounded degree graphs 38
7.1 Trivalent Graphs . 39
7.2 Generalizing to higher (but bounded) degree graphs 43

8 General graph isomorphism 45
8.1 Colour Refinements . 45
8.2 Reducing to the bounded generalized colour valence case 47
8.3 GraphIso for bounded generalized colour valence graphs 49

II Computations on polynomials 50

9 Preliminaries 51
9.1 Polynomial rings . 52
9.2 Fraction fields . 53
9.3 Finite fields . 53
9.4 Adjoining elements and splitting fields 54

10 Basic operations on polynomials 55
10.1 Polynomial multiplication . 56
10.2 Fast Fourier Transform . 56
10.3 Polynomial division . 61
10.4 Multi-point evaluations . 62

11 Factorizing univariate polynomials over finite fields 63
11.1 Computing the GCD . 63
11.2 Handling repeated factors . 64
11.3 Some field properties, and Distinct Degree Factorization (DDF) . 64
11.4 The Chinese Remainder Theorem . 66
11.5 The Cantor-Zassenhaus Algorithm 67
11.6 Berlekamp’s Algorithm . 70

12 Factorizing Bivariate Polynomials over Finite Fields 72
12.1 Hensel Lifting . 73
12.2 Bivariates as univariates over the fraction field 74
12.3 The Resultant . 75

13 Factorizing polynomials in Z[x] 82
13.1 Finding a good prime . 83
13.2 How large should k be? . 84
13.3 Lattices . 85
13.4 Gram-Schmidt Orthogonalization . 86

14 Kaltofen’s black-box factorization algorithm 93
14.1 Proof of Hilbert’s Irreducibility theorem 95

2

Contents

III Very Basic Algebraic Geometry 99

Last updated: Thu Apr 27 11:22:38 IST 2017

3

This course is going to be roughly split into three parts. The first part would
deal with group theoretic algorithms and their application to the graph isomor-
phism problem. The second part would deal with polynomials and factorization
algorithms for them. The third part would deal with very basic algebraic geom-
etry from a computational perspective.

Part I: Group theoretic algorithms

Lecture 1:
January 16th, 2017 Notation

There may be more
to include... will add
as they come end up
being used

• We shall use Sn to denote the symmetric group on n elements. Sometimes
we might also look at a symmetric group action on a set A and we shall
denote that group by Sym(A)

• Groups will often be specified by a generating set. We shall denote this by
G = ⟨S⟩.

• We shall use H ≤ G to denote that H is a subgroup of G.
• We shall use H◁G to denote that H is a normal subgroup of G, and use

H ⊴ G to denote that H is a normal (not necessarily proper) subgroup of
G.

• Most of the groups considered in this course would be acting on a set Ω.
We shall use the standard exponent notation, such as αg for α ∈ Ω and
g ∈ G to denote the image of α under the action of g. This has the useful
property that (αg)h = αhg etc. The change in order is annoying but I prefer
this as I want it to mimic h(g(α)).
In the same notation, αG will denote the orbit of α under the action of G.

• If G acts on Ω and α ∈ Ω, we shall denote the stabilizer of α by stabG(α), or
just Gα.

1 Introduction

The first part of the course would focus on the Graph Isomorphism question.
Definition 1.1 (Graph Isomorphism). Two graphs on n vertices G = (V, E) and
H = (V, E′) are said to be isomorphic if there is a permutation σ ∈ Sn such that

(vi, vj) ∈ E⇐⇒ (vσ(i), vσ(j)) ∈ E′.

That is, there is a relabelling of the vertices such that edges and non-edges of G are
mapped to edges and non-edges of H respectively.

◊

The computational task GraphIso is the task of checking if the two given
graphs G, H are isomorphic or not. What do we know about this problem?

Fact 1.2. GraphIso ∈ NP∩ co-AM.

4

2. Crash course on Group Theory

This intuitively suggests that GraphIso is unlikely to be NP-complete. In fact,
recently there was a huge breakthrough by Babai1.

Theorem 1.3 (Babai). There is a deterministic algorithm for GraphIso running in time
npoly log n.

We would not be covering this result as a part of this course (alas!) but we
shall however look at the technique of group theoretic algorithms developed by
Eugene Luks and László Babai to attack this problem.

1.1 Bringing in group theory

Let us ask a slightly different question. Suppose G and H were actually the
same graph. Now of course they are isomorphic because σ = id ∈ Sn preserves
the edge relations. But are there other non-trivial relabellings of vertices that
preserve the edge relations? These are what are called automorphisms.
Definition 1.4 (Graph Automorphisms). For a graph G = (V, E) on n vertices, the
automorphisms of G, denoted by Aut(G), is the following set of permutations:

Aut(G) = {σ ∈ Sn ∶ (vi, vj) ∈ E⇐⇒ (vσ(i), vσ(j)) ∈ E} . ◊

Observation 1.5. Aut(G) is a subgroup of Sn.

Understanding the group of automorphisms of a group turns out to be very
important for the question of graph isomorphism. Here is a concrete reason for
it.

Lemma 1.6. Let G = (V, E) and H = (V′, E′) be two connected graphs on n vertices.
Consider the graph X = (V ∪V′, E∪E′) which is just the union of the two graphs. Then,
G is isomorphic to H if and only if there is a σ ∈ Aut(X) ⊆ S2n that maps some vertex
of G (in X) to a vertex of H (in X).

Proof. Go figure.

Thus, if we could somehow get a handle on Aut(X), we may be able to check
if there are automorphisms that sort of swap G and H.

One issue here is that Aut(X) ⊆ S2n and hence can be a huge set (potentially all
of S2n which has size (2n)!). Can we even hope to answer reasonable questions
for such exponential sized groups? In this part of the course, we shall basically
be addressing questions of this sort and eventually applying that to construct
algorithms for some special cases of GraphIso.

2 Crash course on Group Theory
There is a series
of fantastic blog
posts by Tim
Gowers on group
theory. Highly
recommended that
you go over them at
some point.

I guess it is fair to assume that you know what a group is — a finite set with an
associative binary operation on it, with an identity, and inverses etc.

Here are some basic definitions/properties that one should know about
groups.

1This result is currently being peer-reviewed.

5

2. Crash course on Group Theory

Theorem 2.1 (Lagrange’s Theorem). If H is a subgroup of G (denoted by H ≤ G),
then ∣H∣ divides ∣G∣.

One word proof: Cosets.

2.1 Homomorphisms, kernels, normal subgroups etc.

Definition 2.2 (Homomorphisms). A homomorphism is a map φ ∶ G → H between
two groups that behave well with the group multiplication in the sense that

• φ(idG) = idH ,
• φ(g1g2) = φ(g1)φ(g2), and
• φ(g−1) = (φ(g))−1. ◊

Once we have a homomorphism we can look at the kernel of the map φ
defined by

ker(φ) = {g ∈ G ∶ φ(g) = idH} .

Proposition 2.3. Let φ ∶ G → H be a homomorphism between groups. Then, ker(φ) =

{g ∈ G ∶ φ(g) = idH} is a subgroup of G. Furthermore, it satisfies the property that

∀g ∈ G, k ∈ ker(φ) , gkg−1 ∈ ker(φ).

This idea of gkg−1 staying inside the subgroup is very useful property that
we shall refer to such groups as normal subgroups.
Definition 2.4 (Normal subgroups). A subgroup H is said to be a normal subgroup
of G (denoted by H ⊴ G) if for every h ∈ H and g ∈ G we have that

ghg−1 ∈ H. ◊

Hence, Proposition 2.3 states that ker(φ) ⊴ G. Normal subgroups are ex-
tremely useful and you can do operations on them that you typically cannot do
on other subgroups.

Proposition 2.5. Let H ⊴ G and K ≤ G. Consider the set HK = {hk ∶ h ∈ H , k ∈ K}.
Then, HK is a group.

One line proof: kh = h′k for some h′ ∈ H.

Proposition 2.6. Let H ⊴ G. Then, the set of cosets of H in G forms a group — this
is called the quotient group G/H. Furthermore, there is a natural homomorphism
φ ∶ G → G/H for which ker(φ) = H.

There are many more properties that can be stated about normal subgroups
but we’ll cross those bridges when we come to it.

2.2 Group Actions

But often, it is better to look at groups via its action on a set. Throughout this
course, we’ll only look at finite groups that act on a finite set.

6

2. Crash course on Group Theory

Definition 2.7 (Group actions). A group G is said to act on a set Ω if every g ∈ G
induces a permutation of Ω (i.e. each g “moves” elements of Ω around) that satisfies the
following properties.

• id corresponds to the identity permutation. That is, αid = α for all α ∈ Ω,

• The actions compose in the natural way using the group multiplication — (αg)h = I prefer actions on
the left, hence the
twist in order.αhg. That is, moving α by g and then by h is the same as moving α by hg. ◊

A succinct way of saying this is that a group action is a homomorphism from
G to Sym(Ω) but the definition above spells out what this means. However, the
action could be redundant in the sense that there could be say two different
elements of G that induce the same permutation on Ω by their action. We shall
say that the action is faithful if the action of distinct elements of G is distinct. Or
in other words, the homomorphism from G to Sym(Ω) is injective.

Observation 2.8. If G acts faithfully on a set Ω, then G is isomorphic to a subgroup
of Sym(Ω).

Often in this course, G would actually be a subgroup of permutations on
n elements so there is an immediate action of G on a set of n elements. But
sometimes the actions may not be immediate from the definition of the group.
One specific example that is very relevant in this context is the action of a group
of n-permutations G ≤ Sn on Ω = ([n]

2) defined by

(i, j)σ = (σ(i), σ(j))

which is just lifting the action on vertices to edges.
This part was not
done in the lecture
but might as well
keep it here.

If G is a group of size n, then then there is a very natural standard action of
G on itself just defined by left-multiplication — gh = hg. It is easy to check that
this is indeed a group action (called the left regular group action) by verifying all
the properties. Thus, one way to look at the elements of G is how it permutes
the elements of G upon left multiplication. This is formalized in the following
observation.

Observation 2.9. Any group G with ∣G∣ = n is a subgroup of Sn, the symmetric group
on n elements.

A more interesting(?) action of G on itself is what is called the conjugation
action defined by gh = hgh−1. We’ll see more on these at a later point.

There is a lot that we can understand about a group from its action. We’ll
need a few definitions.

2.3 Orbits and stabilizers

Definition 2.10 (Orbits). If G acts on Ω, the orbit of a point α ∈ Ω with respect to
the action of G (denoted by αG) is the set of all points that it can be moved to. Formally,

αG = {β ∈ Ω ∶ β = αg for some g ∈ G} . ◊

7

2. Crash course on Group Theory

We shall say that the action of G is transitive if αG = Ω. (It doesn’t matter which α we
choose.)
Definition 2.11 (Stabilizers). Suppose G acts on Ω and α ∈ Ω. Then, the stabilizer
of α, denoted by stabG(α) is defined as

stabG(α) = {g ∈ G ∶ αg = α} . ◊

It is pretty clear that stabG(α) is a subgroup of G but we can actually say
more.

Theorem 2.12 (Orbit Stabilizer Theorem). ∣G∣ = ∣αG∣ ⋅ ∣stabG(α)∣. Thus, in particu-
lar, both ∣αG∣ and ∣stabG(α)∣ divide ∣G∣.

This is quite a powerful theorem and is used to prove some cool results about
the structure of groups. Here is one application.

Theorem 2.13 (Cauchy’s Theorem). Let G be a group whose size is divisible by a
prime p. Then, G contains as a subgroup Cp which is a cyclic group of order p.

Proof. Consider the following set of p-tuples of elements of G:

Ω = {(g1, . . . , gp) ∶ gi ∈ G for all i and g1⋯gp = id} .

Observe that ∣Ω∣ = ∣G∣p−1, which in particular is divisible by p.
One natural group that acts on Ω is the group of cyclic shifts. That is, if

Cp = ⟨σ⟩ where σ is the p-cycle then define

(g1, . . . , gp)
σ = (g2, . . . , gp, g1).

Now take any tuple (g1, . . . , gp) ∈ Ω. Since Cp acts on Ω, the size of the orbit of
(g1, . . . , gp) must divide ∣Cp∣ and hence must either be 1 or p. What are tuples
whose orbit is just of size 1? Any tuple of the form (g, g, . . . , g) would be one
such element but for this to be in Ω we must have gp = 1. We do know one such
element, which is (id, . . . , id). Can this be the only such element?

Notice that the set Ω is naturally partitioned into orbits. If (id, . . . , id) is the
only element of orbit size 1, then the ∣Ω∣ = 1 mod p, which contradicts our earlier
observation that ∣Ω∣ = ∣G∣p−1 = 0 mod p. Hence, we must indeed have at least p
elements in G such that gp = id. Any of these gs generate a cyclic group of order
p.

In fact, these sort of group actions can be used to prove other cool results,
and one of the popular example are Sylow’s Theorems. We won’t need it now so
we’ll prove them at a later time. We shall just state the theorems for now.

Theorem 2.14 (Sylow Theorems). Let G be a finite group of size prm where p is a
prime, and (p, m) = 1. Then the following holds:

1. G contains a subgroup P of order pr (these are called p-Sylow subgroups).

2. All p-Sylow subgroups of G are conjugates of each other. That is, for any other
Q ≤ G of size pr, there is some g ∈ G such that gPg−1 = Q.

3. If s is the number of p-Sylow subgroups of G, then s ∣ m and s ≡ 1 mod p.

8

3. Studying huge groups

3 Studying huge groups

Much of this part of the course would be dealing with groups acting on n
elements, like symmetries of some graph on n vertices etc. A lot of times, these
could be arbitrary subgroups of Sn which has n! elements in it. Therefore, we
would have to deal with subgroups G ≤ Sn that has exponentially many elements
in it. How is G to be provided to us?

Fortunately, we can succinctly specify large groups by providing a generating
set.
Definition 3.1 (Generating set). A set S ⊆ G is said to be a generating set for G
is every element of G can be expressed as a product of elements in S (possibly using
elements of S multiple times). We shall denote this by G = ⟨S⟩. ◊

Lemma 3.2. Any finite group G has a generating set S of size O(log ∣G∣).

Proof. Let G be a finite group. If G is trivial, then ∅ ⊂ G generates G, and we
are done. Suppose G is non-trivial, and pick a non-identity element x0 ∈ G. The
group G0 = ⟨x0⟩ generated by x0 satisfies G0 ≤ G and ⟨x0⟩ ≥ 2. If G0 = G, then
the singleton set S0 ∶= {x0} ⊂ G does the job. Else, there is x1 ∈ G ∖ G0 (and
automatically, x1 ∈ G is non-identity). Notice that the subgroup G1 = ⟨S1⟩ where
S1 ∶= S0 ∪ {x0}, satisfies G0 < G1 ≤ G (strictly contains G0 as a subgroup), and
hence, by Lagrange’s theorem (Theorem 2.1), satisfies ∣G1∣ ≥ 2∣G0∣. We exploit
this observation to find a generating subset for G, of order O(log ∣G∣).

Set S−1 = G−1 ∶= ∅ ⊂ G. Having found a subset Sk−1 ⊂ G and the subgroup
Gk−1 ≤ G that it generates, we let Sk ∶= Sk−1 ∪ {x} for some x ∈ G ∖ Gk−1. The
process terminates because G is finite, and the resulting subset is indeed a
generating set because of the way it is constructed. On the other hand, if G = Gk,
then

∣G∣ = ∣Gk∣ ≥ 2∣Gk−1∣ ≥ 22∣Gk−2∣ ≥ ⋯ ≥ 2k+1∣G−1∣ = 2k+1

which shows that ∣Sk∣ = k + 1 ≤ log ∣G∣. This proves the lemma since Sk ⊂ G is a
generating set.

With this, we can start asking a whole lot of questions given a succinct
representation of a group. First, we shall connect these questions to the graph
isomorphism and graph automorphism questions.

3.1 Algorithmic tasks given a succinct group
Lecture 2:
January 20th, 2017 Membership: Given a group G ≤ Sn as G = ⟨S⟩ and a permutation σ ∈ Sn, check

if σ ∈ G.

Size of the group: Given a group G ≤ Sn as G = ⟨S⟩, compute ∣G∣.

Subgroup: Given two groups G, H ≤ Sn, presented as G = ⟨S⟩ and H = ⟨T⟩, check
if H ≤ G.

Normal subgroup: Given two groups G, H ≤ Sn, presented as G = ⟨S⟩ and
H = ⟨T⟩, check if H ⊴ G.

9

3. Studying huge groups

Group Intersection: Given two groups G, H ≤ Sn, presented as G = ⟨S⟩ and
H = ⟨T⟩, computing a generating set of G ∩ H.

Orbit computation: Given a group G ≤ Sn, presented as G = ⟨S⟩ acting on
Ω = [n], compute the orbits of the group action.

Stabilizer computation: Given a group G ≤ Sn, presented as G = ⟨S⟩, acting on
Ω = [n] and a point α ∈ Ω, compute a generating set of stabG(α).

Normalizer computation: Given a group G ≤ Sn, presented as G = ⟨S⟩, find the
set of elements of Sn that normalizes G. That is,

NormalizerSn(G) = {h ∈ Sn ∶ h−1gh ∈ G ∀g ∈ G} .

Computing automorphisms of a graph: Given a graph G, compute a generating
set for Aut(G).

... and many more.

For each of the above problems, we shall either show that there are poly-
nomial time algorithms or prove some sort of hardness result. Througout this
section, unless otherwise stated, when we say “Given input G = ⟨S⟩”, we shall
mean that the input is the set {S}. Furthermore, we will always mean that G ≤ Sn
naturally acts on Ω = {1, . . . , n}.

3.2 Computing orbits and the orbit graph

We are given an input G = ⟨S⟩ and an α ∈ Ω and we want to compute its orbit

αG = {β ∶ β = αg for some g ∈ G} .

The following natural algorithm works.
Algorithm 1: Orbit

Input : ⟨S⟩ and α ∈ Ω
Output :The orbit of α

1 ∆ = {α}
2 while ∆ grows do
3 for β ∈ ∆ and g ∈ S do
4 if βg ∉ ∆ then
5 ∆ = ∆ ∪ {βg}

6 return ∆

Correctness of the algorithm is evident. The algorithm runs while ∆ grows,
and hence, there can be at most 1+ ∣αG ∣ ≤ 1+ n iterations of step 2, the additional
one being to verify that ∆ has stopped growing. In each iteration of step 2,
the algorithm executes step 2 ≤ (∣αG ∣ ⋅ ∣S∣) ≤ n ⋅ ∣S∣ times, and for each of these
executions, carries out membership-check βG ∉ ∆ which takes ≤ ∣αG ∣ ≤ n times.
Therefore, the running time of the algorithm is O((n + 1) ⋅ n ⋅ ∣S∣ ⋅ n) = O(n3∣S∣).

10

3. Studying huge groups

We can augment this algorithm to not just find the orbit, but find a represen-
tative gα,β ∈ G such that αgα,β = β for every α, β from the same orbit.

Algorithm 2: OrbitRepresentatives
Input : G = ⟨S⟩ and an α ∈ Ω
Output :A set of orbit representatives of α

1 X = (Ω,∅), the empty graph with vertices Ω
2 for α ∈ Ω and g ∈ S do
3 if (α, αg) is not a directed edge in X then
4 Add the directed edge (α, αg) to X with label g.

5 Compute T, the connected component containing α.
6 Let R = {id}

7 for every β ∈ T do
8 Let gα,β be the (left-)product of edge labels of a path from α to β in X

so that gα,β maps α to β.
9 Add gα,β to R.

10 return R

The strongly connected components of the orbit-graph X, constructed in
the above algorithm, are orbits induced by G. Furthermore, if α, β are in the
same orbit the above algorithm finds an element g ∈ G such that αg = β by
taking a path from α to β and multiply the edge labels along the way. We make
a convention here, that our choice element g ∈ G satisfying αg = α will always be
the identity element of G.

Again this algorithm runs in poly(n, ∣S∣) time. Indeed, step 2 involves at
most (∣αG ∣ ⋅ ∣S∣) ≤ n∣S∣ execution of step 3, and for each execution of step 3, the
algorithm carries out at most ∣αG ∣2 ≤ n2 edge-membership checks. Therefore,
computing the orbit graph takes O(n3∣S∣) time. Once we have the orbit graph,
computing connected components, shortest paths etc. are clearly polynomial
time.

3.3 Computing stabilizers

Suppose that we are given as input a group G = ⟨S⟩ and a point α ∈ Ω. We wish
to compute Gα = stabG(α) = {g ∈ G ∶ αg = α}.

Note that by Lagrange’s theorem, stabG(α) tiles G exactly. Also, by Theo-
rem 2.12, the number of tiles is exactly the orbit size ∣αG∣. From this, what can we
say about the cosets of stabG(α)? These are sets of the form g ⋅Gα. If αg = β, then
every element of g ⋅Gα moves α to β. Hence, the cosets of Gα exactly corresponds
to fixing a β ∈ αG and collecting the set of all g ∈ G that maps α to β.

This (mis)leads us to consider the following “natural algorithm” for comput-
ing a generating set for Gα.

11

3. Studying huge groups

Algorithm 3: Not-StabiliserGenSet
Input : G = ⟨S⟩ and α ∈ Ω
Output :A generating set for Gα = stabG(α)

1 Using Algorithm 2, compute αG and a set of distinct representatives
{gβ ∶ β ∈ αG} such that αgβ = β for every β ∈ αG.

2 Let T = ∅

3 for each g ∈ S do
4 if αg = α then
5 Add g to T
6 else
7 Let β = αg.
8 Add g−1

β ⋅ g to T.

9 return T

Notice that the “generating set” T ⊂ G returned by our “natural algorithm”
satisfies ∣S∣ = ∣T∣. Let us try proving correctness of this “algorithm”. For this, we
make the following observation: that the subset S′ ∶= T ∪{gβ ∶ β ∈ αG} generates
G, as this generates everything in the original generating set S. Now, in order to
prove “correctness”, we just need to show the following

Not-a-Lemma. The set T that Algorithm 3 outputs is indeed a generating set for
Gα = stabG(α).

And here is how a possible proof might be sketched out.

(Incorrect) “Proof.” Firstly note that all the elements we add to T in line 8 are
indeed in T. So certainly H = ⟨T⟩ ≤ Gα. To show that H = Gα, observe that
T ∪ {gβ ∶ β ∈ αG} generate G as they clearly generate everything in S. But then, This sentence isn’t

true...this can at most give ∣αG∣ distinct cosets of ⟨T⟩. The only way this can cover all
of G is if ∣H∣ ⋅ ∣αG∣ = ∣G∣ which forces H = stabG(α). ?QED?

Unfortunately, as the title indicates, Not-a-lemma is indeed not a lemma. We
first consider an example that will show that T ⊂ stabα(G) is not a generating
set of stabα(G). We didn’t do this

counter-example in
class but thanks to
Somnath for this!

Example 3.3. Consider the symmetric group S10 of permutations of the set {0, 1,⋯, 9},
and let the cyclic permutations σ0, σ3, σ6 ∈ S10, be given as follows: σ0 = (0 1 2), σ3 =

(3 4 5), σ6 = (6 7 8). The subset T′ ∶= {σ0, σ3, σ6} ⊂ S10 generates a subgroup of S10.
Let us write H′ = ⟨T′⟩. Since σiσj = σjσi for all i, j ∈ {0, 3, 6}, the subgroup H′ ≤ S10 is
commutative, and the non-identity elements of H′ can have order 3 only; in particular,
H′ is not cyclic since there is no element of order 27 = ∣H′∣. Now consider any 2-elements
subset T2 ∶= {h1, h2} ⊂ H′. The subgroup ⟨T2⟩ ≤ H′ has order ≤ 9. Therefore, H′ can
not have a generating set of less than three elements. Notice that the elements in H′ are
all even permutations, and therefore, H′ ≤ A10, where A10 ≤ S10 is the alternating group.

Recall that S10 has a generating set of size 2. Thus, if it was known that H′ ≤ S10
is the stablizer of some element under some group-action, then we could have directly
contradicted the statement of Not-a-lemma. And this is easy to come-up with. Let

12

3. Studying huge groups

m ∶= [S10 ∶ H′] be the number of cosets of H′ ≤ S10, and let Ω = {id, x1,⋯, xm−1} ⊂ S10
be a complete set of coset-representatives. Explicitly, m = (10)!/27. Define action of S10
on Ω as follows: for g ∈ G and x ∈ Ω, set xg = xi if and only if gx ∈ xi H. Finally, note
that H = stabS10(id).

Note that the action we have just defined does not really “look like” the natural action
of Sn on {1,⋯, n}. However, that is only superficial. As the definition of group action
suggested, this action induces a homomorphism S10 → Sm whose kernel is the subgroup
K ∶= ∩g∈S10 gH′g−1. Notice that K ≤ S10 is a normal subgroup of S10, contained in
H′ ≤ A10, and has order ≤ 27; therefore, K ⊴ A10 is a proper normal subgroup. Since
A10 is simple, this shows that K ≤ H′ is trivial. Thus, the action we defined is just
induced by the natural action of Sm on the set {1,⋯, m}, up to relabelling of the elements
of Ω. ◊

What went wrong with the proof then? Well, an element g ∈ G, as we have
observed, can be written as g = g1⋯gt with all gi ∈ S′ = T ∪ {gβ ∶ β ∈ αG}. Let
us suppose that g ∉ ⟨T⟩; then there is some gk ∈ {gβ ∶ β ∈ αG} appearing in the
above expression such that gk+1,⋯, gt ∈ T. For our line of argument in the above
“proof” to work, we need a gβ, β ∈ αG such that g1⋯gk ∈ gβ H, or equivalently,
g−1

β (g1⋯gk−1)gk ∈ H. However, we are now in hopeless situation, since the “al-
gorithm” did not assure us of even having gk−1gk ∈ gβH for some β ∈ αG.

Lecture 3:
January 23rd, 2017 Heaven is not lost! Although our algorithm could not return what it was

expected to, we have a clue as to what could be a way around. Notice that
we have derived the following in our preceding discussion: in order for T′ ⊂
stabG(α) to be a generating set, we needed to have g−1

β (g1⋯gk−1)gk ∈ H for some
β ∈ αG, whenever gk ∈ {gβ ∶ β ∈ αG} and gi ∈ T ∪ {gβ ∶ β ∈ αG}. We formulate
our revamped strategy along this lines.

This restriction
of id ∈ R can
be removed. See
Lemma 3.6 for
a more general
statement.

Lemma 3.4. Let G = ⟨S⟩ be acting on Ω = {1,⋯, n} and R = {x1,⋯, xm} ⊂ G a
complete set of orbit-representatives and assume id ∈ R. For any g ∈ G and xi ∈ R, there
exists a unique xj ∈ R such that x−1

j gxi ∈ stabG(1).

Proof. In fact, this lemma is almost a tautology. For any g ∈ G and xi ∈ R, if 1xi g = j
then there is a unique x ∈ R such that 1xj = j; this is because R = {x1,⋯, xm} ⊂ G
a complete set of orbit-representatives. But this implies x−1

j gxi ∈ stabG(1).

Let us consider T ∶= {x−1
j gxi ∶ g ∈ S, xi, xj ∈ R, x−1

j gxi ∈ stabG(1)}. We have
the following

Lemma 3.5. Every g ∈ G can be written as g = xit for a unique xi ∈ R and unique
t ∈ ⟨T⟩.

Proof. If g = id, there is nothing to prove. Else, write g = gkgk−1⋯g1 with gi ∈ S
for all 1 ≤ i ≤ k. Recall that our convention was to have id ∈ R. Assume that k = 1
in the expression g = gkgk−1⋯g1, so that g ∈ S. Since id ∈ R, the above lemma
tells us that there is a unique x ∈ R such that x−1g ∈ stabG(1). By definition of T,
we have x−1g ∈ T; since g = x(x−1g), we are done.

13

3. Studying huge groups

We now proceed via induction on k. Assume the induction hypothesis; that
is, for every string gkgk−1⋯g1 ∈ G, where gi ∈ S for all 1 ≤ i ≤ k, there is a xk ∈ R
and t ∈ ⟨T⟩ such that

gkgk−1⋯g1 = xk t

Ô⇒ g = gk+1gkgk−1⋯g1 = gk+1 xk t.

By the Lemma 3.4, there is a unique xk+1 ∈ R such that x−1
k+1gk+1xk ∈ stabG(1), and

by definition of T, again t′k ∶= x−1
k+1gk+1xk ∈ T. But this implies g = xk+1(x−1

k+1gk+1xk)tk =

xk+1t′kt

g = gk+1 xkt

= xk+1 (x−1
k+1 gk+1 xk) t

= xk+1 t′kt

∈ xk+1 ⟨T⟩ .

This proves the lemma modulo the uniqueness part.

Now to the uniqueness. Notice that T ⊂ stabG(1), and hence, ⟨T⟩ ≤ stabG(1).
Supose that xiti = xjtj for some ti, tj ∈ ⟨T⟩ and xi, xj ∈ R; then we have x−1

i xj =

tit−1
j ∈ ⟨T⟩ ⊂ stabG(1), which shows that 1xi = 1xj . This implies xi = xj since R

contains a unique representative for each l ∈ 1G. But then ti = tj.

We now have an algorithm to find the generating set of stabG(α), for α ∈ Ω.

Algorithm 4: StabiliserGenSet
Input : G = ⟨S⟩ and α ∈ Ω
Output :A generating set for Gα = stabG(α)

1 Using Algorithm 2, compute the orbit αG ⊂ Ω and a complete set of
distinct coset-representatives R ∶= {gβ ∶ β ∈ αG}, such that αgβ = β for
every β ∈ αG, and gα = id.

2 Let T = ∅

3 for each g ∈ S and gβ, gγ ∈ R, do
4 if g−1

β g gγ fixes α then
5 Add g−1

β g gγ to T

6 return T

Invoking Algorithm 2 costs O(n3∣S∣) time. Step 3 involves ≤ n2∣S∣ runs, and
each run involves checking if the orbit graph contains the edge (γ, β) which
involves at most ≤ n2 time. Therefore, the running time of this algorithm is
polynomial in n and ∣S∣. To show the correctness of the algorithm, notice that
T ⊂ stabG(α), and hence, ⟨T⟩ ≤ stabG(α). Now suppose g ∈ G is any element; by
Lemma 3.5, there is a unique gβ ∈ R such that g ∈ gβt for some t ∈ ⟨T⟩. That is,
there can be at most ∣αG∣ distinct cosets of ⟨T⟩

14

3. Studying huge groups

The usefulness of Lemma 3.5 merits a reformulation in greater generality,
originally due to Schreier. Here it goes.

Lemma 3.6 (Schreier’s lemma). Let G be a group with a generating set S ⊂ G, and
let H ≤ G a subgroup. Let R = {x1,⋯, xk} ⊂ G be a complete set of distinct coset-
representatives of H ≤ G, where x1 = id. Let T ∶= {x−1

i gxj ∈ H ∶ g ∈ S, xi, xj ∈ R}; then
H = ⟨T⟩.

We didn’t do the
proof in the lecture
but I’ll leave it here.

Proof. For any g ∈ S and x ∈ R, observe that gx belongs to some coset of H and
hence gx ∈ xi H for some xi ∈ R which implies that x−1

i gx ∈ H, and hence in T by
definition.

g x = xi ⋅ (x−1
i g x)

Since this is true for every g ∈ S and x ∈ R, this can be compactly written as

S ⋅ R ⊆ R ⋅ T

Now if we look at g1, g2 ∈ S and x ∈ R, we once again get by a similar reasoning
that g1g2x = g1 ⋅ (xih) = xjh. That is,

S ⋅ S ⋅ R ⊆ S ⋅ R ⋅ T

⊆ R ⋅ T ⋅ T

⋮

Ô⇒ ⟨S⟩ R ⊆ R ⋅ ⟨T⟩ .

But the left hand side of the last equation is just G, and the right hand side
is always contained in G. Hence it must be the case that G = R ⋅ H. Hence,
⟨T⟩ = H.

As was the case with stabG(α) ≤ G, Lemma 3.6 prescribes polynomial time
algorithm to find the generating set of any subgroup H ≤ G that is recognizable,
in the sense that there is a polynomial time algorithm to determine if a given
element g ∈ G belongs to H. Notice that the Lemma 3.6 on its own does not
assume finiteness of G; as long as H ≤ G has finitely many cosets, the recipe for
the generating set works. However, in that case the recognizability of H is lost.

3.4 Membership testing

We now come to the central algorithm which is testing membership. Once again,
we are given G ≤ Sn by a generating set {S} and a σ ∈ Sn, and we wish to check
if σ ∈ G. The cool thing is that this can be checked in polynomial time.

How do we go about this? Here is one sanity check we can make. Let Ω =

{1, . . . , n}. Certainly if σ = id, then we just accept. Otherwise, pick an arbitrary
α ∈ Ω that is moved by σ and let β = σ(α). Suppose it turns out that β ∉ αG (recall
we can compute αG using Algorithm 1), then we can immediately infer that
σ ∉ G. Say β ∈ αG, and suppose g ∈ G is an element such that αg = β (which we
can compute using Algorithm 2). Let us look at g−1σ. Clearly, σ ∈ G if and only

15

3. Studying huge groups

if g−1σ ∈ G. What have we gained? The key point is that g−1σ does not move α,
i.e g−1σ (α) = α. Hence, we have the following simple observation.

Observation 3.7. If σ(α) = β and if αg = β for some g ∈ G; then, σ ∈ G if and only if
g−1σ ∈ stabG(α).

By Algorithm 4, we can construct a generating set for stabG(α) in polynomial
time. We just recursively keep applying the above observation. This results in
the following algorithm for membership testing.

Algorithm 5: MembershipTest(E)
Input : G = ⟨S⟩ and σ ∈ Sn
Output :Yes if σ ∈ G, and No otherwise.

1 if σ = id then
2 return Yes

3 Since σ ≠ id, let α ∈ Ω such that σ(α) = β ≠ α.
4 if β ∉ αG then
5 return No

6 Since β ∈ αG, using Algorithm 2 compute an element g ∈ G such that
αg = β.

7 Using Algorithm 4, compute a generating set T for stabG(α).
8 return MembershipTest(E)(T, g−1σ)

The correctness of the algorithm is clear. However, there is a catch. The size of
the successive generating sets grows as ∣TstabG(α)∣ ≤ ∣S∣ ⋅ ∣αG ∣, without an apparent
reasonable bound. On the other hand, it is apparent that having some bound of
the form ∣T∣ ∈ O(nk), for example, will turn Algorithm 5 into a polynomial time
algorithm. This is accomplished as follows.

Suppose that a group G ≤ Sn is given as G = ⟨S⟩. We intend to find T ⊂ G
such that ∣T∣ ≤ n2, and G = ⟨T⟩. The following algorithm builds a strictly upper-
triangular n × n tableau M in which, each cell holds at most one element of G,
and the cells on/below the diagonal are empty.

16

3. Studying huge groups

Algorithm 6: ReduceGenSet
Input : G = ⟨S⟩, where S is given as an array S = {g1,⋯, gk}

Output :A generating set for G of size at most n2

1 Let M[i][j] = ∅ for all integers i, j = 1,⋯, n
2 Let t = 1
3 while t ≤ k, do
4 if gt = id then
5 t ←Ð t + 1

6 else
7 Let i be the smallest index such that igt ≠ i and Let j ∶= ig.
8 if M[i][j] = ∅ then
9 insert g in M[i][j]

10 t ←Ð t + 1

11 else
12 Replace gt in S by g′ ∶= (M[i][j])−1g.

13 return M

Notice that this is a polynomial time algorithm because each execution of the
while loop may involve at most n repetitions each of which is polynomial-step.
Moreover, in each stage, the set M ∪ {gt+1,⋯, gk} forms a generating set for G.
Therefore, the algorithms ends with a generating set, namely, the set of elements
in the tableau M; the size of this set is ≤ (n

2) ≤ n2.

Following modification of the preceding membership testing algorithm (Al-
gorithm 5) now yields a polynomial time algorithm.

Algorithm 7: MembershipTest(S, σ)

Input : G = ⟨S⟩ and σ ∈ Sn
Output :Yes if σ ∈ G, and No otherwise.

1 if σ = id then
2 return Yes

3 Since σ ≠ id, let α ∈ Ω such that σ(α) = β ≠ α.
4 if β ∉ αG then
5 return No

6 Since β ∈ αG, using Algorithm 2 compute an element g ∈ G such that
αg = β.

7 Using Algorithm 4, compute a generating set T for stabG(α).
8 return MembershipTest(ReduceGenSet(T), g−1σ)

Now that we have membership testing, a lot of other natural problems follow
almost immediately. For example, given two groups H and G, we can test if

17

3. Studying huge groups

H ≤ G.

Algorithm 8: SubgroupTest
Input : G = ⟨S⟩ and H = ⟨T⟩

Output :Yes if H ≤ G, and No otherwise.
1 for each h ∈ T do
2 if MembershipTest(S, h) = No then
3 return No

4 return Yes

We can also check if H ⊴ G.

Algorithm 9: NormalSubgroupTest
Input : G = ⟨S⟩ and H = ⟨T⟩

Output :Yes if H ⊴ G, and No otherwise.
1 if SubgroupTest(S, T) = No then
2 return No
3 for each g ∈ S and h ∈ T do
4 if MembershipTest(T, ghg−1) = No then
5 return No

6 return Yes

3.5 Computing the size of a group

Given a group G = ⟨S⟩, we wish to compute ∣G∣. The following natural attempt
that uses the Orbit-Stabilizer theorem (Theorem 2.12) works.

Algorithm 10: GroupSize
Input : G = ⟨S⟩
Output : ∣G∣

1 if S = ∅ then
2 return 1

3 Let α ∈ Ω with ∣αG∣ > 1
4 Compute r = ∣αG∣ using Algorithm 1.
5 Compute a generating set T of size at most n2 for stabG(α) using

Algorithm 4 and Algorithm 6.
6 Recursively compute M = GroupSize(T) = ∣stabG(α)∣.
7 return r ⋅ M

But if we were to unravel the recursion, we get a chain of subgroups of G
that are successive stabilizers. Let Ω = {1, . . . , n}. For any group G ≤ Sn, we shall
define the following groups:

G(i) = {g ∈ G ∶ jg = j for all j ≤ i} .

18

3. Studying huge groups

In other words, G(1) = stabG(1) and G(2) = stabG(1)(2) which are all elements
of g that fix both 1 and 2, and so on. Hence we have a sequence of group con-
tainments

G0 = G ≥ G(1) ≥ G(2) ≥ ⋯ ≥ G(n) = {id} .

We shall be returning often to such a tower of subgroups leading from G to {id}.

3.6 Normal closures and subnormality
Lecture 4:
January 26th, 2017 We will now see a natural extension of the notion of a normal subgroup, called

sub-normality.
Definition 3.8 (Sub-normality). A subgroup H of G, is said to sub-normal in G
(denoted by H◁◁ G) if and only if ∃ groups G0, G1, . . . , Gk such that H = Gk ◁Gk−1 ◁

⋯◁G1 ◁G0 = G. ◊

A natural algorithmic task that follows is to check if H◁◁ G for any given
H = ⟨T⟩ and G = ⟨S⟩. The strategy will be to find a candidate for G1 and then
recurse. This seems doable as we already have an efficient algorithm for testing
whether A ⊴ B. Since the length of any such chain can be at most log2 ∣G∣, a
recursive solution will also be efficient. All that remains to be done is to get an
apt candidate for G1.

Definition 3.9 (Normal Closure). Given H ≤ G, the normal closure of H in G (denoted
by NormClosureG(H)) is defined to be the smallest normal subgroup of G that contains
H. ◊

It is worth pointing out that phrase “the smallest” in the above definition is
legit; there is a unique smallest normal subgroup of G that contains H. Indeed,
if H ≤ G1, G2 ⊴ G that contain H, then H ≤ G1 ∩ G2 ⊴ G which would yield a
smaller normal subgroup if G1 ≠ G2.

Lemma 3.10. H◁◁ G⇔ H◁◁ NormClosureG(H)

Proof. Let N be NormClosureG(H) for convenience.

• (⇐) Any chain H◁⋯◁ N can be immediately extended to G as N ⊴ G.

• (⇒) Let H = Gk ◁ Gk−1 ◁⋯◁ G1 ◁ G0 = G. Let G′
i = Gi ∩ N. Therefore,

G′
0 = N.

Say h ∈ Gi ∩ N and g ∈ Gi−1 ∩ N. Then, ghg−1 ∈ Gi since Gi ◁ Gi−1 and
ghg−1 ∈ N since g, h ∈ N. Hence G′

i ◁G′
i−1 ⇒ H = G′

k ◁G′
k−1 ◁⋯◁G′

1 ◁

G′
0 ◁G.

Now all we need is an algorithm to find a generator for NormClosureG(H),
given H as ⟨T⟩ and G as ⟨S⟩. A good first attempt is to start with everything
in T, and compute sts−1 for all t ∈ T and s ∈ S. Such elements that are not
yet in our collection should be added. Even if we don’t get a generating set
for NormClosureG(H), we should be getting closer. So just repeat this till the
collection saturates. Interestingly enough, this works. So let us formalize this.

19

3. Studying huge groups

Algorithm 11: NormalClosure
Input : G = ⟨S⟩ , H = ⟨T⟩

Output : B ∶ ⟨B⟩ = NormClosureG(H)

1 set B = T
2 repeat
3 set B ← B′

4 for each b ∈ B, s ∈ S do
5 if MembershipTest(B′, ghg−1) = No then
6 B′ ← B′ ∪ {gbg−1}

7 until B′ = B
8 return B

Correctness: Every element that is added to B′ in the algorithm are clearly
elements that ought to be in NormClosureG(H). Furthermore, whenever the
algorithm terminates, the group generated by B′ is normal in G. Hence the
algorithm indeed outputs a generating set for the smallest normal subgroup of
G that contains H.

Running time: Every increase in size of B′ makes the group generated by B′

double in size. Hence, we have at most log2 (n!) iterations, each of which takes
polynomial time.

Putting together all these ideas, we get the following algorithm for subnor-
mality testing.

Algorithm 12: SubnormalityTest
Input : G = ⟨S⟩ , H = ⟨T⟩

Output :Yes if H◁◁ G, No otherwise
1 i ← 0
2 S0 ← S
3 repeat
4 i ← i + 1
5 Si ←NormalClosure(Si−1, T)

6 until ⟨Si⟩ = ⟨Si+1⟩

7 if ⟨Si⟩ = ⟨T⟩ then // Can be checked via Algorithm 7

8 return Yes
9 else

10 return No

Remark. The above algorithm has the added bonus that if H◁◁ G, then the sets {Si}

computed in fact give generating sets for the subnormal chain between H and G. ◊

3.7 Commutators and solvability

A group G is said to be abelian if∀a, b ∈ G, we have ab = ba. As a natural extension,
we want to comment about how close G is to being abelian. This notion goes via

20

3. Studying huge groups

something called a commutator subgroup of G.

Definition 3.11 (Commutator Subgroup). Let G be a group. The commutator sub-
group of G, denoted by [G, G], is given by:
[G, G] ∶= ⟨{xyx−1y−1 ∶ x, y ∈ G}⟩ ◊

Here is an important fact that we won’t prove in class.

Fact 3.12. [G, G] ⊴ G and G
[G,G]

is abelian. Furthermore, [G, G] is the smallest normal
subgroup H ⊴ G such that G

H is abelian. That is, if H ⊴ G and G
H is abelian, then

[G, G] ≤ H.

Task: Given G = ⟨S⟩, find a generating set for [G, G].

A guess would be again to try B ∶= {ghg−1h−1 ∶ g, h ∈ S}. This however may
not always work, since we are not guaranteed that the element, say, gghg−1g−1h−1

will be in ⟨B⟩. But, we know that H ∶= ⟨B⟩ ≤ [G, G] ⊴ G. Therefore our next
try should be the normal closure of this H. Let us now verify that this will
actually work. For that, it is enough to show that G

H′ is abelian, where H′ ∶=

NormClosureG(H). This follows from Fact 3.12.

Lemma. Given a group G = ⟨S⟩ and H ∶= {xyx−1y−1 ∶ x, y ∈ S}. If H′ ∶= NormClosureG(H),
then G

H′ is abelian.

Proof. The intuition is that we know H′ contains {xyx−1y−1 ∶ x, y ∈ S} which in
essence means that in the quotient group G

H′ , we have the “relations” xy = yx for
all x, y ∈ S. Given the fact that every element of G is generated by S should allow
us to permutate elements of G

H′ as well. The following proof formalizes this.

Claim. For every a, b ∈ G, there is some h ∈ H′ such that ab = ba ⋅ h.

Clearly, proving the above claim immediately implies that G
H′ is abelian.

Pf. Firstly, if a, b ∈ S then we already∗ have a−1b−1ab ∈ H′ hence ∗ Wait, why? We
only know that
aba−1b−1

∈ H′...
ah, because H′ is
normal.

ab = ba ⋅ a−1b−1ab. If a, b are “strings” in S, we shall prove the above
claim by induction on its length. Say a = a1⋯as and b = b1⋯bt, and
say t > 1 (the other case is symmetric). By the inductive hypothesis

a1⋯asb1⋯bt = b1⋯bt−1a1⋯as ⋅ h ⋅ bt (h ∈ H′)

= b1⋯bt−1a1⋯asbt(b−1
t hbt)

= b1⋯bt−1a1⋯asbt ⋅ h′ (h′ ∈ H′ , normality)
= b1⋯bt−1bta1⋯as ⋅ h′′ ⋅ h (induction)

which is what we set out to prove.

That finishes the proof of the claim and hence the lemma.

21

3. Studying huge groups

With this we can write an algorithm to compute the commutator subgroup
of G.

Algorithm 13: CommutatorSubgroup
Input : G = ⟨S⟩
Output : T ∶ [G, G] = ⟨T⟩

1 set T ← {xyx−1y−1 ∶ x, y ∈ S}
2 set T′ ← NormalClosure(S, T)
3 return T’

Now, just like the extension from normality to subnormality via towers of
◁, we can study a tower that arises from repeated computation of commutator
subgroups, (i.e.) G▷ [G, G] = G1▷ [G1, G1] = G2▷⋯▷Gk ▷⋯. In the case when
G is an abelian group, then G1 = [G, G] = {idG}, and hence this “commutator
chain” immediately terminates at {idG}. There may be other cases where it takes
longer but eventually terminates at {idG}, and maybe other groups where it
never terminates to identity.
Definition 3.13 (Solvable Groups). A group G is said to be solvable if there exists a
chain of commutators terminating at {idG} in finitely many steps. That is,

G = G0 ▷G1 ▷⋯▷Gk = {idG}

for some k, where each Gi = [Gi−1, Gi−1]. ◊

An example of a non-solvable group is S5 where [S5, S5] = A5, the group of
even permutations, and [A5, A5] = A5, and the chain is stuck there. This fact
turns out to be very important in results in complexity such as Barrington’s
theorem for width-5 branching programs, and also essential in Galois theory to
show that degree 5 univariate polynomials are not “solvable by radicals”2.

Since we have an algorithm to compute the commutator subgroups, we can
also check if a given group is solvable or not.

Algorithm 14: SolvabilityTest
Input : G = ⟨S⟩ ≤ Sn
Output :Yes if G is solvable; No otherwise

1 i ← 0
2 S0 ← S
3 repeat
4 i ← i + 1
5 Si ← CommutatorSubgroup(Si−1)

6 until ⟨Si⟩ = ⟨Si−1⟩

7 if ⟨Si⟩ = {idG} then
8 return Yes
9 else

10 return No

2Degree 2 is “solvable by radicals” in the sense that we have the expression for roots as −b±
√

b2−4ac
2a .

22

4. Towers of subgroups

4 Towers of subgroups
Lecture 5:
January 30th, 2017 So far, we have been looking at algorithmic tasks given a generating set for the

subgroup. But in often cases, we do not really have the generating set of the
group we are interested in. Keep in mind the automorphisms of a graph; we
do not really have a generating set for this group but what we instead know
is to check if a given element is an automorphism or not. Often, existence of a
nice tower of subgroups from a known group to our target group can be very
useful. To understand this better, let us look at a few computational problems
that would be sufficient to solve graph isomorphism.

4.1 Set stabilizers, group intersection, and graph isomorphism

We have already seen the notion of stabilizer of a point α ∈ Ω. The following is a
generalization that applies to a subset ∆ ⊆ Ω.
Definition 4.1 (Set Stabilizer). Given G = ⟨S⟩ ≤ Sn and ∆ ⊆ {1, 2, . . . , n}, the stabi-
lizer of ∆ in G denoted by SetStabG(∆) = {g ∈ G ∶ ∆g = ∆, ∆̄g = ∆̄} ◊

Observation 4.2. SetStabG(∆) ≤ G.

We now want to show that GraphAut (a problem to which GraphIso can be
reduced, as mentioned in Lemma 1.6), where we want to find the generating
set of Aut(X) given a graph X = (V, E) is reducible to SetStab, where we want
to find the generating set of SetStabG(∆) given G = ⟨S⟩ ≤ Sn and ∆ ⊆ {1, 2, . . . n}.
We formalize this as:

Lemma 4.3. GraphAut ≤TM SetStab. The ≤TM is a termi-
nology used to say
that one problem is
Turing Machine re-
ducible to another.
Or in simpler words,
A ≤TM B is saying
that the problem B
is at least as hard as
problem A computa-
tionally.

Proof. Suppose X = (V, E) is a graph with ∣V∣ = n. Given an oracle which com-
putes SetStabG(∆) for every G and ∆, we want to compute GraphAut(X).

We take G = Sn and let it act on Ω = {(i, j) ∶ i, j ≤ n} ≡ {1, 2, . . . n2} by lifting
the natural action on {1, . . . , n} via (i, j)g = (ig, jg). Now clearly if g ≠ g′, then
the resulting action on the pairs is also different. This gives a way of embedding
G = Sn into Sn2 as every element g ∈ G results in a permutation of the pairs in
Ω. Just to spell it out exactly, if we were to think of an element g ∈ G as an n × n
permutation matrix Mg, the embedding of g in Sn2 is the n2 × n2 permutation
matrix M̃g defined by

(M̃g)(i,j),(i′,j′) =

⎧⎪⎪
⎨
⎪⎪⎩

1 ig = i′ , jg = j′

0 otherwise

Hence, we can take a small generating set for G = Sn (for example, the set of all
(n

2) transpositions), and embed each element in Sn2 as mentioned above and we
have a small generating set for G as a subgroup of Sn2 .

Now, if we take ∆ as the set of all edges in X then it is easy to see that
SetStabG(∆) = GraphAut(X). Since this reduction can be done in polynomial
time, if we had an oracle for SetStab, then we automatically get an algorithm to
compute GraphAut(X).

23

4. Towers of subgroups

A problem very closely related to SetStab is the group intersection problem.
The group intersection problem (which we’ll denote by GroupIntersect(S, T)) is
where we are given G = ⟨S⟩ and H = ⟨T⟩ and we want ot find a generating set
for G ∩ H efficiently. The following lemma shows that this problem is in fact
equivalent to SetStab.

Lemma 4.4. SetStab ≡TM GroupIntersect. The notation ≡TM
just means that both
≤TM and ≥TM holds.
That is, if you can
solve one, then you
can solve the other as
well.

Proof. First, we show that SetStab ≤TM GroupIntersect. Suppose G ≤ Sn and
∆ ⊆ {1, 2, . . . n}. Given an oracle which computes GroupIntersect(H1, H2) for
every H1, H2 ≤ Sn, we want to compute SetStabG(∆).

Take H = ⟨{(i j) ∶ i, j ∈ ∆ or i, j ∈ ∆̄}⟩. Note that the size of the generating set
is small. Now clearly, H is the set of all permutations on {1, 2, . . . , n} elements
which permute elements of ∆ within ∆ and that of ∆̄ within ∆̄. Hence it is easy
to see that SetStabG(∆) = GroupIntersect(G, H)

Next, we show that GroupIntersect ≤TM SetStab. Suppose G, H ≤ Sn. Given
an oracle which computes SetStabG′(∆) for every G′ and ∆, we want to compute
GroupIntersect(G, H).

Consider G′ = G × H which acts on Ω = {(i, j) ∶ i, j ≤ n} as (i, j)(g,h) =

(ig, jh). We note that there is a small generating set for G′ since it is generated
by {(g, id) ∶ g ∈ S} ∪ {(id, h) ∶ h ∈ T} where G = ⟨S⟩ and H = ⟨T⟩. Then for
∆ = {(i, i) ∶ i ≤ n}, we see that (g, h) ∈ ⟨SetStabG′(∆)⟩⇔ ∀i, ig = ih ⇔ g = h. Thus,
G ∩ H = ⟨{g ∶ (g, g) ∈ SetStabG′(∆)}⟩.

Both the reductions described above are achievable in polynomial time and
hence we have the lemma.

4.2 Descending towers

Using Lemma 4.3 and Lemma 4.4 we have GraphAut ≤TM GroupIntersect. But in
many instances, knowing some additional properties about the groups would
help us solve them efficiently. Much of this amounts to existence of some nice
towers and we formalize that notion below.

Lemma 4.5 (Descending nice towers). Given G = ⟨S⟩ ≤ Sn, if there exist G1, . . . , Gk
such that G = G0 ≥ G1 ≥ G2 ≥ ⋯ ≥ Gk = H for some target subgroup H and if:

• [Gi−1 ∶ Gi] ∶=
∣Gi−1∣
∣Gi ∣

= poly(n, ∣S∣) for all i ∈ [k].

• For any i ∈ [k], given a g ∈ Gi−1, there is an efficient algorithm to check if g ∈ Gi.

then we can efficiently compute T such that H = ⟨T⟩.3

However, in order to prove Lemma 4.5, it is enough to solve it for k = 1, since
we can then use it repeatedly. Hence, we show:

Lemma 4.6. Let G = ⟨S⟩ and H ≤ G is a subgroup with [G ∶ H] = r = poly(n) that is
recognizable i.e there is an oracle which can test membership in H. Then, a generating
set for H can be computed efficiently.

3In more generality, if [Gi−1 ∶ Gi] ≤ r, it can be computed in time polynomial in n, ∣S∣ and r.

24

4. Towers of subgroups

Proof. We note that it is enough to find distinct coset representatives for H ≤ G,
say R = {a1, a2, . . . ar} (i.e. G = ⊍r

i=1 ai H), as then Schrier’s Lemma (Lemma 3.6)
says that {a−1

i gaj ∶ ai, aj ∈ R, g ∈ S}∩ H generates H. So, we look at an algorithm
to find the distinct coset representatives for H.

Algorithm 15: FindCosetReps
Input : G = ⟨S⟩ ≤ Sn
Output :The coset representatives of H in G

1 CR← {id}

2 repeat
3 for each g ∈ S, ai ∈ CR do
4 add gai to CR

// Check if gai was actually giving a new coset

5 for each aj ∈ CR do
6 if a−1

j gai ∈ H then // via membership test in H
7 remove gai from CR
8 break out of for loop

9 until CR does not grow
10 return CR

First, we note that G acts on Ω = {a1H, a2H, . . . ar H} by left multiplication.
Further, the action is transitive, that is, given any ai H, for every ajH ∈ Ω, ∃g =

aja−1
i ∈ G such that g acts on ai H to give ajH.
Since [G ∶ H] = r, the orbit graph of G action on Ω has r vertices and is

connected as G acts transitively. Therefore, the above process discovers all the
vertices of the orbit graph in poly(∣S∣, n, r) time.

4.3 Revisiting the group intersection problem

So now that we have proved Lemma 4.5, we revisit GroupIntersect problem in
some special cases.
Definition 4.7. Let G, H ≤ Sn. G is said to normalize H if for every g ∈ G and h ∈ H,
ghg−1 ∈ H. ◊

For example, if H ⊴ G, then certainly G normalizes H just by the definition
of normality. But the above definition includes cases when H ⊴ K and G is some
subgroup of K (which may not contain H entirely).

Lemma 4.8. Given G = ⟨S⟩, H = ⟨T⟩ such that G normalizes H, then problem
GroupIntersect(G, H) can be solved efficiently.

Proof. In order to use Lemma 4.5, we want to find a tower beginning in G and
ending in G ∩ H which satisfies the conditions of the lemma. Consider the most
natural tower beginning at G, namely the stabilizer chain:

G ≥ G(1) ≥ G(2) ≥ . . . ≥ G(n) = {id}

25

4. Towers of subgroups

where G(i) consists of the permutations in G that do not move any of 1, . . . , i.
From this, we get the tower

GH ≥ G(1)H ≥ G(2)H ≥ . . . ≥ G(n)H = H.

Note that these products G(i)H makes sense as G(i)H is indeed a group because
G (and hence G(i)) normalizes H. From this, we can also obtain the tower G =

G ∩GH ≥ G ∩G(1)H ≥ G ∩G(2)H ≥ . . . ≥ G ∩G(n)H = G ∩ H.
Clearly, thanks to Lemma 4.5, it is enough to show:

1. [G(i)H ∩G ∶ G(i+1)H ∩G] is small.

2. For every i and every g ∈ G(i−1)H ∩ G we should be able to check g ∈

G(i)H ∩G efficiently.

We first note that the membership test can be done efficiently. Indeed, for
every g ∈ G(i−1)H ∩G, we already know that g ∈ G and so it is enough to check
g ∈ G(i)H efficiently. Now this can be done using Algorithm 7 since we have
a small generating set for G(i)H, namely Si ∪ T where Si a generating set of
G(i) (which we know how to obtain via successive stabilizer applications using
Algorithm 4)

To check that [G(i)H ∩G ∶ G(i+1)H ∩G] is small, since [G(i) ∶ G(i+1)] is small
and G(i) normalizes H for every i, the following observations are enough:

1. H, K ≤ G are such that G normalizes H ⇒ [GH ∶ KH] ≤ [G ∶ K]

2. H, K ≤ G⇒ [G ∩ H ∶ K ∩ H] ≤ [G ∶ K]

The proofs of these two observations are left as an exercise∗. ∗ Would be a part
of Problem Set 1 that
would be coming up
shortly.

We already know that [G(i) ∶ G(i+1)] ≤ n (why?) and hence the above two
observations show that [G(i)H ∩G ∶ G(i+1)H ∩G] ≤ n as well. Thus, we indeed
have a nice tower and Lemma 4.5 lets us get a generating set for G ∩ H.

Next, we claim that if G, H are groups such that H◁◁ ⟨G, H⟩, then we can
compute GroupIntersect(G, H) efficiently. We formalize this as:

Lemma 4.9. Given G = ⟨S⟩, H = ⟨T⟩ such that H◁◁ ⟨S ∪ T⟩, GroupIntersect(G, H)

can be computed efficiently.
Note that ⟨S ∪ T⟩ =
⟨G, H⟩Proof. We would have liked to use Lemma 4.8, but since we are not given any

similar conditions and since H◁◁ ⟨S ∪ T⟩, we start with the most natural tower
available,

⟨G, H⟩ = G0 ▷G1 ▷ . . .▷Gk = H

from which, by intersecting with G throughout, we get the tower

G = ⟨G, H⟩∩G = G0 ∩G▷G1 ∩G▷ . . .▷Gk ∩G = H ∩G.

Note that the elements in the second tower also have a normal subgroup relation
and this follows directly from the normality relation among the corresponding
elements in the first tower.

26

4. Towers of subgroups

Now we note that Gi ∩G normalizes Gi+1. Indeed, for g ∈ Gi ∩G, h ∈ Gi+1, we
have g−1hg ∈ Gi+1 due to the normal subgroup relations in the first tower. Thus,
by Lemma 4.8, if we have a generating set for Gi ∩G, we have a generating set
for Gi+1 ∩G. Since we have a generating set for G = G0 ∩G, we can descend this
chain and find a generating set for Gk ∩G = H ∩G, thus proving the lemma.

Lecture 6:
February 3rd, 2017 In this lecture, equipped with Descending Nice Towers (see Lemma 4.5), we

proceed to tackle automorphism problems:

4.4 Solving an Automorphism Problem

The Coloured Graph Automorphism problem is a natural generalization of
the general automorphism problem. In this problem, we are given a graph
X and a colouring of the vertices and we want to output a generating set for
the group of automorphisms of X that respect the colours of the vertices. The
idea of mapping vertices of a degree only to vertices of the same degree is
nicely encapsulated here by colouring all vertices of a degree by a single colour.
Although this colouring would be respected by any automorphism, abstracting
such properties to colours will be useful as we will see later in the lecture. Let’s
first formally define coloured graph automorphism:
Definition 4.10 (Coloured Graph Automorphisms). For a graph X = (V, E) on n
vertices and a colouring of its vertices φ ∶ V → C, where C = {1, 2, . . . , n}, the coloured
automorphisms of X, denoted by Autφ(X), is the following set of permutations:

Autφ(X) = {σ ∈ Sym(V) ∶ (u, v) ∈ E⇐⇒ (σ(u), σ(v)) ∈ E and φ(v) = φ(σ(v))} .◊

Task: Given X, φ, find a generating set for Autφ(X).

If every vertex is coloured 1, this is just the automorphism problem. Also
note that no matter what the colouring is, one can attach certain large gadgets
(a unique gadget for each colour) to each vertex and remove the colours, thus
reducing coloured graph automorphism to graph automorphism on a polyno-
mially larger graph. Despite the equivalence of these two problems, we will now
solve coloured graph automorphism for a certain class of colourings:

Bounded Colour Multiplicity Graph Automorphism: Given a graph X = (V, E)

on n vertices and a colouring of its vertices φ ∶ V → C such that ∀i ∈

C ∣φ−1(i)∣ ≤ b, find a generating set for Autφ(X).

Theorem 4.11. Bounded Colour Multiplicity Graph Automorphism can be solved in
poly(n, 2b2

) time.

Proof. We solve this problem using a quite intuitive descending nice tower.
Notational warning: we call the elements of the tower G0, G1, G2 . . . Gk, but we
will sometimes add subscripts to these groups to better illustrate how Gt+1 is
obtained from Gt. Before defining the tower, we introduce some more notation:
Let Ω = V be the set that our groups act on. We split Ω into disjoint subsets

27

4. Towers of subgroups

based on the colours of the vertices:

Ω = ⊍
i∈C

Ωi where Ωi = Φ−1(i)

Similarly, we split E into O(n2) sets based on the colours of the endpoints of the
edges:

E = ⊍
i≤j∈C

Ei,j where Ei,j = E ∩Ωi ×Ωj

As the first element of our tower, we take G0 = Sym(Ω1) × Sym(Ω2) ×⋯×

Sym(Ωn), the set of colour respecting permutations. Clearly Autφ(X) is a sub-
group of G0 and we can construct a generating set for G0.

We incrementally approach Autφ(X) by ensuring that the permutations map
(i, j) edges to edges (the permutations already respect colour, so they are mapped
to (i, j) edges and then (i, j) nonedges would have to map to (i, j) nonedges) until
we end up with only those colour respecting permutations that map edges to
edges and nonedges to nonedges: Autφ(X). With this in mind, we take elements
from the set C ×C in any order, and we build a tower of length O(n2), where
Gt+1

i−j is defined as follows:

Gt+1
i−j = {σ ∈ Gt ∶ (u, v) ∈ Ei,j ⇐⇒ (σ(u), σ(v)) ∈ Ei,j}

It is easy to see that Gt+1
i−j is a subgroup of Gt and to see that the last element of

the group is Autφ(X). We claim that the tower so defined is a descending nice
tower. For this we need to show the following:

• Gt+1
i−j is recognizable in Gt. This is easy to see, since we only need to check

that (i, j) edges map to edges.

• [Gt ∶ Gt+1
i−j] is small. We will show that it is in fact ≤ 2b2

.

To bound the number of cosets, consider g, g′ ∈ Gt. If g−1g′ ∈ Gt+1, then g′ = gh
for some h ∈ Gt+1 and so g and g′ lie in the same coset. Now we note that if
g(Ei,j) = g′(Ei,j) = E′, then g′ maps an element of Ei,j to an element of E′ and g−1

would map it back to Ei,j. Hence g−1g′ ∈ Gt+1 and so g and g′ are in the same
coset. By looking at the image of the action of g on Ei,j, we can now divide Gt

into equivalence classes such that any two elements in the same equivalence
class lie in the same coset. Since each equivalence class corresponds to an E′

and E′ ⊆ Ωi ×Ωj, there are atmost 2b2
equivalence classes and hence atmost 2b2

cosets.
Now that we have shown that our tower is a descending nice tower we can

use Lemma 4.5 to solve Bounded Colour Multiplicity Graph Automorphism in
poly(n, 2b2

) time.

This result has some implications for graph automorphism. For example,
if we had a graph in which there are atmost a constant number of vertices of
each degree, we can find the automorphisms of that graph. However, a more

28

5. Divide and Conquer techniques.

promising problem to be solving is bounded degree graph automorphism, which
bounded colour multiplicity graph automorphism doesn’t seem to be helping
in.

5 Divide and Conquer techniques.

We will now introduce colour stabilizers and blocks, which we plan to use later
on in a divide and conquer algorithm aimed at tackling bounded degree graph
isomorphism.
Definition 5.1 (Colour Stabilizers). Suppose G acts on a coloured set Ω. Then, the
colour stabilizer of Ω, denoted by colourStabΩ(G) is defined as

colourStabΩ(G) = {g ∈ G ∶ ag ∼ a ∀a ∈ Ω}

where a ∼ b means that a and b are coloured with the same colour. ◊

5.1 Intransitive case

Note that if you are given a graph X = (V, E) and you define Ω as V × V
coloured with two colours, red if α ∈ E and black otherwise, then it is clear
that colourStabΩ(Sym(V)) is just the set-stabilizer of the edges, which we know
is Aut(X). While we do not know how to find colourStab, we will see that it
might possible for this computation to be broken down into subproblems:

If G does not act transitively on Ω, let us split Ω into the connected compo-
nents of its orbit graph: Ω = ⊍r

i=1 Ωi. We can then see that

colourStabΩ(G) = colourStabΩ1(colourStabΩ2(⋯ colourStabΩr(G)⋯))

We can compute this by first computing the innermost colourStabΩr(G) to get
G′, then trying to solve colourStabΩr−1(G′), which might again be split into
subproblems. In the worst case, Ω is eventually split into singletons, so we will
end up solving at most ∣Ω∣ instances of colourStab. Of course, we do not know
how to solve colourStab yet, but this dreaming may prove useful.

5.2 Blocks

As it turns out, even if G acts transitively on Ω, it might still have some useful
structure to exploit:
Definition 5.2 (Blocks). ∆ ⊆ Ω is a block if for all g ∈ G, either ∆g = ∆ or ∆g ∩∆ =

∅. ◊

Trivial examples of blocks are singletons or the whole set Ω. A more infor-
mative example is the automorphism group of a complete binary tree, in which
any subtree is a block. No automorphism can map a subtree so that its image is
partially within the subtree and partially outside.

Claim 5.3. Let G be a group with a transitive action on Ω. If ∆ ⊆ Ω is a block, then ∣∆∣

divides ∣Ω∣.

29

5. Divide and Conquer techniques.

Proof. Let α ∈ ∆. Since G acts transitively on Ω, take elements g1, g2, . . . , g∣Ω∣ such
that Ω = {αg1 , αg2 , . . . , αg

∣Ω∣}. ∆gi and ∆gj are both of size ∣∆∣ since actions are
permutations. Furthermore ∆gi and ∆gj are either the same or disjoint (otherwise
∆gi g

−1
j would not be ∆ but would have a non-zero intersection with it). Since

these cover Ω, it follows that they tile Ω and hence the claim follows.

Definition 5.4 (Primitive Action). A transitive action of G on Ω is said to be primitive
iff there are no nontrivial blocks. ◊

Just like in the intransitive case, whenever the action contains non-trivial
blocks, we want to reduce the problem somehow. But first, we’ll look at a few
computations tasks related to blocks.

Finding non-trivial blocks
Lecture 7:
February 6th, 2017 Since we want to find such blocks when we’re stuck with a transitive action,

we’d want to solve the following computational task:

Task: Given G = ⟨S⟩ , α ∈ Ω, find the smallest non-singleton block containing α.

We begin with our problem of finding the smallest non-singular block con-
taining α ∈ Ω, given G = ⟨S⟩ and α ∈ Ω. We can solve this problem if we can find
the smallest block containing both α and β for any β ∈ Ω (solving this problem
for all β ∈ Ω and then choosing the one that gives smallest block).

We will assume that the group G acts on Ω transitively. We make the follow-
ing observation.

Observation 5.5. If αg = β and βg = γ, then any block containg α, β must contain γ.

Proof. Let ∆ be arbitrary block that contains α, β. Then we have β ∈ ∆g ∩ ∆
(as αg = β). By the definition of block, this forces ∆g = ∆, which implies that
βg = γ ∈ ∆g = ∆.

The above observation gives us following algorithm to compute the small-
est block containing both α and β. Construct a graph X = (Ω, E) with E =

{(γ, δ) ∶ ∃g ∈ G such that (γ, δ) = (α, β)g}.

Claim 5.6. The connected components of X form the block system generated by the
minimum block ∆ containing α and β.

Proof. Although, this might look intuitively rather plain, let us be diligent and
work out a few details to establish the veracity of our claim. Say ∆ is the small-
est block containing α, β. Let us say that Γ = {∆1, . . . , ∆m} is the block system
generated by ∆.

1. If γ is in the connected component of X containing α, then it must* belong
to ∆. Hence the connected component of X containing α is contained in * If β ∈ ∆ ∩ ∆g if

αg
= β.the smallest block containing α, β.

2. Now, we need to show that the connected compnent Y containing α indeed
a block. Consider any g ∈ G and observe that since Y is connected, so is Yg.*

30

5. Divide and Conquer techniques.

So, if Y ∩Yg ≠ ∅, then Y = Yg or else the fact that Y is a maximal connected *Why? Think about
edges in Y.sub-graph of X would be contradicted.

We would now have an algorithm if only we could somehow find out all the
edges in E. All we are given is a generating set S of G. How do we find out all
pairs (γ, δ) = (α, β)g? This is precisely the orbit of (α, β) in the action of G on
Ω ×Ω. Now we have a complete algorithm. Convince yourself.

Algorithm 16: MinimumBlockOfAPair
Input : G = ⟨S⟩ ≤ Sn acting transitively, and α, β ∈ Ω
Output :The smallest block ∆ containing α, β.

1 Consider the action of G on Ω ×Ω via (γ, δ)g = (γg, δg). Using
Algorithm 1 compute the orbit E of (α, β) in this action.

2 Construct the graph X = (Ω, E) where E is the set of all pairs in the above
orbit computation.

3 return connected component ∆ of X that contains α, β.

Algorithm 17: MinimumBlock
Input : G = ⟨S⟩ ≤ Sn acting transitively, and α ∈ Ω
Output :The smallest non-singleton block ∆ containing α

1 for β ∈ Ω ∖ {α} do
2 ∆β ∶= MinimumBlockOfAPair(S, α, β)

3 Let ∆ be the smallest of the ∆βs.
4 return ∆.

5.3 Block systems and structure forests

Finding non-trivial blocks, informally, allow us to work with smaller group as
we can think of each block as one element and group action between the blocks.
We characterize this intution be defining Block System.
Definition 5.7 (Block System). Given a G that acts transitively on Ω, and a block
∆ ⊆ Ω, the block system generated by ∆ is a collection Γ = {∆1, . . . , ∆m} that
partition Ω, that is

Ω =
m
⊍
i=1

∆i,

where each ∆i = ∆g for some g ∈ G. ◊

Say we found the smallest block ∆ and suppose this ∆ generates the block
system Γ = {∆1, . . . , ∆m}. It is possible that a union of a few of these ∆is form a
large block (keep in mind the automorphisms of a complete binary tree). The
question now can be can we find the smallest subset of Γ such that the union of
those blocks form a large block? Indeed we can. All we need to do is think of G
acting on Γ instead of Ω and use Algorithm 17 again. This allows us to build an

31

5. Divide and Conquer techniques.

entire hierarchy of blocks starting with the singletons and going all the way to
Ω. This is called the structure forest of G.

Algorithm 18: Structure Forest
Input : G = ⟨S⟩ acting transitively on Ω = {1, . . . , n}
Output :Structure forest of G

1 ` = 0 and Γ0 = {{1} , . . . ,{n}}.
2 repeat
3 Choose α arbitrarily from Γ`.
4 Look at the action of G on Γ` and let Γ`+1 be the block system

generated by MinimumBlock(⟨S⟩ , Γ`, α) (via Algorithm 17)
5 ` = ` + 1
6 until ∣Γ`∣ = 1
7 return {Γ0, Γ1, . . . , Γ`}

Block kernels

Say we have a block system Γ, intuitively we want to look at the action of G on
the block system Γ instead of Ω, which is in some sense making progress as G
now acts on a set of size m instead of n (and note m = n/∣∆∣, and hence smaller
than n if ∆ is a non-trivial block). Thiis what we did in Algorithm 18 but in
other instances the issue would be that even though G acts faithfully on Ω, that
is different elements of g induce different partitions on Ω, this may not be the
case with G’s action on Γ. There may be elements of g such that ∆g

i = ∆i for all
∆i ∈ Γ even though g shuffles elements inside each ∆i. Hence, in order to make Keep in mind the

automorphisms of a
complete binary tree,
and elements that
just permute sibling
leaves.

G’s action on Γ faithful, we need to quotient these elements out. This leads us to
naturally define the following notion of a Block Kernel.
Definition 5.8 (Block Kernel). Given G, Ω and a Block System Γ = {∆1, ∆2, .., ∆m},
the Block Kernel of Γ denoted by BlockKernelG(Γ) is defined as the set of all elements
in G that doesn’t move any of the ∆i’s, i.e., {g ∈ G ∶ ∆i

g = ∆i for all i ∈ [m]}. ◊

We now prove the following theorem.

Theorem 5.9. BlockKernelG(Γ) ⊴ G.

Proof. Let h ∈ BlockKernelG(Γ). If g−1 moves the block ∆i to block ∆j then g
moves the block ∆j to block ∆i. Therefore, ghg−1 doesn’t move any block. Hence,
ghg−1 ∈ BlockKernelG(Γ).

Great! Since BlockKernelG(Γ) is a normal subgroup of G, its quotient is a
honest-to-God group and this quotient acts on Γ in a faithful way. We now have
an obvious computational task.

Task: Given a group G = ⟨S⟩ and a block system Γ, compute a generating set for
BlockKernelG(Ω).

Lemma 5.10. Given G = ⟨S⟩ and a block system Γ, a generating set for the block kernel
can be computed in polynomial time.

32

5. Divide and Conquer techniques.

Proof. We will do this by showing the existence of a ‘nice tower’ G = G0 ≥ G1 ≥

... ≥ Gm = H such that [Gi−1 ∶ Gi] is small and given g ∈ Gi−1, we can efficiently
check if g ∈ Gi.

Let Gi = {g ∈ G ∶ ∆g
j = ∆j ∀j ≤ i}. Note that Gi is SetStabGi−1(∆i). We have

seen that computing set stabilizer is hard . But here we know ∆i’s are block and
we will show this leads to polynomial time algorithm. Since ∆i’s are block so
only m distinct images of ∆i is possible and thus [Gi−1 ∶ Gi] ≤ m ≤ n. Also given
g ∈ Gi−1, it is easy to check if g ∈ Gi. This implies polynomial time algorithm for
computing Gm i.e., BlockKernelG(Γ) (via Lemma 4.5).

Blocks and subgroups

We now try and understand when groups actions would have non-trivial blocks.
The following theorem gives an exact characterization of this.

Theorem 5.11. Let G acts on Ω transitively. Then G’s action is primitive if and only
if stabG(α) is a maximal strict subgroup of G.

Proof. (⇐): Suppose G’s action is not primitive. Therefore, there exists a non-
trivial block containing α. Let ∆ be the smallest non-trivial block containing α.
Then we have stabG(α) ≤ stabG(∆) ≤ G. Our goal is to show both of the inclusion
is strict. Since ∆ is a non-trivial block so it must contain some β (β ≠ α). Let
αg = β. Since ∆ is a block so g ∈ stabG(∆). But g /∈ stabG(α) (as it moves α). Thus,
we have stabG(α) < stabG(∆).

For the second inclusion, we observe that G acts on Ω transitively but stabG(∆)

doesn’t (as it is a non-trivial block). This proves stabG(α) < stabG(∆) < G.

(⇒): Now assume there exists a H s.t. stabG(α) < H < G. We will show that
∆ = αH (orbit of α on the action of H) is a non-trivial block. It suffices to show
that ∆ is indeed a block, and 1 < ∣∆∣ < ∣Ω∣.

It immediately follows from stabG(α) < H that ∣∆∣ > 1. From the Orbit Stabi-
lizer theorem (Theorem 2.12), we have ∣∆∣ ⋅ ∣ stabG(α)∣ = ∣H∣ and ∣Ω∣∣ stabG(α)∣ =
∣G∣. Also we have ∣ stabG(α)∣ = ∣ stabH(α)∣ and ∣H∣ < ∣G∣ (as stabG(α) < H < G).
Thus, 1 < ∣∆∣ < ∣Ω∣.

The fact that ∆ is indeed a block is left as an easy exercise.

With this lemma, we can hope to find out the structure of groups whose
actions are primitive.

5.4 Sylow Theorems and p-groups

One instance of the above lemma that we’ll use shortly for bounded degree
graph isomorphism is the case when ∣G∣ is a power of a prime p. Such groups
are called p groups and there is a lot of theory about structure of p-groups. We’ll
take an aside for now and look at the Sylow Theorems. We won’t be needing all
of them in the course but they are good to know in any case.

Theorem 5.12 (Sylow’s Theorem). Let ∣G∣ = prm, such that gcd(m, p) = 1. Then

1. (Existence) There is a subgroup P ≤ G of size pr (p-sylow subgroup).

33

5. Divide and Conquer techniques.

2. (Relations) If P and Q are two p-sylow subgroups of G, then ∃g ∈ G, such that
gPg−1 = Q.

3. (Count) If np is the number of p-sylow subgroups of G, then np ≡ 1 mod p and
np∣m.

Proof. (1) Let Ω be the set of all subsets of size pr. Therefore, ∣Ω∣ = (prm
pr) ≢

0 mod p. Let G act on Ω via left multiplication, i.e., if S ∈ Ω then Sg = {g ⋅
α∣α ∈ S}. Let Ω1, Ω2, .., Ωt be the orbits of Ω under the action of G. Therefore,
Ω = Ω1 ∪ ..∪Ωt. One of the sets

S ∈ Ω is our
p-Sylow subgroup.
What would be the
orbit of S? These
must be precisely
the cosets and hence
we hope to find one
Ωi of size exactly m.
Now how do we do
that?

Since ∣Ω∣ ≠ 0 mod p, therefore there exists i ∈ [t] such that ∣Ωi∣ ≢ 0 mod p.
Also note that ∣Ωj∣ ≥ m for all j since

⋃
S∈Ωj

S = G.

as for any a, b ∈ G, there is a g ∈ G such that ga = b. This forces ∪S∈Ωj S to cover
all of G and that is possible only if there are at least m elements in Ω as ∣S∣ = pr.

Let S be any set in Ωi and P be stabG(S). Claim is that ∣P∣ = pr. To see this
we apply the orbit stabilizer theorem and get ∣P∣∣Ωi∣ = prm. Since ∣Ωi∣ ≥ m and
∣Ωi∣ ≢ 0 mod p, we get ∣P∣ = pr.

(2) Let P be a p-sylow subgroup of G. Let Ω be the m left-cosets of P. Let
Ω = {a1P, a2P, .., amP}. Suppose Q is another p-sylow subgroup of G. Let Q act on
Ω via left multiplication, as (aiP)q = q ⋅ ai ⋅ P. Let Ω1, Ω2, .., Ωt be the orbits of Ω
under the action of Q. Therefore, we have∑i ∣Ωi∣ = m /≡ 0 mod p. By the orbit sta-
bilizer theorem, each ∣Ωi∣ must divide pr. This implies that atleast one of Ωi (say
Ω1) must have size equal to 1. This means Ω1 = {a1P} and qa1P = a1P ∀q ∈ Q.
This implies a−1

1 qa1 ∈ P for all q ∈ Q. So we get a−1
1 Qa1 = P.

(3) Let Q be a p-sylow subgroup of G. Consider the set of p-Sylow subgroups We didn’t do this in
class, but useful to
know.of G,

Ω = {P1, . . . , Pnp} .

Let us look at the action of G on Ω via Pq
i = q−1Piq. We know from (2) that the

action is transitive. Hence in order to find ∣Ω∣. Hence we have that np ∣ ∣G∣. If we
could show that np ≡ 1 mod p, then it would also follow that np mod m.

Instead of G acting on Ω, we shall consider the action of a p-Sylow subgroup
P via conjucation. But we have a smaller group P acting on Ω, we could end up
with a partition of Ω as orbits Ω = Ω1 ∪⋯∪Ωk. By the Orbit-Stabilizer Theorem As a bonus,

we also know
that stabG(P) =

NormalizerG(P) =
NP and hence
np = [G ∶ NP].

(Theorem 2.12), we know that ∣Ωi∣ divides ∣Q∣ = pr. We know that Q ∈ Ω, and is
clear that its orbit is just {Q}. The goal would be to show every other orbit has
size at least p and this would show that ∣Ω∣ = np ≡ 1 mod p.

Take a P ≠ Q. We wish to show that the orbit of P cannot be {P}. What is the
stabQ(P)? This precisely

stabQ(P) = {q ∈ Q ∶ q−1Pq = P} =∶ NormalizerQ(P).

34

5. Divide and Conquer techniques.

Again, by the Orbit-Stabilizer Theorem (Theorem 2.12), it suffices to show that
NormalizerQ(P) is a proper subgroup of Q. Observe that NormalizerQ(P) =

NormalizerG(P)∩Q. So the only way NormalizerQ(P) = Q is if it happens that
Q ⊆ NormalizerQ(P). But then Q and P are both p-Sylow subgroups sitting
inside NormalizerG(P). Applying (2) to this means that Q = g−1Pg for some
g ∈ NormalizerG(P), which is absurd as the very definition of the normalizer
forces g−1Pg = P. Hence stabQ(P) < Q and hence the orbit of P must have size
bigger than 1. This forces every other orbit to have size that is a multiple of p.
Therefore, np ≡ 1 mod p.

Lecture 8:
February 10th, 2017
and
Lecture 9:
February 13th, 2017

Remember that we were trying to study the structure of groups that act
primitively on some set Ω. Suppose, ∣G∣ = pr and G acts faithfully, transitively
and primitively, then what can we say about ∣Ω∣ and G? Using Theorem 5.11
we conclude* that ∣ stabG(α)∣ = pr−1, which forces hence ∣Ω∣ = p. However, as * Why? Clearly,

you have not gone
through Problem
Set 1.

G ≤ S∣Ω∣ since G acts faithfully, we must have r = 1. Hence, G = Cp, the cyclic
group of order p. We’ll record this as an observation.

Observation 5.13. If G is a p-group acting faithfully, transitively and primitively on
a set Ω, then G must be a cyclic group the order p and ∣Ω∣ = p.

5.5 Divide and conquer via blocks

Let us return to the transitive action of G on Ω, where Γ = {∆1, . . . , ∆m} is a block
system and H = BlockKernelG(Γ). Let {a1H, . . . , ar H} be the set of cosets of H
in G. Now, let us generalize the concept of colourStabΩ(G), to replace G with
any arbitrary set K as, colourStabΩ(K) ≜ {g ∈ K ∣ ag ∼ a ∀a ∈ Ω}. The following
is then immediate:

colourStabΩ(G) =
r
⋃
i=1

colourStabΩ(ai H).

However, we must ask whether it is even sensible to efficiently ”get hold”
of colourStabΩ(K), for an arbitrary K. After all, we have always been dealing
with large sets that were groups and hence one could hope for getting hold of a
small sized generating set. Fortunately, things don’t go astray if K happens to be
a coset.

Lemma 5.14. If colourStabΩ(aH) is non-empty, then it is a coset of colourStabΩ(H).

Proof. Consider τ and σ in colourStabΩ(aH). Then, it is plain to see that τ−1σ
stabilizes colors, and as both τ and σ are members of aH, τ−1σ ∈ H.

Hence, we can specify colourStabΩ(aH) by giving a generator for colourStabΩ(H)

and an arbitrary coset representative.

Hence, if we are interested in solving the colour stabilizer for G, and if H ≤ G,
we can recursively call colour stabilizer on each of the cosets of H in G and
somehow stitch the answers together. We’ll see this entire machinary in action
to see how we can solve the colour stabilizer on p-groups.

35

6. Colour Stabilizer for special groups

6 Colour Stabilizer for special groups

To begin with, we shall focus on the case when G is a p-group. At a later point,
we would have to generalize to other structured groups but the following dis-
cussions would have all the ideas.

p-ColourStabilizer: We are given as input G = ⟨S⟩ ≤ Sn, some permutation
σ ∈ Sn and a set B ⊆ Ω that is a union of orbits . The goal is to compute To begin with,

B would just be
Ω but we will
need this general
form in interme-
diate steps of the
divide-and-conquer.

colourStabB(σG) ∶= {π ∈ σG ∶ bπ ∼ b ∀ b ∈ B} ,

where the output is expected as an ordered pair (π, T) for some π ∈ Sn and
T ⊆ Sn such that colourStab(σG) = π ⋅ ⟨T⟩ (thanks to Lemma 5.14).

6.1 If G is not transitive

If B is a union of orbits, say, B = Ω1 ∪⋯∪Ωr, then we use

colourStabB(σG) = colourStabΩ1(colourStabΩ2(⋯ colourStabΩr(σG)⋯))

6.2 If G is not primitive

If G is not primitive, we shall find a block system Γ and the associated block
kernel H ⊴ G and if G = a1H ∪⋯∪ ar H then

colourStabB(σG) =
r
⋃
i=1

colourStabB(σai H).

We can try to compute each of the r terms on the RHS and combine them together.
There are a few issues with this that need to be addressed:

1. We do not know how large r is. If r is too large, then there would be too
many recursive calls.

2. If each of the recursive calls on the RHS return some {πi, Ti} such that
colourStabB(σai H) = πi ⟨Ti⟩, how are we supposed to combine them to-
gether to a single {π, T}?

For the first issue, it is important that we make H as large as possible so that
r is as small as possible. For this, it makes sense to take the block system at the
highest level of the structure forest (Algorithm 18). So let’s assume that Γ is that
block system. What can we say about ∣Γ∣ and r in that case? Observe that G/H
acts transitively, faithfully and primitively on Γ! Hence, by Observation 5.13,
G/H = Cp and ∣Γ∣ = p. Hence, r = [G ∶ H] = p. This solves the first issue.

As for the second issue, the following lemma tells us how to paste the different
recursive calls together.

Lemma 6.1. Let ⟨T⟩ = H ≤ G and suppose a1H ∪⋯ ∪ ar H is a coset of G. Then
S = ⟨T ∪ {a−1

1 ai ∶ i = 2, . . . , r}⟩ and a = a1 generate the coset given by a1H ∪⋯∪ ar H.

36

6. Colour Stabilizer for special groups

Proof. Exercise.

This lemma essentially solves the second issue. Each recursive call would
return some {πi, Ti} (if non-empty) for each i = 1, . . . , r. Firstly, observe that
⟨Ti⟩ = colourStabB(H) for all i so we might as well have a single T. Then, an
application of the above lemma tells us how to paste the different cosets together.

We now write the entire algorithm for colour stabilizer for general groups
(which may not be efficient for general groups as we may not have an analogue
of Observation 5.13 for general groups) that is guaranteed to be efficient in the
case of p-groups.

Algorithm 19: ColourStab
Input : G = ⟨S⟩ ≤ Sn, a permutation σ ∈ Sn and a union of orbits B ⊆ Ω
Output :{π, T} such that colourStabB(σG) = π ⟨T⟩

1 if G is “small” then
2 Enumerate all the elements of G and solve colourStabΩ(σG) by

brute-force.
3 return computed colour stabilizer.

4 if G does not act transitively on B then
5 Break B into orbits {Ω1, Ω2, . . . , Ωk}

6 return colourStabΩ1(colourStabΩ2(. . . colourStabΩk(σG)⋯))

7 else if G does not act primitively then
8 Compute the structure forest of G using Algorithm 18. Let Γ be the

block system at the highest level of the structure forest
9 Compute a generating set U for H = BlockKernelG(Γ).

10 Compute {a1, a2, . . . ar}, a set of representatives of H in G
11 for i = 1, . . . , r do
12 Compute the colour stabilizer of σai H recursively as

{bi, T} = ColourStab(U, σai, B)

13 return {b1, T ∪ {b−1
1 b2, b−1

1 b3, . . . b−1
1 br}}

14 else
// Want to set ‘‘small’’ in line 1 appropriately so that

we never get here.

15 return Fail

In the above algorithm, depending on the group we are working with, we
need to appropriately assign the meaning to “small” in line 1. If the group G
is from some structured class, we want this to be an upper bound of the size
of any primitive, transitive group from this class. For the case of p-groups, this
value would just be p (Observation 5.13).

Theorem 6.2. If G = ⟨S⟩ ≤ Sn is a p-group, if “small” in line 1 is set to p then
Algorithm 19 always outputs the colour stabilizer in time poly(n, p, ∣S∣) .

Proof. Let us get a sense of the number of recursive calls and the size of each
of those instances. Say ∣B∣ = m and let T(m) be the time taken to compute

37

7. Graph isomorphism for bounded degree graphs

colourStabB(G). If G does not act transitively on B, then we decompose B into
orbits. Say B = Ω1 ∪⋯Ωt and let mi ∶= ∣Ωi∣. Once we have these orbits, we then
compute the colour stabilizer in each of these orbits.

Each such recursive call would then construct the highest level block system
from the structure forest of Ωi. Let Γi be the highest level block system of Ωi and
let Hi be the block kernel. Since G/Hi acts transitively, primitively and faithfully*
on Γi, we know that ∣Γi∣ = p and [G ∶ Hi] = p. Hence, if G = ai1Hi ∪⋯∪ aipHi, for * Why faithful?

each i, then if we can compute colourStabΩi(σaijHi) for each i = 1, . . . , t and j =
1, . . . , p, we can stitch together a generating set for colourStabB(σG) with polyno-
mial overhead. Hence, if T′(mi) is the time for computing colourStabΩi(σaijHi),
then

T(m) ≤ pT′(m1)+⋯+ pT′(mt)+poly(n, m, ∣S∣).

Now comes the key observation: Each Hi stabilizes the blocks in Γi and hence
the orbits of Hi are of size at most ∣Ωi∣ /p as Hi never takes elements of one block
to another. Therefore, if Γi = {Ωi1, . . . , Ωip} (and recall ∣Ωi∣ = mi/p) we have

colourStabΩi(σaijHi) = colourStabΩi1(⋯ colourStabΩip(σaijHi)⋯)

Ô⇒ T′(mi) ≤ pT(mi/p)+poly(n, m, ∣S∣).

Putting it all together,

T(m) ≤ p2 (T(m1/p)+⋯+ T(mt/p))+poly(n, m, ∣S∣).

where ∑mi = m. Solving this recurrence shows that the time taken by the algo-
rithm is poly(n, m, ∣S∣).

7 Graph isomorphism for bounded degree graphs

We have already seen that graph isomorphism and graph automorphism are
equivalent (Lemma 1.6). In fact, it suffices to get a generating set for the set of
automorphisms that fixes an edge.

Aute (X = (V, E)) = {σ ∈ Sym(V) ∶ σ(e) = e and (u, v) ∈ E⇔ (σ(u), σ(v)) ∈ E}

We stress that it is possible that a σ ∈ Aute(X) swaps the two end-points of e but
all we insist is that the edge e is mapped to the same edge (and end-points could
possibly be swapped).

Lemma 7.1. GraphIso reduces to the problem of computing a generating set for Aute(X).

Proof. By picture:

38

7. Graph isomorphism for bounded degree graphs

X Y Z

e

It is also worth noting that the above reduction also maintains the maximal
degree of the graph X (unless X has maximal degree at most 2 which is just a
set of cycles and paths).

The general road-map would be the following.

• Step 1: Structural properties - Prove some structural properties of the
group Aute(X) when X is a bounded degree graph.

• Step 2: Reduction to colour stabilizers - Reduce the task of computing a
generating set of Aute(X) to colourStab on such structured groups.

• Step 3: Solving colourStab - Show that colourStab of such structured groups
can be solved in polynomial time.

We shall first look at graph isomorphism for the class of degree 3 graphs,
also called trivalent graphs. These would have all of the crucial ideas in Luks’
algorithm for bounded degree graph isomorphism.

7.1 Trivalent Graphs

Assume without loss of generality that X is a connected trivalent graph (if not,
we have to work with each connected component, etc.). The goal is to get a
generating set for Aute(X). We shall do that incrementally and in the process
prove some structural properties of the automorphism group, as well as see
how to get a generating set for it. The idea is to discover the remaining edges in
order of their ”distance” from e, and use induction on the chain of sub-graphs,
denoted by Xi, that arise.

Formally, let Xi consist of vertices that are reachable from one of the two
end points of e by a path of length at most i, and the edges in Xi would be all
those edges whose distance from e is at most i, i.e. there is a path of length at
most i containing that edge and e. The following picture is an example of these
intermediate graphs.

39

7. Graph isomorphism for bounded degree graphs

e

X

e

X0

e

X1

e

X2

e

X3 = X

We first proceed to Step 1 of the above outline which is to prove a structural
result about Aute(X) in the case when X has degree at most 3. We will prove It is one of those

results where the
statement and
the proof are both
equally amazing.

the following amazing result by Tutte.

Theorem 7.2 (Tutte). If X is a connected trivalent graph, then Aute(X) is a 2-group,
i.e., ∣Aut(X)∣ = 2k. What happens if X is

not connected?

Proof. We shall prove by induction on r that Aute(Xr) is a 2-group. In the case
of X0, which consists of a single edge, the claim is true as Aute(X0) consists of
just two elements — the identity and the swap of the two end points of e. Now
assuming that Aute(Xr) is a 2-group, we wish to show that Aute(Xr+1) is also
a 2-group. Informally, we shall show that the new elements, vertices or edges
so discovered, either reduce or increase the size of Aute(Xr+1) by a factor of 2j

compared to Aute(Xr).
Let Gr = Aute(Xr), and let Vr be the set of vertices in Xr. We already have the

claim for r = 0. For r > 0, let us define a function φr ∶ Gr → Gr−1. This is just the
projection map, i.e., it ignores the action of Gr on Vr ∖Vr−1 as any e-preserving
automorphism of Xr induces an automorphism of Xr−1.* It is easy to see that φr * Any g in Gr

must permute Vr−1
within itself. Why?is therefore a homomorphism and hence we have:

∣Gr ∣

∣ker(φr)∣
= ∣ Im(φr)∣.

So, if we demonstrate that ∣ker(φr)∣ is a 2-group, we would have established
the theorem because by the inductive hypothesis, ∣Gr−1∣ is a 2-group, and hence
Im(φr) ≤ Gr is a 2-group.

Let us now articulate on ker(φr) = {g ∈ Aute(Xr) ∣ φr(g) = id on Vr−1}. We
now wish to know what the elements of Aute(Xr) whose action on Xr−1 is just
identity. For this purpose, for a vertex a ∈ Vr ∖Vr−1, define the neighbourhood
N(a) = {b ∈ Vr−1 ∶ {a, b} ∈ Er}.

Call distinct a and b twins* if N(a) = N(b), and distinct a, b and c triplets if * What else?

N(a) = N(b) = N(c). ∣N(a)∣ ≤ 3 and there are no triplets as the graph is trivalent.

40

7. Graph isomorphism for bounded degree graphs

Hence, the vertices in Vr ∖Vr−1 can be partitions into twins and single children.
As, any g ∈ ker(φr) is an automorphism that fixes Vr−1, its action on the set
Vr ∖Vr−1 may only be that of swapping twins. Furthermore, any permutation
which fixes Vr−1 and swaps twins is a member of ker(φr).** Thus, ker(φr) is ** Why? Ahh! the

edges between the
vertices of Vr ∖Vr−1
are not present in Er ;
they only show up in
Er+1.

generated by twin swaps, and hence, it is a 2-group.

An alternate
proof by Uma
Girish was that
any g ∈ ker(φr)

satisfies g2
= id.

This is easy to check
and immediately
implies ker(φr) is a
2-group.

For every r and every vertex v, let Xr, Gr, N(v) be as defined in the above
proof. We note that the proof actually gives us an algorithm to find a generating
set for ker(φr).

Algorithm 20: Kernels between successive layers
Input : Xr, Xr−1
Output : T such that ⟨T⟩ = ker(φr)

1 T = ∅

2 For every v ∈ Vr ∖Vr−1, find N(v).
3 Partition Vr ∖Vr−1 into twins and single children.
4 for each pair of twins v, v′ ∈ Vr ∖Vr−1 do
5 Add the transposition (v, v′) to T.
6 return T

Now the road map to compute the generating set for Aute(X) would also be
an inductive procedure of starting from X0 and slowly building a generating set
for the e-preserving automorphisms of larger Xis. Suppose we have a generating
set for Gr−1 = Aute(Xr−1). The following would be our strategy.

1. We shall use the map

φr ∶ Gr → Gr−1

and first construct the generating set for ker(φr) = ⟨K⟩ via Algorithm 20.

2. Recursively find a generating set for Im(φr). Note that Im(φr) consists
of precisely the automorphisms of Xr−1 that can be extended to Xr. If we
could compute a generating ⟨T⟩ = Im(φr), then for each g ∈ T let g̃ be an
extension of g to an automorphism of Xr. Let T̃ = {g̃ ∶ g ∈ T}. Then, K ∪ T̃
generate Gr as in essense this includes a generating set for a subgroup
(ker(φr) ≤ Gr) and also its coset representatives (lifts of Im(φr)).

So now, the only thing left to do is to find a generating set for Im(φr) given
Gr−1. To do that we shall show that Im(φr) is a suitable colour stabilizer of Gr−1.
Since we know from Theorem 7.2 that Gr−1 is a 2-group, we can use Theorem 6.2
to solve the colour stabilizer in polynomial time.

If σ ∈ Gr, then note that N(σ(v)) = σ(N(v)). In words, this is just stating that
the neighbours of v must be mapped to the neighbours of σ(v). Since we are
working with a trivalent graph, N(v) is some subset of Xr−1 of size at most 3.
Define

A = {subsets of Vr−1 of size at most 3} .

41

7. Graph isomorphism for bounded degree graphs

Suppose a ∈ A such that there are v, v′ ∈ Vr ∖Vr−1 such that N(v) = N(v′) = a
but b ∈ A such that there is only one v′′ such that N(v′′) = b, then note that no
σ ∈ Gr can map a to b. Hence it makes sense to define the following subsets.

A1 = {a ∈ A ∶ ∣N−1(a)∣ = 1}

A2 = {a ∈ A ∶ ∣N−1(a)∣ = 2}

A = {{u, v} ∈ A ∶ {u, v} ∈ Xr ∖Xr−1}

If we were to consider the action of Gr on A via the natural lift, then clearly any
σ ∈ Gr must stabilize A1, and A2 and A. Turns out, the converse is also true.
Lemma 7.3. Let σ ∈ Gr−1 such that σ stabilizes A1, A2 and A. Then σ can be extended
to an automorphism of Xr.
Proof. The edges in Xr ∖Xr−1 are of three kinds:

• edges present in Xr−1,

• edges connecting a vertex in Vr−1 to a vertex in Vr ∖Vr−1,

• edges connecting two vertices in Vr−1, but was not present in Xr−1.
The first kind of edges are of course preserved as σ ∈ Gr−1. The third kind of

edges are also preserved by σ as we are given that σ stabilizes A. We only need
to ensure that second kind of edges are preserved by σ as well.

This is sort of immediate once we write things down properly. Consider
listing all the vertices in Vr ∖Vr−1 on the left and all elements of A on the right.
Imagine connecting each v on the left with the a = N(v) on the right. Just
naturally extend σ to the vs by following these connections to the left. For
instance, if σ(a) = σ(a′) and N−1(a) = {v} and N−1(a′) = {v′}, then extend σ by
mappign v to v′. If σ(a) = σ(a′) and N−1(a) = {v1, v2} and N−1(a′) = {v′1, v′2},
then extend σ by mapping v1 to v′1 and v2 to v′2 (or vice-versa; both would be
valid extensions but we just need one). This therefore preserves all edges between
Vr−1 and Vr ∖Vr−1. Hence σ can indeed be extended to an automophism of Xr
and hence σ ∈ Im(φr).

Since we have solved colourStabΩ(G) for G which are p-groups, consider
the following algorithm to find the generating set for Im(φr) given Gr−1. Note
that since we are working with trivalent graphs, Gr−1 is a 2-groupfor every r by
Theorem 7.2 and hence we can compute colourStabΩ(Gr−1) for any Ω.

Algorithm 21: Image between successive layers
Input : Gr−1 = ⟨S⟩ , Xr, Xr−1
Output : T such that ⟨T⟩ = Im(φr)

1 Consider the action of G on A = {subsets of Vr−1 size at most 3}.
2 Define A = {(u, v) ∈ Xr ∖Xr−1 ∶ u, v ∈ Vr−1}.
3 Define A1 = {a ∈ A ∶ N(v) = a for exactly one v ∈ Vr}.
4 Define A2 = {a ∈ A ∶ N(v) = a for exactly two v s ∈ Vr}.
5 Colour elements of (A1 ∩ A), (A1 ∖ A), (A ∖ A1), A2 and

A ∖ (A1 ∪ A2 ∪ A) with different colours.
6 return colourStabA(Gr−1)

42

7. Graph isomorphism for bounded degree graphs

As mentioned earlier, once we obtain a generating set T for Im(φr), we lift
each of its elements to form T̃, add to it the generating set for ker(φr) and we
get a generating set for Gr.

Repeating this for r = 1, . . . , n we eventually have Xr = X and thus a generat-
ing set for Aute(X). Hence we have completed the following theorem.

Theorem 7.4 (Luks). Graph isomorphism for trivalent graphs can be solved in deter-
ministic polynomial time.

7.2 Generalizing to higher (but bounded) degree graphs

Let us go through the motions again for graphs of degree bounded by d (think of
d = 100 or something). Once again, let us consider the layered graph X0, X1, . . .,
and let Gr = Aute(Xr) and φ ∶ Gr → Gr−1 is the natural projection map. Previously,
we first showed that the kernel of φr was a 2-group and that enabled us to
inductively show that Aute(Xr) is a 2-group. However, this need not be the case
here. Nevertheless, the kernel is still a pretty structured group.

Structure of ker(φr)

As earlier, we shall say that {v1, . . . , vt} ∈ Vr ∖Vr−1 are identical siblings if N(v1) =

⋯ = N(vt). Note that t < d, for the same reasons that in a trivalent graph we can-
not have triplets. The following is a natural generalization to obtain a generating
set for ker(φr) and the proof is straightforward.

Lemma 7.5. Let Vr ∖Vr−1 = T1 ⊍⋯⊍Tk be a partition of Vr ∖Vr−1 into sets of identical
siblings. Then,

ker(φr) = Sym(T1)×⋯× Sym(Tk).

This isn’t quite as nice as a 2-group but nevertheless what we do know is
that ∣Ti∣ ≤ d − 1 which for us is a constant. So in some sense, ker(φ) has made as
a combination of small groups. This is formalized by the notion of composition
factors and we briefly describe this now.

Groups with bounded composition factors

Definition 7.6 (Bounded composition factors). A group G is said to have composi-
tion factors bounded by d, denoted by G ∈ Bd if there is a normal series

G = G0 ▷G1 ▷⋯▷Gr = {id}

such that Gi/Gi+1 is isomorphic to a subgroup of Sd. ◊

If K = Sym(T1)×⋯× Sym(Tr) with ∣Ti∣ < d, then K ∈ Bd as

K = K0 ▷K1 ▷⋯▷Kr

where Ki = Sym(Ti+1)×⋯×Sym(Tr) and successive quotients are just Sym(Ti) ≤

Sd. Hence, ker(φr) ∈ Bd.

43

7. Graph isomorphism for bounded degree graphs

The class Bd have some very useful properties that we will state without
proof.
Lemma 7.7. If G ∈ Bd and H ≤ G, then H ∈ Bd.

Lemma 7.8. If N ◁G and if N ∈ Bd and G/N ∈ Bd, then G ∈ Bd.

With these two lemmas, we have an analogue of Tutte’s theorem in this
setting.
Lemma 7.9. Gr = Aute(Xr) ∈ Bd.

Proof. As in Theorem 7.2, we shall prove this by induction. Consider the map
φr ∶ Gr → Gr−1. We know that Gr/ker(φr) ≅ Im(φr) ≤ Gr−1. By Lemma 7.7 and
Lemma 7.8, it follows that G ∈ Bd.

Great! We know some structural result about the groups we are working
with.

Computing a generating set for Im(φr)

As earlier, we can let A be the set of subsets of Vr ∖Vr−1 of size at most d, and
define sets A1, . . . , Ad−1 as

Ai = {a ∈ A ∶ ∣N−1(a)∣ = i}

and

A = {{u, v} ∈ A ∶ {u, v} ∈ Xr ∖Xr−1} .

As in Lemma 7.3, any σ ∈ Gr−1 that stabilizer the above sets (when Gr−1 is acting
on A) can be extended to a σ̃ ∈ Gr.

We still however need to solve the colour stabilizer problem. For that, it was
important to know that any transitive, faithful and primitive p-group must be
small. Fortunately, there is an analogue of that for Bd which again we shall state
without proof.
Theorem 7.10 (Babai, Cameron, Palfy). There is an absolute constant c > 0 such
that if G ∈ Bd act faithfully, transitively and primitively on a set Ω of size n then,
∣G∣ ≤ O(ncd).

With this result, it is relatively straightforward to check that the colour stabi-
lizer problem on groups in Bd can be solved efficiently.
Theorem 7.11. Let G = ⟨S⟩ ∈ Bd acting on Ω of size m. Given S, a σ ∈ Sm and B ⊆ Ω,
a generating set for colourStabB(σG) can be computed in deterministic poly(∣S∣, md)

time.

With this theorem, it follows that we can compute the generating set for
Im(φr) in poly(nd2

) time (since G is now acting on A which has size m = nd,
and the colour stabilizer algorithm takes time poly(md) = nO(d2

)). Thus putting
everything together, we get the following theorem.
Theorem 7.12 (Luks). Graph isomorphism for graphs of degree at most d can be solved
in deterministic nO(d2

) time.

44

8. General graph isomorphism

8 General graph isomorphism
Lecture 10:
February 20th, 2017
and
Lecture 11:
February 24th, 2017

In the previous lecture, we have seen algorithms to solve the Graph Isomorphism
for restricted graphs like Bounded degree graphs and Trivalent graphs. In this
lecture, we will see an algorithm due to Babai, Luks and Zemlyachenko which
runs in time nO(n2/3

). Note that the naı̈ve algorithm runs in time n! ≈ nn.

8.1 Colour Refinements

The natural thing to do for solving Graph Isomorphism is to break up the vertices
into groups which are distinct in some way there by reducing the search space.
We can think of this grouping as a colouring of the graphs. One way of grouping
vertices in a graph is according to their degree because in any Isomorphism
between X and Y, degree d vertices in X can only be mapped to degree d vertices
in Y. We can further extend this argument and say neighbours of degree d
vertices in X can only be mapped to neighbours of degree d vertices in Y and
so on. This idea is used most of the time in practice. The Weisfeiller Lehman
refinmenet process, which we see below, formalizes this idea.

Weisfeller-Lehman colour refinement

Let’s assume we have a colouring χ ∶ V → [k] to begin with. This could be just
assigning the degree of each vertex as its colour, or even the trivial colouring.
The following is a way to attempt to refine the colouring χ ∶ V → [k] to a new
colouring χ′ as follows:

• On each vertex v, set its colour as (χ(v); d1, . . . , dk) where where di is the
number of neighbours of v that are given colour i by χ.

• Since the graph has at most n vertices, there can be at most n distinct
vectors as colours. Re-index them using [k′] for a suitable k′.

This will indeed be a refinement of the previous colouring in the sense that if
χ′(v) = χ′(u) Ô⇒ χ(v) = χ(u). By repeating the above process, at some point
there would be no further refinement in the colouring. We shall refer to this as
the WL process, where we start with a given colouring χ and keep refining until
the colouring stabilizes.

When we are given two graphs X and Y that we need to check if they are
isomorphic, we can simultaneously run the WL process on both graphs starting
with the colouring by degree. If we ever notice a discrepancy (that is, X has
more 1 coloured vertices than Y), we immediately know that the graphs are not
isomorphic. However, we might still have non-isomorphic graphs that end up
with the same WL refinements. Here is an example:

45

8. General graph isomorphism

X doesn’t have 5 cycles Y has a 5 cycle

So whenever the WL process gets stuck, we need to force progress in some
way. This is done by what is called individualisation where you pick an arbitrary
vertex v ∈ X and give it a completely fresh colour. This way, the WL process
would hopefully refine the colours further. The issue now of course is that we
do not know what the correct image of v is in the graph Y – which vertex of Y
must be coloured by this new colour? We know, if they are indeed isomorphic,
then this must be one of the vertices of Y that had the same (previous) colour of
v. We shall try out all possibly candidates.

Thus, every time we individualize a vertex, we make the colours more refined,
but we pay a multiplicative cost of (potentially) n we we need to try out all
possibilities of this individualized vertex in Y. But here is a heuristic that we can
attempt.

Algorithm 22: GraphIso WL+Ind Heuristic
Input :Graphs X and Y on n-vertices

1 Start with χ(v) = deg(v) for every v ∈ X and Y.
2 Pairs = {(X, Y)}

3 repeat
4 if Pairs is empty then
5 return No
6 for (X, Y) ∈ Pairs do
7 Run the WL process in parallel on both X and Y. If there is is every

a discrepency observed, remove (X, Y) from Pairs.
8 Pick a vertex v ∈ X and individualize v, and call this new coloured

graph Xv.
9 For every u ∈ Y, let Yu be the graph where u is given the same new

colour.
10 In Pairs, replace (X, Y) with {(Xv, Yu) ∶ u ∈ Y}.

11 until all graphs in Pairs become “nice”
12 Run the Graph Isomorphism for “nice” graphs for every (X, Y) in Pairs

and return Yes if any of them is an isomorphic pair.

The ideal scenario is when we only have to individualize a few vertices and
we end up with a situation where we know how to solve graph isomorphism.
One example could be the setting where all the colour classes are small. In that
case, we can use the bounded colour multiplicity algorithm that we have seen
earlier. Unfortunately, this approach doesn’t work as there are graphs where
we need to individualize far too many vertices before the WL process results in

46

8. General graph isomorphism

bounded colour class sizes.
Turns out if we work with a new notion called generalized colour valence

instead colour class size, then we can hope to reach this situation with few
individualization operations.
Definition 8.1. Generalized colour valence Let X = (V, E) be a graph and C1, . . . , Cm
be a colouring of V. Define the generalized colour valence for a vertex v and a colour
class Ci as

d̃egi(v) ∶= min{
neighbours

of v in Ci
,

non-neighbours
of v in Ci

} .

In words, either v has at most d̃egi(v) neighbours or non-neighbours in Ci.
We shall denote by d̃eg(X) the maximum d̃egi(v) over all possible v, i. ◊

The key point about this definition is the following theorem that we shall
defer to the end of this section.

Theorem 8.2. Graph Iso for graphs with gcd ≤ d can be solved in nO(d2
) time.

The following crucial theorem tells us that by isolating a few vertices in the
WL algorithm we end up with a graph with small generalized colour valence.

Theorem 8.3 (Zemlyachenko). For any X on n vertices and 1 ≤ d ≤ n , we can find at
most 4n/d vertices to individualize such that the WL refinement stabilizes to a colouring
where d̃eg(X) ≤ d.

With the above two theorems, the main result of this lecture is immediate.

Theorem 8.4 (Babai,Luks). Graph Iso can be solved in nO(n2/3
) time.

Proof. From Theorem 8.3, obtain a colour refinement which isolates at most 4n/d
vertices and leaves a colouring such that d̃eg(X) ≤ d. For every vertex that is
individualized, try out all possible choices in the other graph. For each such
pair, check if the two graphs are isomorphic using the algorithm guaranteed
by Theorem 8.2. The over all running time of the algorithm is poly(n4n/d ⋅ nd2

).
By optimising over d and choosing d = n1/3 we get the running time to be
nO(n2/3

).

All that’s left to do is prove Theorem 8.2 and Theorem 8.3.

8.2 Reducing to the bounded generalized colour valence case

This section shall be devoted to Zemlyachenko’s trick (Theorem 8.3), and this
follows from the following lemma.

Lemma 8.5. Given a graph X and a colouring such that d̃eg(X) ≤ D. Then by doing
the WL process + individualizing step at most 2n/D times we end up with a colouring
such that d̃eg(X) ≤ D/2.

Proof. We’ll run the following process.

1. Run the WL process.

47

8. General graph isomorphism

2. If d̃eg(X) ≤ D/2, then Stop; we are already done.
3. Else there exists some vertex v and a colour class C such that v has > D/2

neighbours and > D/2 non-neighbours in C.
4. Individualize the vertex v and go back to step 1.

Assume that the above process individualizes a series of vertices v1, v2, . . . , vr
and let the colour class (at that instant) that vi violates be Ci. Since each subse-
quent colouring is a refinement of the original colouring, we are always guar-
anteed that d̃eg(X) ≤ D. Hence, we always know that either vi has at most
D neighbours in Ci, or at most D non-neighbours in Ci. If vi had at most D
neighbours in Ci, set Ni to be these neighbours. If instead vi had at most D
non-neighbours in Ci, choose Ni to be these non-neighbours. This is to ensure
that Ni ⊆ Ci and

D
2
< ∣Ni∣ ≤ D.

Claim 8.6. If v1, . . . , vr are chosen to be isolated, then Ni ∩ Nj = ∅ for i ≠ j.

Pf. Assume i < j WLOG. Observe that vi was adjacent to some set of vertices in
Ci and not adjacent to some of them. The moment vi is individualized, the set of
vertices in Ci that were adjacent to Ci and those that are not become different
colour classes (or union of colour classes) via the WL process. By the time we get
to the point of isolating vj, the set Ni could have potentially split into many more
colour classes. The following should be a better picture of what is happening.

vi

Ci

Ni

Cj

vj

Nj

Therefore, by the time we get to individualizing vj, if Ni ∩ Nj ≠ ∅, then the
entire colour class Cj must lie inside Ni. But observe that the reason vj and Cj
was chosen was because vj had more than D/2 neighbours in Cj and more than
D/2 non-neighbours. This forces ∣Cj∣ > D, which is impossible as Cj ⊆ Ni and
∣Ni∣ ≤ D.

Therefore Ni ∩ Nj = ∅.

Since each of the Nis are pairwise disjoint, and each has size at least D/2,
this shows that the number of vertices we would have to individualize at most
2n/D vertices before the graph has generalized colour valence bounded by D/2.
And this completes the proof of the lemma.

48

8. General graph isomorphism

With Lemma 8.5, the proof of Theorem 8.3 is just repeated applications of
this lemma to reach the target bound on generalized colour valence.

Proof of Theorem 8.3. To begin with, start with the trivial colouring on all vertices
of X. The generalized colour valence is bounded by D0 = n. Using Lemma 8.5,
by individualizing at most 2n/D0 = 2 vertices and applying the WL process,
we now have a graph of generalized colour valence bounded by D1 = n/2.
Applying Lemma 8.5 again, by individualizing 2n/D1 = 4 vertices, we can make
the generalizing colour valence at most D2 = 8. This is just a geometric sum and
the number of vertices we need to isolate until we hit the target bound of d is at
most 4n/d.

8.3 GraphIso for bounded generalized colour valence graphs

To finish the proof, we need to prove Theorem 8.2 that claims that graph iso-
morphism on graphs of generalized colour valence bounded by d can be solved
in nO(d2

) time. Much if this would basically observing that the machinary de-
veloped for bounded degree graph isomorphism in section 7 almost directly
applies here. We briefly sketch the proof but hopefully the sketch should be
sufficient for the reader to check that indeed the techniques of section 7 apply
here.

Preprocessing

We are given two coloured graphs X and Y as input whose generalized colour
degree is bounded by d. First, we run the WL process on both of of them simulta-
neously. Notice that this can only shrink colour classes so the generalized colour
valence cannot increase. Observe that when the WLrefinement stabilizes,

(i) the induced sub-graph Ci ×Cj is bi-regular for all Ci, Cj i.e any two vertices
from Ci will have the same number of neighbours in Cj.

(ii) every v ∈ Ci has either at most d neighbours or at most d non-neighbours
in Cj. Without loss of generality, we can assume that the number of neigh-
bours is at most d because if the number of neighbours of each v ∈ Ci in Cj
is more than d then we can switch Ci −Cj edges by non-edges in both X Wait... can’t this

now force you to
flip it again for Cj?
Think about it.

and Y. It easy to check that this preserves graph isomorphism.

Whenever the process terminates, the resulting coloured graph would be
very regular in the sense that any red vertices will be adjacent to the same
number of blue vertices etc. and all these numbers are bounded by d.

Let us further assume the the graph is connected; if it wasn’t, we’ll work with
each connected component etc.

Structure of the automorphism group of X, Y

As in section 7, the problem reduces to finding Aute(X) for a graph X of colour
valence bounded by d and e is a special edge. The following lemma basically is
the key as to why the earlier machinary holds here too.

49

Theorem 8.7. If X is a connected coloured graph whose colour valence is bounded by
d, then Aute(X) ∈ Bd.

Proof. Just as in Theorem 7.2, we will build the graph X in layers X0, . . . and let
Gr = Aute(Xr). As earlier, we have a projection map φr ∶ Gr → Gr−1. To prove the
claim by induction, it suffices to show that ker(φr) ∈ Bd.

Suppose v, u ∈ Xr ∖Xr−1. When would it be possible for element ker(φr) swap
these two? Firstly, u and v must have the same colour, say red. Furthermore, their
neighbourhoods must be identical. We shall call such vertices as identical siblings.
Hence, the elements of the kernel can only switch around identical siblings.

How many identical siblings can there be? Not more that d; this is because
any set of identical siblings must be a set of vertices of the same colour that are
adjacent to some vertex in Xr−1. We know there aren’t more than d of them as X
has bounded colour valence.

Therefore, ker(φr) ∈ Bd. Thus by induction, so is Gn = Aute(X).

We just need to follow the same outline for the bounded degree graph iso-
morphism case. The above theorem also gives a generating set for the kernel. The
generating set for the image can be obtained by a colour stabilizer computation as
earlier. To give a little more detail, if Xr−1 = (Vr−1, Er−1 and if Vr−1 = C1 ∪⋯∪Cm
is the partition into colour classes, then we need to think of Gr−1 as acting on

Ω′ = (
C1

≤ d
)∪⋯∪ (

Cm

≤ d
)∪ (

Vr−1

2
)

and stabilize the right tuples. We’ll leave the rest of the details as an exercise* to :-)

the reader. Theorem 8.2

Part II: Computations on polynomials

Lecture 12:
March 10th, 2017 Notation

• We shall be using the standard blackboard font for fields – F, C, Q etc.
• We shall use Fq to denote the finite field of size q (of course, when q is a

power of a prime). We shall insist on using Fp for the finite field of size
p and not Zp (which is often reserved for the field of p-adic integers; we
won’t encounter them in this course).
We shall use F× shall denote the multiplicative group of F.

• Q shall refer to the field of rational numbers, and C shall refer to the field
of complex numbers.

• Polynomial rings would be denoted by F[x1, . . . , xn], and the field of rational
functions would be denoted by F(x1, . . . , xn).

• deg(f) shall refer to the total degree of the polynomial, and degx(f) would
be the degree of x in f .

50

9. Preliminaries

9 Preliminaries

So far we have been looking at computations on groups and we now move on
to polynomials. You should be generally pally with polynomials but it would
be useful to establish some very basic properties about polynomial rings and
fields that we would need in this course. We begin with some basics about rings,
fields etc.

Definition 9.1 (Rings). A ring R consists of a set of elements and two binary operations
+ and × that satisfy the following properties:

• (R,+) forms a commutative group with identity element called 0.

• The operation × is associative, i.e. (a × b)× c) = a × (b × c),

• The operation × distributes over +, i.e. a × (b + c) = (a × b)+ (a × c).

If the operation × is commutative, then the ring is said to be a commutative ring.
It is said to be a domain (or integral domain) if the product of two non-zero

elements of R is always non-zero. ◊

Examples of rings are say Q, Z, F[x, y] (which are all commutative rings)
and the set of n×n matrices over F is a non-commutative ring. The set of integers
modulo 42 is a ring, but not a domain as 7 ⋅ 6 = 0. Throughout this part of the
course, we’ll mainly deal with just commutative rings and often polynomial
rings such as F[x, y] etc.

As in the case of groups, once we have rings, we can talk about homomor-
phisms between two rings R and S. These are maps from φ ∶ R → S that gel well
with the operations inside R and S. That is, φ(ab− c) = φ(a)φ(b)−φ(c), etc. And
as in the case of groups, we can ask for elements of R that are mapped to 0S by
φ — the kernel of φ. These are important objects called ideals.
Definition 9.2 (Ideal). A subset I ⊆ R is called an ideal if

• I forms a sub-ring. That is, it is internally closed under addition, additive inverses
and multiplication.

• If p ∈ I, then for every q ∈ R, we have pq ∈ I. That is, it is closed under multipli-
cation by elements even outside I.

We shall say an ideal I is generated by {q1, . . . , qr}, and denote this by I = ⟨q1, . . . , qr⟩,
if

I = {p1q1 +⋯+ prqr ∶ pi ∈ R ∀ i} . ◊

For example, if R = F[x] then the set of all polynomials divisible by x2 is an
ideal ⟨x2⟩.

Sometimes, rings may not even have a multiplicative identity element* but * - Apparently, they
are sometimes called
rngs. :-/we won’t be looking at such weird objects. But if it did have a multiplicative

identity element, then it makes sense to talk about inverses of elements. It may be
the case that a lot of the elements in the ring do not have multiplicative inverses.
The elements of R that do have a multiplicative inverse are called units.

51

9. Preliminaries

A field is a commutative ring, with identity, where every non-zero element
is a unit.
Definition 9.3 (Field). A field F consists of a set of elements and two binary operations
+ and × that satisfy the following properties:

• (F,+) forms a commutative group with identity element called 0.

• (F∖ {0} ,×) forms a commutative multiplicative group,

• The operation × distributes over +, i.e. a × (b + c) = (a × b)+ (a × c). ◊

A field is a commutative ring where non-zero elements are also invertible. Ex-
amples are of course Q, R, C etc. The more interesting examples are finite fields.

Kindergarten algebra tells us that if p is a prime, then {0, . . . , p − 1} with the
usual × and + modulo p is a field. This shall be referred to as Fp. We can also
construct fields of size pr for any prime p and integer r. For that, it helps to know
a few things about polynomial rings.

9.1 Polynomial rings

Let us look at the ring F[x] of univariate polynomials with coefficients from
a field F. There is a natural notion of a degree that is associated with these
polynomials; we’ll denote that by deg(f). Univariate polynomials have the
useful Euclidean property a.k.a division-plus-remainder property.
Lemma 9.4. Let f , g ∈ F[x]. Then there is unique q, r ∈ F[x] with deg(r) ≤ deg(g)
such that f = gq + r.

Thus, univariate polynomial rings F[x] form what is called a Euclidean do-
main.
Definition 9.5 (Irreducible elements). A element a ∈ R is said to be irreducible if it
cannot be written as a product of two or more non-units. ◊

In the case of R = F[x], irreducible just means that the polynomial does not
have any non-trivial factors.
Definition 9.6 (Unique factorization domains). A ring R is said to be a unique
factorization domain (UFD) if every element of R can be expressed as a product of
irreducible elements uniquely (up to reordering, and multiplication by units). ◊

Fact 9.7. If R is a Euclidean domain, then R is also a UFD.
Fact 9.8. If R is a UFD, then R[x] is also a UFD.
Corollary 9.9. Polynomial rings over fields F[x1, . . . , xn] are unique factorization
domains.

We won’t really need the proofs of these but the interested reader can find
this in any basic algebra text.

One of the most important fact about univariate polynomials over fields is
this.
Fact 9.10. A non-zero univariate polynomial in F[x] of degree at most d can have
atmost d zeros.
Proof. This basically follows from Lemma 9.4 and showing that if a is a root of
f (x) then (x − a) divides f . Divide, degree drops, and repeat.

52

9. Preliminaries

9.2 Fraction fields

Suppose R is a commutative domain with identity, there is a standard method
to create a field from it by introducing fractions.
Definition 9.11 (Fraction fields). Let R be a commutative ring, with identity, which is
a domain. The fraction field of R, denoted by Frac(R), whose elements are equivalence
classes of

{(a, b) ∶ a, b ∈ R , b ≠ 0}

under the equivalence relation (a, b) ≡ (c, d) if ad = bc. The addition and multiplication
are defined via

[(a, b)]+ [(c, d)] ∶= [(ad + bc, bd)]

[(a, b)]× [(c, d)] ∶= [(ac, bd)] ◊

The field Q is the fraction field of the ring Z. We shall use F(x1, . . . , xn) to de-
note Frac(F[x1, . . . , xn]), which consists of just rational polynomial expressions.

9.3 Finite fields

We have already seen fields Fp of prime order. To build larger fields, consider
Fp[x], the univariate polynomial ring over Fp. Let f (x) be an irreducible poly-
nomial of degree k.

Now observe by Lemma 9.4, every polynomial g(x) has a unique remainder
r(x) of degree at most (k − 1) when divided by f (x). The field Fpk consists of
{r(x) ∈ Fp[x] ∶ deg(r) ≤ k − 1} , where addition and multiplication are defined
modulo f (x). That is,

r(x)+ s(x) ∶= r(x)+ s(x) mod f (x)

r(x)× s(x) ∶= r(x)s(x) mod f (x)

Lemma 9.12. The above definition indeed yields a field of size pk.

Proof. The only thing that needs to be checked is that multiplicative inverses
exists. Notice that the ring constructed above is a finite integeral domain; if
r(x), s(x) are non-zero polynomials with max{deg r, deg s} < k, then r(x)s(x) /≡

f (x) because otherwise, f ∣ rs would imply f ∣ r or f ∣ s (by unique factoriza-
tion in Fp[x] and irreducibility of ∈ Fp[x]) which is absurd because of degree
consideration. Therefore, it suffices to show that finite integral domains are
fields.

Let R be a finite integeral domain, and α ∈ R is a non-zero element. The
function mα ∶ R → R, r ↦ αr is injective and hence bijective. Therefore, there is
β ∈ R such that αβ = 1.

Therefore, we now know that for every prime p and every positive integer k,
there is a field of size pk*. * - assuming that

there is an irre-
ducible polynomial
of that degree.
Let’s take that for
granted.

It is sometimes useful to think of the field Fpr as the vector space (Fp)
r

endowed with a multiplication. The characteristic* of these fields is p.

* - defined as the
smallest num-
ber k such that
1+⋯+ 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

= 0

53

9. Preliminaries

Fields such as R or C or Q are called characteristic zero fields. Why zero and
not infinite? Given any commutative ring R with multiplicative identity 1R ∈ R,
there is a unique ring morphism φ ∶ Z → R, induced by φ(1R) = 1. The kernel
ker(φ) ⊂ Z is an ideal in the principal ideal domain Z, and therefore, there is
n ∈ Z+ such that ker(φ) = nZ. Notice that n ∈ Z+ is the minimal non-negative
integer satisfying n ⋅ 1R = 0; in other words, the ideal ker(φ) = nZ is “the charac-
teristic” of the ring R. Notice that the induced morphism Z/nZ→ R is injective.
When R is a field, this shows that Z/nZ must be an integeral domain, which
implies that either n ∈ Z is a prime or n = 0.

Another useful fact to know about finite fields is that the multiplicative group
F×

q is cyclic.

Fact 9.13. Let Fq be a finite field. Then, the set of non-zero elements of Fq under
multiplication is a cyclic group of order q − 1.

Thus, there are elements a ∈ Fq such that every other 0 ≠ b ∈ Fq can be
expressed as ae. Such elements are called generators of Fq or primitive elements of
Fq.

9.4 Adjoining elements and splitting fields

Let us look at Q. The polynomial x3 − 2 does not have a root in Q. But we can
think of adding 3√2 to Q and completing it to a field. For instance, we should add
3√4. This is what is meant by adjoining elements — just take the smallest field
that contains the base field (which in our example was Q) and the element that
was being adjoined (which in our example was 3√2).

Often, we would be adjoining elements α that are algebraic. What this means
is that the element α we are adjoining is a root of some polynomial over the base
field, such as 3√2. The formal way of adjoining an element α to a field F is to
consider its minimum polynomial µ(x) (which is the smallest polynomial with
coefficients in F such that µ(α) = 0) and consider the following field Q[x]

µ(x) . The
elements here are polynomials of degree strictly smaller than µ(x), and addition
and multiplication are modulo µ(x). So for example, Q(

3√2) ≅ Q[x]/(x3 − 2).
Thus in essense, x plays the role of 3√2.

One point to note here was that the way we were looking at Q(
3√2) involved

denominators that may involve 3√2 but not in Q[x]/(x3 − 2). What happened to
the denominators?

Lemma 9.14. If α is algebraic over a field F, then F(α) = F[α]. That is, any rational
expression involving α can be equivalently expressed as a polynomial involving α.

Proof. Easy exercise.

If we forget about multiplication, then the field extension K = F[α] is a vector
space over F of dimension deg(µ) (as every element is essentially a polynomial
of degree smaller than deg(µ). This is called the degree of the extension and
denoted by [K ∶ F]. The following property about field extensions is easy to
check.

54

10. Basic operations on polynomials

Fact 9.15. If K is a finite dimensional extension of F, and if L is a finite dimensional
extension of K, then

[L ∶ K] ⋅ [K ∶ F] = [L ∶ F].

Let us get back to K = Q[
3√2]. We built this to get a root of the polynomial

x3 − 2. However, not all the roots of the polynomial x3 − 2 are in K; the other
roots are ω 3√2 and ω2 3√2 where ω is a cube-root of unity. Hence, the polynomial
x3 − 2 does factorize in K as (x − 3√2)(x2 +

3√2x + 3√4), but not as linear factors.
The smallest field containing Q where the polynomial x3 − 2 splits into linear
factors is called the splitting field of x3 − 2. In our example, the splitting field of
x3 − 2 over Q is Q[ω, 3√2].

Recall how we built finite fields Fq of size q = pr. Every element in the field Fq
satisfies xq − x. Hence, the polynomial xq − x splits in Fq as xq − x =∏α∈Fq(x − α)
and this must be the splitting field as any field where xq − x splits must have
q elements (as the roots are distinct; check the derivative). Thus, one gets the
following important fact.

Fact 9.16. If p is a prime and r ∈ N, there is a unique finite field (up to isomorphism)
of size exactly q = pr — the splitting field Fq of xq − x over Fp.

A glimpse of part 2

In this part we shall be dealing with algorithmic tasks pertaining to polyno-
mials over fields. Much of this part would be leading towards the question
of polynomial factorization — given a polynomial f , can you find its factors
efficiently.

We shall be asking this question for univariate and multivariate polynomials.
As in the previous part, we would need to establish some preliminaries.

10 Basic operations on polynomials
Lecture 13:
March 14th, 2017 In this section, we shall look at a few very basic operations on polynomials

that can be performed in nearly linear time. These are not directly related to
the course as you would not be judged for taking O(n2) time for multiplying
polynomials using the high-school method, but it would be a crime to not do
these wonderful algorithms in the course.

The setting is that we are working with univariate polynomials over a ring R.
We shall assume that R is a commutative ring with identity. We shall assume
that the ring operations (multiplications, additions etc.) can be performed in
constant time.

Polynomial addition

Given two polynomials f and g in R[x] of degree n each, how many ring opera-
tions does it take to add them? This can of course be done term by term — takes
O(n) time.

55

10. Basic operations on polynomials

10.1 Polynomial multiplication

Given two polynomials f and g in R[x] of degree at most n each, how many ring
operations does it take to multiply them? The traditional high-school method of
course takes O(n2) time, but there is a beautiful algorithm that allows one to
perform this in nearly linear time.

The running time of this algorithm shall vary by a log log n multiplicative
factor depending on whether or not the ring R is “nice”.
Definition 10.1. A ring R is said to be n-nice if it contains the n-th principal root of
unity. ◊

We will define the n-th principal root of unity shortly. Let us first state our
two main theorems for this section.

Theorem 10.2. If R is 2n-nice, f ⋅ g can be computed in O(n log n) time.
If R is not 2n-nice, f ⋅ g can be computed in O(n log n log log n) time.

The idea is as follows. There are two different ways of representing a degree
n polynomial.

1. (Coefficient Representation) The first representation is the natural way
where the polynomials are provided as a list of its coefficients.

f (x) = a0 + a1x +⋯+ anxn

g(x) = b0 + b1x +⋯+ bnxn

2. (Value Representation) f and g are specified by their evaluations at 2n + 1
different points. You only need n + 1

evaluations, but the
factor 2 would make
sense shortly.f (α0) = β0 g(α0) = γ0

f (α1) = β1 g(α1) = γ1

⋮ ⋮

f (α2n) = β2n g(α2n) = γ2n

Note that for any i ∈ {0, 1, . . . , 2n}, if h = f ⋅ g then h(αi) = βi × γi. The question The point of 2n + 1
points is because h =
f ⋅ g is now a poly-
nomial of degree at
most 2n and hence
needs 2n + 1 points
to recover the coeffi-
cient representation.

now therefore is, can we go from the given coefficient representation to the value
representation efficiently (and back)? This is what the Fast Fourier Transform (FFT)
does.

10.2 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efficient algorithm to compute the value
representation of a given polynomial where αis are principal roots of unity.
Definition 10.3 (n-th principal root of unity). An element ω ∈ R is an n-th principal
root of unity if

1. ωn = 1. In class, I had incor-
rectly claimed that
this is equivalent to
ωi

− 1 not being
a zero divisor. But
this is false. Look at
Z/6Z and the ele-
ment 5 here. It is
a principal 2-th root
of unity but 5 − 1
is zero divisor. (hat-
tip: Siddharth Bhan-
dari)

56

10. Basic operations on polynomials

2. For all i ∈ {0, . . . , n − 1},

n−1
∑
j=0

ωij = 0. ◊

For now, let us assume that we do have an ω ∈ R which principal n-th root of
unity. We now show that f can be efficiently evaluated at the powers of ω

Lemma 10.4. Let f ∈ R[x] such that f (x) = a0 + a1x + ⋯ + anxn. If ω is a n-th
principal root of unity where n is a power of 2, then f (1), f (ω), f (ω2), . . . , f (ωn−1)

can be together computed in O(n log n) time.

The constraint of n being a power of 2 is not too limiting; this is just to ensure
that we can keep performing a divide-and-conquer strategy.

Proof. If n = 1, then duh; so let us assume that n is a power of 2 larger than 1.
We split up f (x) into two parts, the first part containing terms with even

powers of x, and the second part containing terms with odd powers of x:

f (x) = f0(x2)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

even

+ x f1(x2)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

odd

.

Thus, f0(y) = a0+ a2y+ a4y2+⋯+ anyn/2 and f1(y) = a1+ a3y+ a5y2+⋯+ an−1yn/2−1,
where y = x2. We shall first compute ωi for each i = 0, . . . , n − 1 and store
them. Suppose we can compute { f0(1), f0(ω2),⋯, f0(ω2⋅(n/2))} and also com-
pute { f1(1), f1(ω2),⋯, f1(ω2⋅(n/2))}. Notice that for any k ∈ {0, . . . , n − 1}, we
have ω2k = ω2ik for some ik ∈ {0, . . . , n/2}. Therefore,

f (ωk) = f0(ω2k)+ωk f1(ω2k)

= f0(ω2ik)+ωk f1(ω2ik)

Therefore each f (ωk) can be computed from the previously computed values
with just a few more ring operations. This is the algorithm.

57

10. Basic operations on polynomials

Algorithm 23: FFT
Input :a polynomial f of degree at most n, and a n-th principal root of

unity ω where n is a power of 2.
Output :The evaluations { f (1), f (ω), . . . , f (ωn−1)}.

// Base case

1 if n = 1 then
2 return f (1)

3 Collect the even degree terms and odd degree terms of f to write it as
f = f0(x2)+ x f1(x2).

// Observe that ω2 is a principal (n/2)-th root of of unity.

4 Recursively compute FFT(f0, ω2) and FFT(f1, ω2).
5 for i = 0,⋯, n − 1 do
6 k = 2i mod n/2

// This is to ensure that 0 ≤ k < n/2, and also note that k
will be even.

7 Let β = f0(ωk) and γ = f1(ωk), which were computed earlier.
8 Store the value f (ωi) = β + γωi.
9 return { f (1), . . . , f (ωn−1)}.

We are now ready to state our recurrence. If T(n) is the time complexity for
FFT when ω is an n-th root of unity, then

T(n) = 2T(n/2)+O(n).

This is a well known recurrence that evaluates to T(n) = O(n log n), completing
the proof.

Let us go back to the question of polynomial multiplication. We are given the
coefficient representations of two degree less than n polynomials f and g. Let ω
be a 2n-th root of unity and say n is a power of two. Algorithm 23 tells us that
we can compute their value representation very efficiently i.e. in O(n log n) time
and then compute the value representation of h = f ⋅ g with O(n) multiplications
of the corresponding values.

{ f (ωi) ∣ i = 0, 1, 2, . . . 2n − 1}

{g(ωi) ∣ i = 0, 1, 2, . . . 2n − 1}

h = f ⋅ g is given by

{h(ωi) ∣ h(ωi) = f (ωi)g(ωi), i = 0, 1, 2, . . . 2n − 1}

What remains to be done now is to convert h back to its coefficient represen-
tation. This can be done by performing another FFT! Basically if we invoke the
FFT algorithm we just described using ω−1 instead of ω, this almost inverts the
process! To understand this, let us express the connection between the coefficient

58

10. Basic operations on polynomials

representation and the value representation of the polynomial f using matrices.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

⋮ ⋮ ⋮ ⋱ ⋮

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¸¹¹¶
Mω

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0
a1
a2
⋮

an−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
A

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (1)
f (ω)

f (ω2)

⋮

f (ωn−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F

Mω ⋅ A = F

Here, the matrix Mω has a special name — it is known as the Vandermonde
matrix. And since we know that ∑j ωij = 0 for all i ∈ {1,⋯, n − 1}, it is easy to
check that

Mω ⋅ Mω−1 = n ⋅ I.

Hence, to go back to the coefficient representation, we only need to do an
FFT with respect to ω−1, and divide each coefficient by n. There is one slight
technicality here which is that n is a power of 2 and the ring could be something
like F2r where we cannot divide by 2. But basically the idea is that there wasn’t
anything special about 2 — we just needed n to be a power of something small
so that we can keep recursing. We leave it to the readers to figure out how to
make the process work with n is a power of 3 instead.

This completes the proof of the reverse-FFT and hence the algorithm for
polynomial multiplication (first part of Theorem 10.2).

What if R does not have a 2n-th root of unity?

In case R is not a nice ring, we work with a new ring R′` (` < n) where we
manufacture a root of unity. Suppose we are given a polynomial f in its coefficient
representation:

f (x) = a0 + a1x +⋯+ anxn.

We will instead represent it via f̃ (x, y), a bivariate polynomial such that f (x) =
f̃ (x, x`) (we shall fix ` soon).

f (x) = (a0 + a1x +⋯+ al−1xl−1)

+ x` (a` + a`+1x1 +⋯+ a2`−1x`−1)

⋯+ xk` (ak` + ak`+1x +⋯+ a(k+1)`−1x`−1)

where (k + 1)` = n.

f̃ (x, y) = (a0 + a1x +⋯+ al−1xl−1)

+ y (a` + a`+1x1 +⋯+ a2`−1x`−1)

⋯+ yk (ak` + ak`+1x +⋯+ a(k+1)`−1x`−1)

59

10. Basic operations on polynomials

Note that degx f̃ < ` and degy f̃ < k + 1 = n/`.
Our goal, as earlier, is to multiply f (x) and g(x) in the ring R[x]. We shall

instead multiply f̃ (x, y) and g̃(x, y) and then eventually substitute y = x`.
Now comes the key point. Notice that if h̃(x, y) = f̃ (x, y) ⋅ g̃(x, y), then

degx h̃ < 2` − 1 and degy h̃ < 2k − 1. These bivariates are polynomials in the
ring R[x, y], which can be thought of as polynomials in x with coefficients com-
ing from R[y]. But because of these degree bounds, even if the coefficients
are thought of as elements in the ring R` ∶=

R[y]
⟨y2k+1⟩

[x], multiplying f̃ and g̃ as

elements in R`[x] yields the same h̃(x, y)!
What have we gained by going to a more complicated ring? Note that in R`,

we have y4k = (y2k)2 = 1 and hence y is a 4k-th root of unity. Furthermore, the
following claim can also be checked easily:

Claim 10.5. Let R′ be an arbitrary ring with characteristic not equal to 2. If N is a
power of 2 and ω ∈ R′ such that ωN = −1, then ω is a principal 2N-th root of unity.

Hence in the ring R`, we have that y is a 4k-th principal root of unity. Thus,
if we set up parameters such that degx f̃ , degx g̃ ≤ 2k, then we can use FFT
(Theorem 10.2) to multiply these two polynomials. We’ll choose ` =

√
n/10 so

that k = 10
√

n and the above condition is satisfied.
Here is the rough sketch:

1. Compute from f and g the coefficient representations of f̃ , g̃ ∈ R`[x]. Takes
O(n) time.

2. Compute the Fourier transform of f̃ and g̃ using y as the principal 4k-
th root of unity. This takes O(k log k) additions of elements in R` and
O(k log k) multiplications of elements in R` by a power of y. Hence, this
takes O(n log k) operations in R as k, ` = Θ(

√
n).

3. Once the value representations of f̃ and g̃ are obtained, we multiply the
values pointwise to get the value representation of h̃ = f̃ g̃. This requires 4k
multiplications of elements in R`.

4. Perform the inverse FFT to obtain the coefficient representation of h̃(x, y).
This again takes O(n log k) time.

5. Return h(x) = h̃(x, x`).

Therefore, we obtain the following recurrence for the time complexity of
multiplying two degree n univariate polynomials in R[x]:

T(n) = 4k ⋅ T(`)+O(n log k)

where k = 10
√

n and ` =
√

n/10. Solving this yields T(n) = O(n log n log log n),
completing the proof.

Lecture 14:
March 17th, 2017 So far, we have observed that, using “FFT” we could multiply two polyno-

mials while performing only O(n log n) many ring operations, provided that
R contains a primitive n-th root of unity. Moreover, for a general ring (i.e., one

60

10. Basic operations on polynomials

which may not contain such a root, or we do not have access to such a root) we
have adjoined an n-th root of unity and performed the operation of multiplica-
tion, ending up with O(n log n log log n) many ring operations. Write MPoly(n)
for the number of ring operations to be performed in determining h = f g. We
have shown that MPoly(n) = O(n log n log log n). For all the other operations
that we will see in this section, we shall express its running time in terms of
MPoly(n) and forget about whether or not the ring was nice.

10.3 Polynomial division

Next in line is the following task: given a polynomial f ∈ R[x] and a monic polyno-
mial g ∈ R[x] that satisfy max{deg f , deg g} ≤ n, find polynomials q, r ∈ R[x] such
that f = qg + r and either r = 0, or deg r < deg g.

We aim to do this by performing Õ(MPoly(n)) many ring operations. To
this end, we make the following observation. Given polynomial f ∈ R[x], where
f (x) = a0 + a1x +⋯+ anxn and an ≠ 0, we write rev(f) ∈ R[x] for the polynomial

rev(f)(x) = an + an−1x +⋯+ a0xn

Formally, rev(f)(x) = xdeg f f (1
x). We’ll drop the (x) and just write rev(f) for

brevity. Suppose that q, r ∈ R[x] are such that f = qg + r, where either r = 0, or
deg r < deg g; then the definition of rev(f) implies

rev(f) = rev(q)rev(g)+ xdeg f−deg rrev(r).

Observe that if we work modulo xdeg f−deg g+1 (in other words, in the quotient
ring R[x]/(xdeg f−deg g+1)), we have rev(f) = rev(q)rev(g) mod xdeg f−deg g+1 as
deg f −deg r ≥ deg f −deg g + 1.

Let ` = deg f − deg g + 1. Now for some reason, if we could find an inverse
of rev(g), i.e. a polynomial h ∈ R[x] such that h ⋅ revg ≡ 1 mod x`. Then, we can
write rev(q) = h ⋅ rev(f) mod x`. Since we know that deg(q) < `, this allows us
to obtain q from q mod x` completely in O(MPoly(n)) time.

Computing the inverse of rev(g)

Our task now is to therefore find an inverse of rev(g). Why should such an inverse
even exist? And why did we do all this reverses in the first place? The key point
is that because g was monic (that is, its leading coefficient was 1), we now have
rev(g)’s constant term to be 1. Fortunately, such polynomials can be inverted*
modulo x`. Keep in mind the example (1− x)−1 = 1+ x + x2 +⋯+ x99 mod x100. *Indeed, it is

straightforward to
check that, in any
commutative ring R
(with identity), an
element 1 + a ∈ R
is unit if a ∈ R is
nilpotent (i.e ak

= 0
for some positive
integer k).

It follows that an efficient algorithm to find rev(g)−1 ∈ R[x]/(xD), where
g ∈ R[x] is monic and D > deg g is an arbitrary positive integer, would lead to
an efficient “euclidean algorithm” in R[x]. To this end, we find a sequence of
polynomials h1,⋯, hl ,⋯ in R[x]/(xD) such that rev(g)h1 ≡ 1 mod x, and

rev(g)hi ≡ 1 mod xl ⇒ rev(g)hi+1 ≡ 1 mod x2l∗

Notice that h1 = 1 works, since rev(g) = 1+ xh for some h ∈ R[x]. It now seems *-This is a special
case of a general
principle of Hensel,
which specifies the
recipie to obtain
a factorization of
an object, given
a factorization of
certain reduction of
it.

61

10. Basic operations on polynomials

reasonable to try using induction. Having determined hi ∈ R[x] such that ghi =

0 mod xl , let us try hi+1 = hi + axl for some a ∈ R[x]; writing rev(g) ≡ g0 + g1xl

mod x2l (with deg g0 < l), one obtains g0hi ≡ rev(g)hi − g1hixl ≡ 1 mod xl , and
hence

rev(g)hi+1 ≡ (g0 + g1xl)(hi + axl) mod x2l

≡ g0hi + xl(g1hi + ag0) mod x2l

≡ 1+ xl(c + ag0 + g1hi) mod x2l (∗)

for some c ∈ R[x]. Finally, from (∗), it follows that if a ∈ R[x] is such that we
have c + ag0 + g1hl ≡ 0 mod xl , then hi+1 ∶= hi + axl would satisfy the required
property. Letting a ∶= −hi(g1hi + c), we get

c + ag0 + g1hi ≡ c − g0hi(g1hi + c)+ g1hi ≡ 0 mod xl

which shows that hi+1 ∶= hi(1 − g1hixl − cxl) has the required property. Notice
that, for each integer i > 1, finding hi ∈ R[x]/(xD) requires MPoly(D)-order ring
operations to be performed. And hi = hi+1 = ⋯ if i > log D.

Going back to our “Euclidean algorithm” in R[x], notice that Hensel lifting
techniques allow us to determine q ∈ R[x] in MPoly(n), as needed. Once we
have that, we can determine r as well.

10.4 Multi-point evaluations

Our next task is the following: Given polynomial f ∈ R[x] with deg f ≤ n, and
points α1,⋯, αn, compute f (α1),⋯, f (αn).

Here is the strategy. Suppose we can find polynomials f1 and f2 of degree at
most n/2 such that

f (αi) =

⎧⎪⎪
⎨
⎪⎪⎩

f1(αi) if i ≤ n/2
f2(αi) if i > n/2

,

then we can recursively call the multipoint evaluations on these two polynomials.
A natural choice for f1 and f2 are just

f1 ≡ f mod ∏i≤n/2(x − αi) and f2 ≡ f mod ∏i>n/2(x − αi) and clearly we
have deg f1, deg f2 ≤ n/2, we can apply recursion to solve the problem if we can
compute f1 and f2 efficiently. For that, we need to first compute∏i≤n/2(x − αi)

and ∏i>n/2(x − αi) (and these polynomials then yield the polynomials f1, f2
as respective remainders of f). It is easy to see that grouping the factors into
pairs and successively multiplying them in a binary-tree-like fashion takes time
O(MPoly(n) log n). Therefore, the total time for the recursive algorithm is

T(n) = 2T(n/2)+O(MPoly(n) log n) = O(MPoly(n) log2 n).

62

11. Factorizing univariate polynomials over finite fields

11 Factorizing univariate polynomials over finite fields

From now on, we shall be looking at the task of factorizing univariate polynomi-
als over finite fields.
Remark 11.1. The input would be a polynomial f ∈ Fq[x] where say q = pr. How is the
field given as input? We are assuming that the field Fq is provided via Fq =

Fp[y]
⟨g(y)⟩ where

g is an irreducible polynomial in Fp[y] of degree r. So, we shall always be assuming
that the irreducible polynomial g(y) ∈ Fp[y] is provided to us.

Once this is provided, it is easy to check that all operations in Fq can be performed
in poly(log q) time. ◊

We will need a few preliminaries operations first and we address them first.

11.1 Computing the GCD

Next we look at the GCD computation. Suppose that F is a finite field, and
f , g ∈ F[x] are polynomials of degree bound n. We start with the following
elementary lemma.

Lemma 11.2. gcd(f , g) = d if and only if there are p1, p2 ∈ F[x] such that d =

p1 f + p2g. Furthermore, given f , g ∈ F[x] with deg f , deg g ≤ n, we can find gcd(f , g)
in poly(n) many F-operations.

Proof. Recall that gcd(f , g) = gcd(g, r), where f = qg + r1 with r1 = 0 or deg r1 <

deg g. In fact, if d ∣ f , g, then d ∣ r1 since r1 = f − qg; this implies that gcd(f , g) ∣

g, r1 and therefore, gcd(f , g) ≤ gcd(g, r1); on the other hand, if d ∣ r1, g, then d ∣ f
too, and hence, gcd(g, r1) ≤ gcd(f , g).

Algorithm 24: GCD
Input :polynomial f , g ∈ F[x] of degree at most n
Output :gcd(f , g)

1 if g = 0 then
// Base case

2 return f

3 else
4 Compute r = f mod g.
5 Return GCD(g, r).

Since the degrees of the recursive calls are dropping, the algorithm terminates
in poly(n) steps.

In fact, the algorithm even gives the following. We’ll leave it to the reader to
figure out why this is the case.

Lemma 11.3. For any f , g ∈ Fq[x], there exists polynomials a, b ∈ Fq[x] such that

a f + bg = gcd(f , g).

Furthermore, these polynomials a and b can be found in poly(n, log q) time where
deg f , deg g ≤ n.

63

11. Factorizing univariate polynomials over finite fields

11.2 Handling repeated factors

Say f = ge1
1 ⋯ger

r is the factorization of g into irreducibles, where each ei ≥ 1, the
square-free part of f , denoted by SquareFree f , is given by SquareFree f = g1⋯gr.
Given an n-variate polynomial f , how do we compute the square-free part of f ?
The idea is to use derivatives.

Define the linear map D ∶ Fq[x]→ Fq[x] via D(xi) = ixi−1 for all monomials,
and extending linearly. The following properties are easy to verify.

1. D is a linear operator. That is, D(a f + bg) = aD(f)+ bD(g) if a, b ∈ Fq.

2. D(f g) = f ⋅D(g)+ g ⋅D(f).

3. D(f e) = e f e−1D(f).

Lemma 11.4. Let f ∈ Fq[x] and suppose g is an irreducible polynomial such that ge ∣ f .
Then, ge−1 ∣ D(f).

Proof. Say f = geh, we have D(f) = ege−1hD(g)+ geD(h).

Therefore, a natural way to remove repeated factors is to repeatedly compute
f /gcd(f , D(f)). The only issue though is that it may be the case that D(f) = 0.
It is a simple exercise to see why this might happen over a finite field, and what
we can do about it.

11.3 Some field properties, and Distinct Degree Factorization (DDF)

The first step in most factorization procedures is to collect all degree 1 factors,
degree 2 factors etc. and then factorize each such block separately. We would
need a properties about fields before we can get there.

Lemma 11.5. xpr
− x ∣ xps

− x if and only if r ∣ s.

Proof. Suppose r ∣ s; then s = rt for some integer t > 0; this implies ps − 1 =

prt − 1 = (pr − 1)(prt−r +⋯+ 1) = b(pr − 1), say. Hence,

xps
− x = x(xps

−1 − 1) = x(xb(pr
−1) − 1) = x(xpr

−1 − 1)a(x)

for some polynomial a(x). Conversely, suppose that r ∤ s. By Euclidean property
of the integers, there exist a, b ∈ N such that s = ar + b with 0 < b < r. Now

ps − 1 = par+b − 1 = pb(par − 1)+ (pb − 1) ≡ pb − 1 mod pr − 1

implies that pr − 1 ∤ ps − 1. Let z = pr − 1; again, there are integers 0 < qz, rz such
that ps − 1 = qzz + rz and rz < z. We now have

xps
−1 − 1 = xqzz+rz − 1

= xrz(xqzz − 1)+ (xrz − 1) ≡ xrz − 1 mod xz − 1

and since rz < z, this shows that xps
−1 − 1 /≡ 0 mod xpr

−1 − 1.

Corollary 11.6. Fpr ⊆ Fps if and only if r ∣ s.

64

11. Factorizing univariate polynomials over finite fields

Lemma 11.7.

xps
− x = ∏

µ irred. over Fp
deg(µ)∣s

µ(x)

Proof. Observe that xps
− x = ∏α∈Fps (x − α). Every such α ∈ Fps satisfies some

monic irreducible polynomial of degree r ∣ s (as Fp(α) is a subfield of Fps).
Therefore, each (x − α) must divide some µr(x) on the right and hence LHS
divides the RHS.

For the reverse divisibility, it suffices to show that every monic irreducible
polynomial µ(x) ∈ Fp[x], with deg µ ∣ s, divides xps

− 1. Let µ(x) ∈ Fp[x] be a
monic irreducible polynomial with deg µ ∣ s. Then the field Fp[x]/(µ) ≅ Fpdeg µ

is contained in Fps . This implies that there is some α ∈ Fps that is a root of
µ(x) and hence (x − α) ∣ gcd(µ(x), xps

− x). In particular, the polynomial d(x) ∶=
gcd(µ(x), xps

− x) ∈ Fp[x] has positive degree. Since µ(x) ∈ Fp[x] is irreducible
this forces d(x) = µ(x). Hence µ(x) ∣ xps

− x in Fp[x].

Distinct Degree Factorization

Given f ∈ Fq[x], can we find f1,⋯, fn such that f = f1⋯ fn and fi is just the
product of all irreducible factors of f of degree exactly i? We will show that this
can be done in poly(n) field operations, and hence in poly(n, log q) time.

Let us assume that f ∈ Fq[x] has no repeated factor. It is immediate from the
last lemma that f1 = gcd(xq − x, f). In general,

gcd(xqi
− x, f) =∏

j∣i
f j.

Therefore, our task will be accomplished if we can efficiently compute gcd(xqi
−

x, gi(x)). To this end, we observe that

xqi
mod f ≡ (xqi−1

mod f)q mod f .

Therefore, if we could efficiently compute xqi−1
mod f , then exponentiation by

squaring would produce xqi
mod f efficiently.

65

11. Factorizing univariate polynomials over finite fields

Algorithm 25: Distinct Degree Factorization
Input :polynomial f ∈ F[x] of degree at most n with no repeated factors.
Output : f = f1⋯ fn where fi is the product of irreducible factors of f of

degree i.

1 g0 = x = xq0
mod f

2 for i = 1,⋯n do
// To obtain gi = xqi

mod f

3 Compute g2i

i−1 mod f for every i = 0,⋯, log q using repeated squaring,
and thus compute gi = gq

i−1 mod f .
4 Set fi = gcd(f , gi − x).
5 Set f = f / fi.
6 return { f1,⋯, fn}.

The factorization algorithms
Lecture 15:
March 20th, 2017 We now move on to the actual task of factorizing univariate polynomials. In

this section, we shall be looking at two algorithms for factorizing univariate
polynomials over finite fields:

• Cantor-Zassenhaus
A randomized algorithm that factors an n degree univariate polynomial
over Fq (q = pr) in time polynomial in n and log q.

• Berlekamp
A deterministic algorithm that factors an n degree univariate polynomial
over Fq (q = pr) in time polynomial in n, p and log q.

Both of these algorithms use the Chinese Remainder Theorem, so called
because the earliest known statement of such a theorem is by Sunzi in his 3rd
century book Sunzi Suanjing (The Mathematical Classic of Master Sun):

There are certain things whose number is unknown. If we count
them by threes, we have two left over; by fives, we have three left
over; and by sevens, two are left over. How many things are there?

11.4 The Chinese Remainder Theorem

The classic Chinese Remainder Theorem for integers says that if a set of num-
bers {n1, n2, . . . , nr} are pairwise co-prime, then for any setting of the mod-
uli {a1, a2, . . . , ar}, there is a unique solution in {0, . . . ,∏ni − 1]} to the set of
constraints xi = ai mod ni. In fact the map x ↦ (x mod n1, . . . , x mod nr) is an
isomorphism between Z

⟨∏ ni⟩
and Z

⟨n1⟩
×⋯× Z

⟨nr⟩
.

For rings, we have the following setup: Let R be a commutative ring with an
identity element. We say ideals I, J are coprime if ∃a ∈ I, b ∈ J st a + b = 1. We have
the following Chinese Remainder Theorem:

66

11. Factorizing univariate polynomials over finite fields

Theorem 11.8. If a set of ideals {I1, I2, . . . , Ir} that are pairwise coprime, then

R
∩Ii

≅
R
I1
×⋯×

R
Ir

with the map Φ ∶ a ↦ (a mod I1, . . . , a mod Ir). We proved a weaker
statement in class
though.Proof. It is easy to see that Φ′ ∶ R → R

I1
×⋯× R

Ir
via a ↦ (a mod I1,⋯, a mod Ir) is

a homomorphism, so we will not explicitly show it here. It suffices to show that
Φ′ is surjective as it is clear that the kernel is precisely ⋂ Ij.

We begin with the case when r = 2. Since I1 and I2 are coprime, ∃a ∈ I1, b ∈ I2
such that a + b = 1. Note that a mod I1 = b mod I2 = 0 and hence Φ′(a) =

(0, 1), Φ′(b) = (1, 0). Therefore, Φ′(r1a + r2b) = (r1, r2) and so Φ′ is surjective.
For the general case, it suffices to show that there is some element in a ∈ R

that a mod I1 = 1 but a mod Ij = 0 for all j ≠ 1. For each j ≠ 1, since I1 and Ij are
coprime, we have elements aj ∈ I1 and bj ∈ Ij such that aj + bj = 1. Then,

1 =
r
∏
j=2

(aj + bj)

= b2⋯br + (sum of terms involving at least one aj)

= b2⋯br mod I1

Hence if a =∏r
j=2 bj, then this satisfies our requirements.

Relevance to Factoring

Let R = Fq[x]. Say we have a polynomial f ∈ R that we want to factorize. The
factorization of f into irreducible polynomials is, say, f = g1g2⋯gr. If f does not
have repeated roots, then using the Chinese Remainder Theorem, we can write
any element in R

⟨ f ⟩ as an element in R
g1
×⋯× R

gr
. Let us call this representation

the Chinese representation. We make the following important observation:
Let h ∈ R

⟨ f ⟩ . Note that h has a 0 in coordinate i of its Chinese representation
iff h is a multiple of gi. So gcd(f , h) is non-trivial iff h(≠ 0) has a 0 in its Chinese
representation. We call such an h a non-trivial zero divisor since such elements
and only such elements (apart from 0) can be multiplied with a non-zero element
to get zero.

11.5 The Cantor-Zassenhaus Algorithm

The Cantor-Zassenhaus algorithm is a randomized algorithm that factorizes a
univariate polynomial f ∈ Fq[x] (q = pr) in time poly(n, log q).

The algorithm starts with the following setup: We use the tricks we’ve seen
to reduce the polynomial that we want to factor into a polynomial with no
repeated roots, and then do distinct degree factorization. Now we’re left with
polynomials, each of which is such that all its irreducible factors are of the same
degree. We now proceed to factor one of these polynomials, let’s call it f . Let

67

11. Factorizing univariate polynomials over finite fields

f = g1g2⋯gr, with the degree of each gi being t. By Theorem 11.8,

R
⟨ f ⟩

≅
R

⟨g1⟩
×⋯×

R
⟨gr⟩

≅ Fqt ×⋯×Fqt ,

since each gi is irreducible and of degree t.
We first deal with the case where q is odd: Let h ∈ R

⟨ f ⟩ . Let (h1, . . . , hr) be
the Chinese representation of h. It’s clear from the Chinese representation that
hqt

= h. If h is not a zero divisor, hqt
−1 = 1, which in Chinese is (1, 1, . . . , 1).

Therefore h
qt
−1
2 has each component either 1 or −1. If it is not all 1 or all −1,

then h
qt
−1
2 − 1 will be a non-trivial zero divisor. To find such an h, we have the

following claim:

Claim 11.9. Let h be an element chosen uniformly at random from the elements that

are not zero divisors. Let h′ = h
qt
−1
2 . Then ∀i Pr[h′i = 1] = 1

2 .

Proof. Recall that F×
qt is a cyclic group. Let η be its generator. If hi is an even

power of a, then h′i is a power of ηqt
−1 = 1. If hi is not an even power of η, then h′i

is not a power of 1 and hence must be −1.

We complete the odd q case by compiling the above into Algorithm 26.
Since zero divisors are exactly those which have a non-constant gcd with f ,
our claim above states that the repeat loop runs at most twice in expectation.
Hence the total number of times that the repeat loop runs across all recursive
calls is less than 2n/t in expectation. Within the loop, computing gcd(f , h′) is
computed by computing gcd(f , h′ mod f), where h′ mod f is computed by
repeated squaring and taking moduli. h′ itself is never computed. Hence the
whole algorithm runs in polynomial time in n and log q.

68

11. Factorizing univariate polynomials over finite fields

Algorithm 26: UnidegFactors when the field is of odd size
Input :a square-free polynomial f ∈ Fq[x] (of degree n), t
Output :The factorization of f , assuming all its irreducible factors have

degree t

1 if deg(f) = t then
2 return { f}

3 repeat
4 Sample a non-zero polynomial h of degree ≤ n − 1 uniformly at

random.
5 if gcd(f , h) is non-constant then
6 return

UnidegFactors(gcd(f , h), t)∪UnidegFactors(f /gcd(f , h), t)

7 Let h′ = h
qt
−1
2 − 1

8 if gcd(f , h′) is non-constant then
9 return

UnidegFactors(gcd(f , h′), t)∪UnidegFactors(f /gcd(f , h′), t)

10 until Forever

In the case where q is even, we can no longer talk of h
qt
−1
2 . So let q = 2r. We

look at an operation called trace: Tr ∶ Fqt → F2, is defined as Tr(x) = x + x2 +

x22
+⋯+ x2rt−1

. Just from this definition, it isn’t clear as to why Tr(x) ∈ F2 but
turns out it is. Trace is in fact a linear map from a bigger field such as Fqt to a
subfield such as F2 and can be easily seen to satisfyTr(x)(Tr(x)+ 1) = x2rt

+ x.
Since xqt

+ x has every element of Fqt as roots and Tr(x) and Tr(x)+ 1 are both
qt/2 degree polynomials, both Tr(x) and Tr(x)+ 1 must each have half of Fqt as
their roots. This preemptively proves the following claim:

Claim 11.10. Let h be an element chosen uniformly at random from ≤ deg(f) − 1
degree polynomials. Let h′ = h + h2 + h22

+⋯+ h2rt−1
. Then ∀i Pr[h′i = 0] = 1

2 .

Again it follows that the probability that h′ is a non-trivial zero divisor is at
least 1

2 . Note that h′ mod f and hence gcd(h′, f) can be computed in poly(n, log q)
time using repeated squaring tricks. This algorithm for factoring over an even
sized field is summarized in Algorithm 27.

69

11. Factorizing univariate polynomials over finite fields

Algorithm 27: UnidegFactors when the field is of even size
Input :a square-free polynomial f ∈ Fq[x] (of degree n), t
Output :The factorization of f , assuming all its irreducible factors have

degree t

1 if deg(f) = t then
2 return { f}

3 repeat
4 Sample a non-zero polynomial h of degree ≤ n − 1 uniformly at

random.
5 Let h′ be h + h2 + h22

+⋯+ h2rt−1

6 if gcd(f , h′) is non-constant then
7 return

UnidegFactors(gcd(f , h′), t)∪UnidegFactors(f /gcd(f , h′), t)

8 until Forever

For completeness, the overall algorithm is given in Algorithm 28.

Algorithm 28: RandUnivariateFactoring, Cantor-Zassenhaus
Input : f ∈ Fq[x] (of degree n)
Output :The factorization of f

// Remove repeated roots

1 Compute f ′ = SquareFree f .
// Factorize f ′ based on the degree of its irreducibles

2 f1, f2,⋯, fn = DistinctDegreeFactorize(f ′)

3 Factors← RandUnivariateFactoring(f ′′)
4 for i ∈ [n] do
5 Append UnidegFactors(fi, i) to Factors

// For each factor, one can also find their multiplicity by

repeatedly dividing f with them

6 return Factors

11.6 Berlekamp’s Algorithm

Berlekamp’s algorithm deterministically factorizes a univariate polynomial f ∈
Fq[x] (where q = pr) in time poly(n, p, log q).

The crux of the algorithm is the following observation:

Claim 11.11. Given f , h ∈ Fq[x] with 1 ≤ deg(h) < deg(f) such that f ∣ hp − h, we
can find a non-trivial factor of f in poly(n, p, log q) time.

Proof. As we’ve seen before, hp − h factors as ∏α∈Fp(h − α). All the factors of f
are factors of hp − h. Hence all the factors of f are contained in the factors of the
(h − α)s. Since deg(h − α) < deg(f), by going through all gcd(f , h − α), we get a
decomposition of f into non-trivial factors.

70

11. Factorizing univariate polynomials over finite fields

To see why a non-constant h ought to exist when f is reducible and does not
have repeated roots let us ask ourselves what is the Chinese representation of any h
that satisfies hp − h ≡ 0 mod f ? If the Chinese representation of h was (h1, . . . , hr),
then the Chinese representation of hp − h is just (hp

1 − h1, . . . , hp
r − hr) and this

would be zero if and only if each hp
i − hi = 0. In other words, each hi ∈ Fp. Thus,

any element h whose chinese representation is in Fr
p is a polynomial such that

hp − h = 0. This would be non-constant if not all the coordinates are the same.
Such an h is of course present as long as the chinese representation has at least
two coordinates which just means that f is reducible.

Now comes the task of finding such a h. Consider the following map T ∶
Fq[x]
⟨ f ⟩ →

Fq[x]
⟨ f ⟩ be defined as T(h) = hp − h. We are a looking for a non-constant

polynomial h ∈ ker(T).
An observation here is that T satisfies T(h + g) = T(h) + T(g). Hence it is

a linear operator, ... or is it? Unfortunately, if α ∈ Fq, then T(αh) = αphp − αh
which doesn’t seem to be equal to αT(h). However, if α ∈ Fp, then of course
T(αh) = αT(h). Hence, T is a linear operator over Fp. So let us write Fq

⟨ f ⟩ as a
vector space over Fp and then look at the map T.

Our field Fq =
Fp[y]
⟨g⟩ where g is some irreducible polynomial of degree r

(Remark 11.1). Thus, elements of a ∈ Fq are of the form a(0)+ a(1)y+⋯+ a(r−1)yr−1

where each a(i) ∈ Fp. We shall look at Fq[x]
⟨ f ⟩ as a Fp-vector space with basis

{xiyj ∶ 0 ≤ i ≤ n − 1 , 0 ≤ j ≤ r − 1} .

by writing any h ∈
Fq[x]
⟨ f ⟩ as

h =
n−1
∑
i=0

r−1
∑
j=0

h(j)
i xiyj , where each h(j)

i ∈ Fp.

Thus, the operator T can be expressed as a matrix in Fnr×nr
p , and all this takes

poly(n, log q) time. What we want is the kernel of this matrix and computing a
basis for its kernel just takes a Gaussian elimination4, so in poly(n, log q) time. If
f is square-free and reducible, the basis must include a non-constant polynomial;
we take one of them as our h.

The complete algorithm is given in Algorithm 29.
4How this is done is nicely explained over here.

71

http://math.stackexchange.com/questions/1056478/finding-a-basis-for-kernel-and-image-of-a-linear-transformation-using-gaussian-e

12. Factorizing Bivariate Polynomials over Finite Fields

Algorithm 29: DetUnivariateFactoring, Berlekamp
Input : f ∈ Fq[x] (of degree n)
Output :The factorization of f

// Remove repeated roots

1 f ′ = f /gcd(f , D(f))
2 Let T ∶ x ↦ xp − x mod f ′

3 Compute T(xiyj) to get the matrix representation for T as a linear operator
over Fp

4 Compute a basis for the kernel of T via Gaussian Elimination
5 if there is a non-constant polynomial h in the basis then
6 for α ∈ Fp do
7 if gcd(f ′, h − α) is non-constant then
8 return DetUnivariateFactoring(gcd(f ′, h − α))∪

DetUnivariateFactoring(f /gcd(f ′, h − α))

// If we ever get here, then f ′ must be irreducible.

// One can find multiplicity by repeatedly dividing f by f ′.
9 return { f ′}

12 Factorizing Bivariate Polynomials over Finite Fields
Lecture 16:
March 24th, 2016 Now, we want to look at the task of factorizing bivariate polynomials over finite

fields. So given f ∈ Fq[x, y] with degx(f), degy(f) ≤ n, we want to find its factors
in randomized poly(n, log q) time.

We first give an outline of what we want the algorithm to look like and then
see how we can do each of the steps. Let the input be f ∈ Fq[x, y].

1. Pre-processing: We pre-process f so that we may assume, without loss of
generality, that f satisfying the following: What we shall do is

change f to a dif-
ferent f̃ that satis-
fies these properties,
such that getting the
factors of f̃ is as
good as getting the
factors of f .

(a) f ∈ F[x, y] ≡ (F[y])[x] is monic in x

(b) f (x, y) is square-free.
(c) f (x, 0) is square-free

2. Factorise f (x, 0), that is, find g0, h0 such that f = g0h0 mod ⟨y⟩. If f (x, 0)
is irreducible, then output Irreducible.

72

12. Factorizing Bivariate Polynomials over Finite Fields

3. Use Hensel Lifting to find gi, hi such that

f = g1 ⋅ h1 mod ⟨y2⟩

f = g2 ⋅ h2 mod ⟨y22
⟩

⋮

f = gi ⋅ hi mod ⟨y2i
⟩

⋮

f = gk ⋅ hk mod ⟨y2k
⟩ till 2k > 2n2

4. Recover if possible a factor of f from gk. In the recovery step, we solve for
f̃ and ˜̀ in

f̃ = gk ⋅ ˜̀ mod ⟨y2k
⟩

such that degx(f̃) < n, degy(f̃) ≤ n. If a solution (f̃ , ˜̀) exists, then any such
f̃ would have a non-trivial gcd with f . If no such solution exists, output
Irreducible.

Before going in to the details of the algorithm, we look at some prerequisites.

12.1 Hensel Lifting

Hensel lifting is a way of getting “better and better” approximate factorizations.

Theorem 12.1 (Hensel Lifting). Let R be a commutative ring R and let I be an ideal
in R. Suppose have elements f , g, h ∈ R such that:

f = g ⋅ h mod I

∃a, b ∶ ag + bh = 1 mod I.

Then, we have

• (Better factorization) There are elements g̃ and h̃ such that

f = g̃ ⋅ h̃ mod I2,

for which,

• (Lifts of previous solutions)

g̃ = g mod I

h̃ = h mod I.

• (Uniqueness) Furthemore, any other g′, h′ satisfying the above properties, there
must be a u ∈ I such that f ′ = f̃ ⋅ (1+ u) and g′ = g̃ ⋅ (1− u).

73

12. Factorizing Bivariate Polynomials over Finite Fields

Proof. Suppose, f = gh + q where q ∈ I and ag + bh = 1+ r where r ∈ I. Then, for
g1 = bq, h1 = aq ∈ I; if we take g̃ = g + g1 and h̃ = h + h1, we have

• g̃ = g mod I

• h̃ = h mod I

Further,

g̃h̃ = gh + gh1 + hg1 + h1g1

= f − q + gh1 + hg1 + h!g1

= f − q + q(1+ r)+ h1g1

= f mod I2

and

ag̃ + bh̃ = ag + bh + ag1 + bh1 where ag + bh = 1 mod I and ag1 + bh1 ∈ I

= 1+ r′′ for some r′′ ∈ I

Now if we take ã = a(1− r′′) and b̃ = b(1− r′′), we get

ãg̃ + b̃h̃ = (1− r′′)(ag̃ + bh̃) = (1− r′′2) = 1 mod I2

Finally one can also check that if (g′, h′) is another solution, then g′ = g̃(1+u)
and h′ = h̃(1− u) for some u ∈ I. We leave this as an easy exercise.

Everything in the above theorem is effective — it gives a procedure to get a
better approximation.

In our setting, I = ⟨y⟩ and R = Fq[x, y]. Then, given a square-free factorization
f = g0h0 mod ⟨y⟩, we can lift this to a factorization f = g1h1 mod ⟨y2⟩. Even g1
and h1 satisfy the hypothesis of the Hensel Lifting and hence can lift it again.

12.2 Bivariates as univariates over the fraction field

We’ll soon be looking at computing gcds of bivariate polynomials. In the uni-
variate case, we used Euclid’s algorithm, which is based on the fact that for
f , g ∈ F[x], gcd(f , g) = gcd(g, f mod g). How are we to perform Euclid’s algo-
rithm over rings such as Fq[x, y]?

The idea is to view the elements of F[x, y] as elements of (F[y])[x]. That is,
view each bivariate polynomial as a univariate polynomial in x with coefficients
being polynomials in y. However, to apply Euclid’s algorithm, we would have to
divide the coefficients etc. Hence, we will view these as elements in (F(y))[x] in-
stead of the more usual (F[y])[x] – univariate polynomials in x with coefficients
being rational function entries in y.

However, there are still two things we need to check:

1. Why is gcd(f , g) in F(y)[x] same as that in F[x, y]? Is divisibility in
F(y)[x] the same as divisibility in F[x][y]?

2. How does one compute the gcd of of bivariates?

74

12. Factorizing Bivariate Polynomials over Finite Fields

The second question will be part of the problem set. However the first question
can be answered using:

Theorem 12.2 (Gauss’ Lemma). Let R be a UFD with field of fractions F and let
f (x) ∈ R[x]. If f is reducible over F[x] then it is reducible over R[x].

The content of a poly-
nomial is the gcd of
the coefficients of the
polynomial

Proof. We prove a special case for R = Z and F = Q. So let f ∈ Z[x] and without
loss of generality, let the content of f be 1. Now, if for g, h ∈ Q[x], we can clear
all the denominators, and remove common factors to write

f = g(x) ⋅ h(x) =
m
n
⋅G(x)H(x)

where m, n ∈ Z, G, H ∈ Z[x] and the contents of G and H are both 1. Thus,

n ⋅ f = m ⋅G(x)H(x)

with the content of the left hand side being n. Is it possible that the content of
G(x)H(x) is not 1? Suppose not. Then, there is a prime p which divides the
content of G(x)H(x). Since the contents of G and H are both 1, there must be
some coefficient of G and some coefficient of H which are not divisible by p. Let
i, j be the highest degree of x in G, H respectively for which the coefficients are
not divisible by p. Then it is easy to see the the coefficient of xi+j in G(x)H(x) is
not divisible by p, which is a contradiction.

Thus, the content of G(x)H(x) is 1 and hence n = ±m which gives us a
factorisation of f in Z[x].

In our case, R = F[y] and F = F(y) and so Gauss’ Lemma gives us that if f
is reducible over F(y)[x], then it is reducible over F[y][x]. Further the proof
ensures that the gcd in F[x, y] and that in (F(y))[x] differs only by a unit in
F(y) which can be found.

12.3 The Resultant

Let R be a UFD (in our case, R = Fq[y]) and let F = Frac(R) (which in our case is
Fq(y)).

Suppose f , g ∈ R[x] with deg(f) = d1 and deg(g) = d2. Consider the linear
map T ∶ Fd2(≡ F[x]deg≤d2)× Fd1(≡ F[x]deg≤d1

)→ Fd1×d2(≡ F[x]deg≤d1+d2) defined
by T(a, b) = a f + bg.

Claim 12.3. T has a non-trivial kernel if and only if f and g have a non-constant (i.e.,
not an element of F) common factor.

Proof. Firstly, if gcd(f , g) ≠ 1, then f = f ′` and g = g′` for some f ′ and g′ with
0 < deg(f ′) < d1, 0 < deg(g′) < d2. Thus, a = −g′, b = f ′ is a non-trivial solution
to T(a, b) = 0 proving that T has a non-trivial kernel.

Conversely, suppose gcd(f , g) = 1. Then, ∃a, b ∈ F[x] s.t. a f + bg = 1 (recall
that R[x] is also a UFD). Now suppose ∃(a′, b′) ∈ F[x]deg≤d2 × F[x]deg≤d1

such
that T(a′, b′) = 0. Then,

a′ f + b′g = aa′ f + ab′g = a′(1− bg)+ ab′g = 0⇒ a′ = (ab′ − a′b)g

75

12. Factorizing Bivariate Polynomials over Finite Fields

Now since deg(a′) < deg(g), the above calculation implies a′ = a′ mod g = 0.
Similarly, we can show that b′ = 0. Hence, ker(T) is trivial.

Next we define the Sylvester Matrix to be the matrix of the linear transforma-
tion T with respect to the basis {(xi, 0) ∶ 0 ≤ i < d2}∪ {(0, xj) ∶ 0 ≤ j < d1}.
This is a (d1 + d2)× (d1 + d2) matrix of the form:

S =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d2
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
f0

d1
³¹¹·¹¹µ
g0

f1 f0 g1 g0
f2 f1 ⋮ g1 ⋱

⋮ ⋮ ⋱ gd2 ⋮ ⋱ ⋱

fd1
fd1−1 ⋱ gd2 ⋱ ⋱

fd1
⋱ f0 ⋱ ⋱ g0
⋱ f1 ⋱ ⋱ g1
⋱ ⋮ ⋱

fd1
gd2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The resultant of f and g with respect to x is defined as Resx(f , g) = det(S).
Note that if f , g ∈ F[x, y] = (F[y])[x], then Resx(f , g) ∈ F[y].

Observation 12.4. If f , g ∈ F[x, y], then Resx(f , g) = 0 if and only if f and g share
a common factor h(x, y) with degx(h) ≥ 1.

Observation 12.5. If degy(f), degy(g) ≤ d, then degy(Resx(f , g)) ≤ 2d2.

Lemma 12.6. Resx(f , g) ∈ ⟨ f , g⟩ (i.e. ∃a, b ∈ F[x, y] s.t. Resx(f , g) = a f + bg

Proof. By applying the row transformation R1 ← R1 + xR2 + ⋅ ⋅ ⋅ + xd1+d2−1Rd1+d2 ,
we get a matrix that looks like:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f x f . . . xd2−1 f g xg . . . xd1−1g
∗

∗

⋮

∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Expanding along the first row, we get the required observation.
Lecture 17:
March 27th, 2016 Now we will see the algorithm for factorizing bivariates that we have been

building towards. As we saw earlier, the algorithm involves some preprocessing
steps to ensure that the input polynomial is in an appropriate form. We will first
see how to carry out each of the preprocessing steps and then see the algorithm
in detail. Later we will see how a factorization of the preprocessed polynomial
yields a factorization of the original polynomial.

For the purpose of understanding this algorithm, the input will be f ∈ Fq[x, y]
with degx f , degy f ≤ n.

76

12. Factorizing Bivariate Polynomials over Finite Fields

Preprocessing

• Make f square-free: This, as discussed before, can be achieved by dividing
f by gcd (f , ∂ f

∂x). Here we have to observe that gcd (f , ∂ f
∂x) being 1 does not

guarantee that f is square-free. In such a case we will then have to also
check for gcd (f , ∂ f

∂y). Again, as before, if the derivatives are zero (assuming
f ≠ 0), it means that f is in fact a polynomial in xp (or yp). For the next
steps the modified polynomial that is square-free, will be f .

• Ensure cont(f) = 1: Consider the polynomial f (x, y) as an element of (Fq[y])[x]
and just divide by the common factor of the coefficients (which are going
to be polynomials in y), if any.

• Extend Fq to Fqt : This will be achieved by picking a random polynomial of
degree t, which with good probability will be irreducible. This t is chosen
to be a prime that is strictly greater than 2n2. As the number 2n2 hints,
this should be something to do with making sure some resultant stays
non-zero.

Consider R(y) = Resx (f , ∂ f
∂x). We know that R(y) ≠ 0 as f is square-free.

Note that the degree of R(y) is at most 2n2. Therefore it can have at most
2n2 roots in Fqt . Let α be such that R(α) ≠ 0. Say, f̃ = f (x, y − α). It is easy
to see that a factorization of f̃ yields a factorisation of f . From here we will
assume f̃ to be our input, f.

• Make f monic in x:
Say f = f0 + f1x +⋯+ fnxn.
We will take f̃ = f (n−1)

n ⋅ f (x
fn

, y), which is now monic in x.

The f̃ in the final step is the polynomial which we will now assume to be
our input, f ∈ Fqt[x, y]. We will also refer to Fqt by F. Now f is monic in x, has
content 1, is square free and also has the property that f (x, 0) is square free. We
will now use Hensel Lifting to factorize such an f over F[y][x].

Factorization using Hensel lifting

• If we substitute y = 0 in f , or equivalently work in (mod y) world, then
we get a univariate polynomial in x. We will begin with a univariate fac-
torization in this setting.

f ≡ g0h0 mod y

≡ g0h0 mod y20

Note that we can ensure g0 to be irreducible and monic in x.

• We will use Hensel lifting here, to get to:

f ≡ gkhk mod y2k

77

12. Factorizing Bivariate Polynomials over Finite Fields

In general, such a solution for gk may not be monic. But recall that any
solution must be of the form gk(1± u) for some u ∈ ⟨y2k−1

⟩. By multiplying
by an appropriate (1− u), we can always ensure that gk is monic in x.
This lifting process is done enough steps, so that we have 2k > 2n2.

Let us now see how we can obtain factors for the preprocessed f from the
final decomposition obtained via Hensel lifting.

Reconstruction

So far, we have obtained a factorization

f ≡ gkhk mod y2k

and gk is monic in x and gk ≡ g0 mod y. Suppose f (x, y) was indeed reducible,
and say had f = f1 f2⋯ fr. When we work modulo ⟨y⟩, each of these fis could
have split further. Since g0 was a monic irreducible factor of f mod y, we must
have g0 dividing some fi mod y. Without loss of generality, let us assume that
g0 divided f1 mod y. We would now somehow like to get hold of f1s and this is
what the reconstruction step is trying to do.

Solve for f̃ , ˜̀ such that ∶
degx f̃ < degx f

degy f̃ ≤ degy f

f̃ = gk ˜̀ mod y2k

In order to prove correctness of this algorithm, we will now have to show
that:
(1) Such a f̃ exists for a reducible f , and
(2) Any solution f̃ can be used to get a non-trivial factor of f , i.e. gcd(f , f̃) ≠ 1

Claim 12.7. If f is reducible then f̃ exists.

Proof. Suppose f = f1 f2⋯ fr, with all fis irreducible. As mentioned earlier, g0
must divide some fi mod y and let us assume it is f1. Then we know that f1 ≡

g0`0 mod y, with g0 monic and irreducible.
We use Hensel lifting to get f1 ≡ g′k`

′
k mod y2k

; with gk monic.
Now, if we multiply both sides by f2⋯ fr, we get

f = f1⋯ fr

= g′k(`
′
k f2⋯ fr) mod y2k

= g′kh′k mod y2k

By the uniqueness of Hensel Lifting (Theorem 12.1), we get g′k = gk(1+ u) for Formally, one needs
to argue in an
inductive sense
that we start with
g′0 = g0 and that
in each subsequent
steps this equality
holds.

78

12. Factorizing Bivariate Polynomials over Finite Fields

some u ∈ ⟨y2k
⟩. But since both gk and g′k are monic in x, we must have u = 0

and therefore gk = g′k. This shows that f̃ = f1 is a valid solution to the system of
equations.

Claim 12.8. If f̃ is a possible solution in the reconstruction step, then gcd(f , f̃) ≠ 1.

Proof. Consider Resx(f , f̃) ∈ F[y]. Clearly, Resx(f , f̃) = R(y)(say) has degree
≤ 2n2 (Observation 12.5).

Say R(y) = a f + b f̃ mod y2k
, since R(y) ∈ ⟨ f , f̃ ⟩ (Lemma 12.6).

⇒ R(y) = agkhk + bgk ˜̀ mod y2k

⇒ R(y) = gk(ahk + b ˜̀) mod y2k

But the LHS is a polynomial in y alone, and the RHS is divisible by gk, which has
non-zero degree in x. The only way this is possible is if (ahk + b ˜̀) ≡ 0 (mod y2k

).
This means that R(y) ≡ 0 (mod y2k

).
But degree of R(y) ≤ 2n2 < 2k. Therefore R(y) = 0 even without the mod, and

hence gcd(f , f̃) ≠ 1.

Undoing the preprocessing

Now that we have a way to obtain a factorization of the preprocessed f , let us
see how to obtain the factorization of the original polynomial.

• The last preprocessing step was to make f monic by working with say
f ′ = f n−1

n ⋅ f (x
fn

, y).

Say we obtained factors of f ′ to be g′(x, y) and h′(x, y). Define g(x, y) =
g′(fnx, y) and h(x, y) = h′(fnx, y). Therefore, g(x, y)h(x, y) = f n−1

n ⋅ f (x, y).
Now we have that g(x,y)h(x,y)

f n−1
n

∈ F[x, y], which means that f n−1
n must split

between g(x, y) and h(x, y) to give some non-trivial factorization of f (x, y).
Since fn ∈ F[y], we can just compute the content of g(x, y) and h(x, y) and
divide by the appropriate power of fn.

• Before the above step, we had extended the field from Fq to Fqt . We chose
a prime t > 2n2 for this case.
The issue now is that polynomials that were irreducible in Fq might become
reducible over Fqt . We will now prove that with our constraints on t, a
factorization in the larger field does indeed yield a factorization in Fq.
Let us say f = gh in Fqt[x, y] if we could somehow show that such a g
divides f in Fq, we will be done. For this we will need to look at the
Frobenius map in a finite field.
Frobenius map σ is defined as, σ ∶ Fqt → Fq such that σ(a) = aq. This map
is extended to polynomials by applying it on every coefficient. Observe
that σ fixes all elements in Fq and that it is linear, since (a + b)q = aq + bq in
Fqt . Also, note that if g∣ f then σ(g)∣ f , as σ(f) = f since all the coefficients

79

12. Factorizing Bivariate Polynomials over Finite Fields

of f are from Fq.

Say we have f = g′1g′2⋯g′s in Fqt[x, y]. Therefore g′1, σ(g′1), σ2(g′1), . . . , σt(g′1)
are all factors of f over Fqt . Now σt(g′1) = g′1, since we are working in Fqt

and since σ already raises the coefficients to q. Suppose σi(g′1) = g′1 for
some i ≠ t, then i must divide t. But we chose t to be a prime and therefore
i = 1 or i = t.
If i = t then we will have t distinct factors for f , which is not possible since
the degree of f (at most 2n) is strictly smaller than t. Hence i = 1, which
means that g′1 has to be in Fq, which means our factorization is indeed a
factorization over Fq[x, y].

This finishes our argument. Let us now see the algorithm again in a more
compact form.

80

13. Factorizing polynomials in Z[x]

Algorithm 30: BivariateFactoring
Input : f ∈ Fq[x, y] (of degree n in x and y)
Output :A non-trivial factor of f if one exists, or Irreducible otherwise

// Preprocessing

1 Make f square free
2 Ensure that cont(f) = 1
3 Extend Fq to Fqt with a prime t s.t. t > 2n2

4 Find a non-root α ∈ Fqt of Resx(f , ∂ f
∂x) to go modulo (y − α) and remain

square free. Set f ← f (x, y − α)

5 Make f monic in x: Say f = ∑n
i=1 fixi with fn ≠ 0, then set

f ← f n−1
n ⋅ f (x

fn
, y))

// Hensel Lifting

6 Factorize f (x, 0) = g0h0 where g0(x) is irreducible and monic. If no such
factorization exists, return Irreducible.

7 Let k be chosen so that 2k > 2n2.
8 for i = 1,⋯, k − 1 do
9 From the factorization f = gihi mod y2i

where gi is monic in x, use
Hensel lifting to obtain

f = gi+1hi+1 mod y2i+1

where gi+1 is monic in x and gi+1 = gi mod y2i

// Reconstruction

10 Solve for f̃ and ˜̀ satisfying

f̃ = gk ˜̀ mod y2k

degx(f̃) < degx(f)

degy(f̃) ≤ degy(f)

degx(
˜̀) < degx(f)−degx(gk).

11 if no such solution exists then
12 return Irreducible.
13 else
14 Compute g = gcd(f , f̃), which would be a non-trivial factor of f . Say

f = g ⋅ h.
15 Undo the appropriate preprocessing steps to obtain a factor g′ for the

input polynomial. return g′.

81

13. Factorizing polynomials in Z[x]

13 Factorizing polynomials in Z[x]
Lecture 18:
March 31st, 2017 We shall now deal with factorizing univariate polynomials over integer coeffi-

cients. This would bear a lot of similarity with factorizing bivariate polynomials
over finite fields. This connection might seem mysterious but turns out there is
a good reason for it via a chain of prime ideal containments. Basically, we have

(0) ⊂ (p) ⊂ (p, x) ⊂ Z[x],

(0) ⊂ (y) ⊂ (y, x) ⊂ Fq[x, y],

as the largest chain of prime ideal containments. Even in the algorithm we shall
describe, we shall be choosing a prime p to play the role that y had in our bivari-
ate factorization.

The input is a polynomial f (x) ∈ Z[x]. Unlike earlier, the coefficients are
now integers which can potentially be unbounded so the input size will involve
the size of the coefficients also. Let us assume that each of the coefficient of f
have absolute value at most 2c (i.e., they are c-bit integers). The goal would be
to design an algorithm to compute a non-trivial factor (if any exists) in time
poly(n, c).

Size of factors of f (x)

But before we do this, suppose g(x) ∈ Z[x] is a factor of f , why should it even
be the case that the coefficients of g are small? Is it even reasonable to ask for
factorization? Fortunately, we do have a good bound.

Lemma 13.1 (Mignotte’s Bound). Let f ∈ Z[x] and say each of its coefficients is
bounded by 2c in absolute value. If g ∈ Z[x] is a factor of f , then each coefficient of g
is bounded by 2n ⋅ nn ⋅ 2cn in absolute value. That is, the coefficients of g are at most
O(n log n + cn) bits long.

Proof. Suppose α ∈ C is a complex root* of f , i.e. f (α) = 0, how large can ∣α∣ be? * - “Wait, why are
we going to complex
numbers now?” Pa-
tience.”

If f = a0 + a1x +⋯anxn, then we must have

∣an∣∣α
n∣ =

RRRRRRRRRRR

n−1
∑
i=0

αn−1ai

RRRRRRRRRRR

Ô⇒ ∣αn∣ ≤

RRRRRRRRRRR

n−1
∑
i=0

αn−1ai

RRRRRRRRRRR

≤ ∣α∣n−1 ⎛

⎝

n−1
∑
i=0

∣ai∣
⎞

⎠

This forces ∣α∣ ≤ n ⋅ 2c.
What was the connection with g? Note that the roots of g is just a subset of

the roots of f , and every coefficient of g is a symmetric polynomial in these roots
and they happen to be integers! Now how large can any symmetric polynomial
over these roots be? For a very crude bound, each symmetric polynomial is a
sum of at most 2n terms, each being a product of at most n of the roots of f .
Hence, every coefficient of g is at most 2n ⋅ (n ⋅ 2n)n.

82

13. Factorizing polynomials in Z[x]

This tells us that asking for the factors of f (x) is not unreasonable. We shall
now describe the sketch of the algorithm with a few missing parts that shall be
filled in shortly. We’ll give the full description at the end of this section.

Informal description of algorithm

1. Preprocessing step:

(a) Make f (x) square-free (by removing any gcd with its derivative).
(b) Make f (x) content-free (by removing any common factors across all

its coefficients).
(c) Find a prime p such that f mod p remains square free, and deg(f)

does not decrease when considered modulo p (that is, the leading
term does not vanish modulo p).

2. Base factorization and lifting:

(a) Factorize f (x) mod p as

f (x) = g0(x)h0(x) mod p

where g0(x) is a monic, irreducible polynomial, via Algorithm 28. If
there is no non-trivial factorization, output Irreducible.

(b) Do Hensel lifting for k steps (to be determined soon) to obtain

f (x) = gk(x)hk(x) mod p2k

where gk = g0 mod p, and gk is monic.

3. Reconstruction step:

(a) Solve for a polynomial f̃ with deg f̃ < n and each coefficient of f̃ being
small such that

f̃ = gk ⋅ ˜̀ mod p2k

(b) If no such solution f̃ exists, output Irreducible. Else, output gcd(f , f̃).

The parts that are marked in red need to be elaborated and we shall do the
easy steps first.

13.1 Finding a good prime

Suppose f was a square-free polynomial with its coefficients bounded by 2c.
Then clearly, the number of primes that divide the leading term is at most c.
These are primes that we cannot take. But there may be other bad primes that
f mod p non-square-free even though f is square-free. When can this happen?
Recall that f is square-free if and only if f has a non-trivial gcd with f ′. Thus, f
is square-free if and only if Resx(f , f ′) ≠ 0. Note that the resultant of univariate

83

13. Factorizing polynomials in Z[x]

polynomials over integers is also an integer (just a determinant of an integer
matrix). Hence, if we choose a prime that does not divide this resultant, we
would be done.

Lemma 13.2. Let f and g be integer polynomials of degree at most n that have coefficients
bounded by 2c. Then, ∣Resx(f , g)∣ ≤ (2n)! ⋅ 22cn.

Proof. The resultant of f and g is the determinant of a matrix of size at most
2n× 2n made up of entries bounded by 2c. Hence, its determinant can be at most
(2n)! ⋅ 22cn.

Corollary 13.3. There is a prime within the first (cn)2 integers that neither divides
Resx(f , f ′) nor the leading coefficient of f .

Proof. The number of primes that divide either the resultant or the leading
coefficient of f is at most O(cn+n log n). The first (cn)2 integers has more primes
than this.

Thus, we can just run through the first (cn)2 primes and choose a prime p
that works and proceed to the next steps.

13.2 How large should k be?

In the bivariate case, Resx(f , f̃) was a polynomial in y, and we chose our k so that
2k was bigger than the degree. Here, we just need to work with the magnitude
instead as the resultants here are just numbers.

But in order to get a bound on the size of Resx(f , f̃), we need a bound on
the coeffcients of f̃ . This is promised by the reconstruction step, though we do
not know what precisely “small” means there.

Lemma 13.4. Suppose we have an f̃ for whch there is some ˜̀ ∈ Z[x] such that f̃ to
f̃ = gk ˜̀ mod p2k

with deg f̃ < n and each coefficient of f̃ has absolute value at most 2r.
If p2k

> (2n)! ⋅ 22n(r+c), then gcd(f , f̃) ≠ 1.

Proof. Consided Resx(f , f̃). By Lemma 12.6, there must be polynomials a(x), b(x)
such that

Resx(f , f̃) = a f + b f̃

Ô⇒ Resx(f , f̃) = a f + b f̃ mod p2k

= agkhk + bgk ˜̀ mod p2k

= gk(ahk + b ˜̀) mod p2k
.

But the LHS is a number modulo p2k
but the RHS is a multiple by gk, which has

non-zero degree in x. Hence, this forces

Resx(f , f̃) = 0 mod p2k
.

84

13. Factorizing polynomials in Z[x]

But notice that we chose k so that p2k
is bigger than the larest possible value

of Resx(f , f̃). Hence, Resx(f , f̃) is zero even without the mod. Hence, f and f̃
must share a common factor.

And as seen earlier Claim 12.7, we know that a solution does indeed exist as
g0 must divide some honest-to-God factor of f , and that is a valid choice for f̃ .

What is left therefore is to see how to find a short vector f̃ that is divisible by
gk. This is where lattices come in.

13.3 Lattices

Motivation

The reconstruction step required that we look for a polynomial f̃ of degree at
most n− 1 and “small coefficients” such that gk divides it mod p2k

. Since we have
some weird condition on the coefficients, let us try and rewrite it somehow. Say
deg gk = m. As we run over possibilities for ˜̀ = a0 + a1x +⋯+ an−1−mxn−1−m, the
polynomial gk ˜̀ is

n−m−1
∑
i=0

aix
igk(x).

What we want is, after we reduce each coefficient modulo p2k
, each coefficient is

small. We can express this as

n−m−1
∑
i=0

aix
igk(x)−

n
∑
i=0

bi p
2k

xi,

where we are basically removing any multiple of p2k
in each “coordinate” if

possible. We can restate our goal in the following form:

Find an integer linear combination of the vectors

{gk(x), xgk(x), . . . , xn−m−1gk(x), p2k
, p2k

x,⋯, p2k
xn−1}

(where each polynomial is thought of as a vector of length n with its
coefficients listed out) of “small length”.

This is what a lattice. Formally, a lattice over Z is defined as follows.
Definition 13.5 (Lattice). Let b1, . . . , bm ∈ Zn. The lattice generated by them,
denoted by ⟨b1, . . . , bm⟩Z is the set of all integer linear combinations of these vectors.
That is,

⟨b1, . . . , bm⟩Z = {∑
i

αibi ∶ αi ∈ Z for all i} . ◊

Remark 13.6. The subspace spanned by the generating set consists of Q-linear combi-
nations of these vectors whereas the lattice is only with integer combinations. In fact,

85

13. Factorizing polynomials in Z[x]

turns out that there is always a generating set of a lattice whose size is equal to the rank
of the subspace spanned by them (you’ll see why in Problem Set 2). Furthermore, such a
generating set can be found efficiently.

So we shall assume from now on that whenever we are given a generating set
{b1, . . . , bm} ⊂ Zn, we will assume that m = rank (spanQ {b1, . . . , bm}). ◊

The Shortest Vector Problem (SVP): Given input vectors {b1, . . . , bn} that gen-
erate a lattice L ⊆ Zn, find a vector bopt ∈ L such that ∥bopt∥ = min0≠b∈L ∥b∥.

Turns out, finding the shortest vector in a given lattice is NP-hard. So it
is infeasible to solve the SVP problem in order to use it for our factorization
algorithm. However, we do not really need the shortest possible solution. All
we need is a short enough solution. A beautiful algorithm of Lenstra, Lenstra and
Lovász give an approximation algorithm for the SVP problem.

Theorem 13.7 (Lenstra, Lenstra, Lovász). Given integer vectors {b1, . . . , bn} ⊆ Zn,
there is a deterministic polynomial time (in n and the size of coordinates of bis) algorithm
that computes a vector 0 ≠ b ∈ L ∶= ⟨b1, . . . , bn⟩Z such that

∥b∥ ≤ 2(n−1)/2 ⋅ min
0≠b′∈L

∥b′∥ .

That is, it gives a 2(n−1)/2-factor approximation to the shortest vector problem.

Before we can describe the algorithm, we would need a few preliminaries,
namely the Gram-Schmidt orthogonalization.

13.4 Gram-Schmidt Orthogonalization

The idea of the Gram-Schmidt process is, given a basis B = {b1, . . . , bm} ⊆ Qn, the
Gram-Schmidt process output a different basis B∗ = {b∗1 , . . . , b∗m} that generate
the same space but are pairwise orthogonal. The algorithm is pretty standard
and is described below.

86

13. Factorizing polynomials in Z[x]

Algorithm 31: Gram-Schmidt
Input :A full rank basis B = {b1, . . . , bm} ⊆ Qn

Output :An orthogonal basis for the space generated by B

1 for i = 1, . . . , m do
2 Compute

b∗i = bi −
i−1
∑
j=1

µi,jb
∗
j , where µi,j =

⟨bi, b∗j ⟩

⟨b∗j , b∗j ⟩
.

3 Define the matrix

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
µ2,1 1
⋮ ⋱ ⋱

µm,1 ⋯ µm,m−1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

return B∗ = {b∗1 , . . . , b∗m} and M.

It is clear from the description of the algorithm that if we were to list the
input basis vectors as rows of a matrix B, and if B∗ is thought of as the output
vectors listed as rows, then

M ⋅ B∗ = B.

Here are a few simple but important observations.

Observation 13.8. For all i ≤ m, the space generated by {b1, . . . , bi} is the same as
the space generated by {b∗1 , . . . , b∗i }.

Observation 13.9. If Si = span{b1, . . . , bi}, and if S⊥i is its orthogonal complement,
then b∗i+1 is just the projection of bi+1 on to S⊥i .

Observation 13.10. The output of Algorithm 31 would vary if the input vectors are
rearranged.

The idea of the LLL algorithm would be the following. We would like to just
do the Gram-Schmidt orthogonalization and output the smallest basis vector,
however some of the µi,js may not be integers so these transformations do not
stay within the lattice. However, what we shall do is as much as we can of
the Gram-Schmidt process within the lattice by which we end up with a new
basis that is sort-of-orthogonal. And then will come the magical Lovász step of
checking if a particular condition holds and swapping vectors and restarting the
whole process. The algorithm is completely described below, but we’ll prove the
correctness etc. in the next class.

87

13. Factorizing polynomials in Z[x]

Algorithm 32: LLL Algorithm
Input :A full rank basis B = {b1, . . . , bm} ⊆ Zn

Output :A (short enough) vector b ∈ ⟨b1, . . . , bm⟩Z

1 repeat
2 Using Algorithm 31, compute M, B∗ such that MB∗ = B.

// Do integer row operations on both sides.

3 for i = m,⋯, 1 do
4 for j = i − 1,⋯, 1 do
5 bi ← bi − ⌈µi,j⌋bj, where ⌈µi,j⌋ is the integer nearest to µi,j.
6 Update row i of M accordingly.

// We again have MB∗ = B with now M being lower

triangular and all off-diagonal entries having absolute

value at most 1
2.

7 if for some 1 ≤ i ≤ m − 1 we have (3
4) ∥b∗i ∥

2
> ∥b∗i+1 + µi+1,ib∗i ∥

2 then
8 Swap bi and bi+1.
9 else

10 return b1

11 until until you return something

This seems to be a mysterious algorithm, not just for the unbounded repeat
loop but a rather curious criterion under which we swap some two vectors and
repeat the process. It might seem a bit weird at first, and we will look at it in
detail shortly but at the moment, the following exercise should throw some light
on the weird condition.

Exercise 1. On input {b1, . . . , bm}, suppose Gram-Schmidt outputs {b∗1 , . . . , b∗m}.
Now consider applying the Gram-Schmidt process after swapping the vectors bi and
bi+1 and suppose the output vectors are {b̂1, . . . , b̂m}. Then, the following holds:

• For all j < i, we have b̂j = b∗j .

• For all j > i + 1, we have b̂j = b∗j .

• b̂i = b∗i+1 + µi+1,ib∗i .

Therefore, line 7 of Algorithm 32 is asking — Does swapping two successive
vectors lead to a significant drop in the length of the i-th Gram-Schmidt vec-
tor? If there is such a significant drop (by a factor of 3/4), then we do such a swap.

To show that the above algorithm works, we need to show two things — (1)
If it does terminate, whatever it outputs is a good approximation of the shortest
vector in the lattice, and (2) the algorithm does terminate in polynomially many
steps.

88

13. Factorizing polynomials in Z[x]

If the algorithm terminates, it is right
Lecture 19:
April 10th, 2017 Lemma 13.11. Suppose {b∗1 , . . . , b∗m} is an orthogonal system of vectors (as obtained

by Algorithm 31) on input {b1, . . . , bm} such that

M ⋅ B∗ = B,

where B and B∗ are matrices whose rows are {b1, . . . , bm} and {b∗1 , . . . , b∗m} respec-
tively, and M is a lower-triangular matrix with 1s on the diagonal. If bopt is the shortest
vector in L, the lattice generated by {b1, . . . , bm}, then ∥bopt∥ ≥ min

i
∥b∗i ∥.

Proof. Say bopt = ∑i αibi such that αi ∈ Z, and let k be the largest index such that
αi ≠ 0. Now, if we express bi = b∗i + ∑

j<i
µi,jb∗j , we obtain:

bopt = αkb∗k + (terms involving b∗i for i < k).

Using Pythagoras on the previous equation gives

∥bopt∥
2
≥ ∣αk∣

2
⋅ ∥b∗k ∥

2
≥ ∥b∗k ∥

2

as αk is a non-zero integer and therefore ∣αk∣ ≥ 1.

At any time in Algorithm 32 before the swap-step, we do have an equation
of the form MB∗ = B and hence we may claim that ∥bopt∥ ≥ mini ∥b∗i ∥. However,
the issue is that we must output a vector in the lattice L, and from the rows
of B∗, only b∗1 is guaranteed to lie in L. This is exactly where the termination
condition helps us.

Whenever Algorithm 32 terminates, the termination condition ensures the
following: For all i ∈ {1, . . . , m − 1},

3
4
∥b∗i ∥

2
≤ ∥b∗i+1 + µi+1,ib

∗
i ∥

2

= ∥b∗i+1∥
2
+ µ2

i+1,i ∥b∗i ∥
2 (Pythagoras)

≤ ∥b∗i+1∥
2
+

1
4
∥b∗i ∥

2
(∣µi+1,i∣ ≤

1
2
)

Ô⇒ ∥b∗i+1∥
2
≥

∥b∗i ∥
2

2

An orthogonal basis that satisfies ∥b∗i+1∥
2
≥ ∥b∗i ∥

2
/2 is called a reduced Basis.

Combining the above with Lemma 13.11 makes the following plain.

Proposition 13.12. If {b∗1 , . . . , b∗m} is a reduced basis then ∥b1∥
2
≤ 2n−1 ∥b∗opt∥

2
.

The algorithm terminates in polynomially many steps

So, what have we established till now? We know that if Algorithm 32 does termi-
nate then, by Proposition 13.12, ∥b1∥ = ∥b∗1∥ ≤ 2

n−1
2 ∥bopt∥. Thus, we may safely

89

13. Factorizing polynomials in Z[x]

output b1, to achieve an approximation ratio of 2
n−1

2 .

Now, let us understand why Algorithm 32 does terminate in a polynomial
number of steps (in n, m and the size of the coordinates of bi’s). A priori, it is not
clear that the algorithm stops at all. To this end suppose at line 7 we find that
for some 1 ≤ i ≤ m − 1 we have 3

4 ∥b∗i ∥
2
> ∥b∗i+1 + µi+1,ib∗i ∥

2, then we swap bi and
bi+1. Now, {b1, . . . , bi+1, bi, . . . , bm} becomes the input to Algorithm 31 at line
2. Suppose the output vectors of the Gram-Schmidt process are {b̂1, . . . , b̂m},
represented as rows in the matrix B̂. Observe that the subsequent run through
lines 3–6 does not perturb B̂. Therefore, by Exercise 1 we obtain that {b̂1, . . . , b̂m}

and {b∗1 , . . . , b∗m} differ only on the (i)th and (i + 1)th vector, and further b̂i =

b∗i+1 + µi+1,ib∗i . This means that 3
4 ∥b∗i ∥

2
> ∥b̂i∥

2.
Hmmm . . . so the norms of all the vectors except the (i)th and (i + 1)th stay

the same and the norm of the (i)th one drops by a constant factor. If only, we had
a handle on the norm of the (i + 1)th vector, we could argue that some potential

function, like
m
∏
i=1

∥b∗i ∥
2 is decreasing each time the swap at line 7 is performed,

and hence Algorithm 32 must terminate within so-and-so number of steps.
Great! Unfortunately*,∏m

i=1 ∥b∗i ∥
2 stays constant throughout Algorithm 32! * or fortunately!

To see this, observe the elementary row operations performed on the input
matrix B: as we noted earlier, each operation is either a swap (line 7) or of the
form Ri → Ri −∑j β jRj, where β j ∈ Z. These are all invertible operations on the
lattice. Consider B′ = RB where B′ is any intermediate form that B acquires and
R is the corresponding m ×m matrix representing the accrued Row-elementary
operations. R is an integer matrix and invertible; further R−1 is also and integer
matrix!* Since, det (R) and det (R−1) are both integers and det (R)×det (R−1) = * Why? Think about

reversing all the
Row-elementary op-
erations performed.

1, we obtain det (R) = ±1. Such matrices (R such that det R = ±1) are infact called
unimodular matrices and these are precisely transformations we can perform on
the lattice basis without changing the lattice.

Observation 13.13. If the rows of an m × n integer matrix B is a basis of some lattice
and B′ is another m × n integer matrix. Then, rows of B and the rows of B′ generate the
same lattice if and only if B′ = RB where R is an m ×m unimodular integer matrix.

Therefore, we’d like to say that ∣det B∣ = ∣det B′∣ throughout, but wait, these
matrices aren’t even square matrices. But let us make them square matrices by
looking at BBT and B′B′T instead. Hence, det BBT = det B′B′T as B′ = RB and
det R = ±1.

Let us couple this observation with the fact that MB∗ = B, and M is lower
triangular with all the diagonal entries 1 implying that det (M) = 1. Thus, by
the orthogonality of the rows of B∗, we establish that

det(B∗B∗
T
) =

m
∏
i=1

∥b∗i ∥
2
= det (BBT)

stays invariant.

90

13. Factorizing polynomials in Z[x]

All this effectively tells us that using ∏m
i=1 ∥b∗i ∥

2 as a potential function is
useless because this never changes throughout the algorithm. Now, it is time for
more magic. Instead of looking at the potential function∏m

i=1 ∥b∗i ∥
2, we look at

the following variant:

Di ∶=
i
∏
j=1

∥b∗j ∥
2

Φ ∶=
m
∏
i=1

Di

∶= ∥b∗1 ∥
2m

∥b∗2 ∥
2m−2

⋯ ∥b∗m∥
2

Lemma 13.14. If B is an integer matrix, then each Di is also an integer and is non-zero.

Proof. Consider the Gram-Schmidt equation MB∗ = B where B is an upper-
triangular, if we focus on just the first i rows of B and B∗, then we can restrict
ourselves to the i × i principal minor of M to get an equation MiB∗i = Bi. Since
M was upper-triangular with 1s on the diagonal, Mi continues to share that
property. Therefore,

det BiB
T
i = det B∗i (B∗i)

T

= ∥b∗1 ∥
2
⋯ ∥b∗m∥

2

=∶ Di

And since we are starting with a full-rank basis, none of the b∗i s are zero and
hence Di is non-zero.

Lemma 13.15. Every swap at line 7 of Algorithm 32 reduces Φ by at least 3
4

.

Proof. Suppose, in some iteration, at line 7 we swap bi and bi+1, and after a
run through lines 2–6, we obtain {b̂1, . . . , b̂m}. Let D′

i =∏
i
j=1 ∥b̂j∥

2 Then, by our
earlier observations and Exercise 1 it is clear that for j < i, we have Dj = D′

j .

Additionally, D′
i ≤

3
4

Di.
We also have Di+1 = D′

i+1. This is because swapping rows i and i + 1 does not
change det(Bi+1BT

i+1) = Di+1. Similarly, for j > i + 1, Dj = D′
j .

Hence, only Di reduces by a factor of 3/4, and all other Djs stay the same.
Therefore,∏j D′

j ≤ (3
4)∏j Dj.

Now we know that every swap step reduces our potential function by at
least a factor of 3/4. We also know from Lemma 13.14 that Φ is always a positive
integer. This should let us upper-bound the number of swaps throughout if we
have a bound on how large Φ is in the beginning of the algorithm.

Proposition 13.16. Φ is maximum at the beginning of Algorithm 32, where ∣Φ∣ ≤

(m! × (n22c)m)m, where c is the maximum length of the bit representations of the
coefficients of the input vectors {b1, . . . , bm}.

91

13. Factorizing polynomials in Z[x]

Proof. As seen in Lemma 13.14, Di = det BiBT
i . If each of the entries of B are

integers of magnitude at most 2c, each entry of the m × m matrix BiBT
i has

magnitude at most n22c. Therefore, Di = det(BiBT
i) is at most m!(n22c)m.

Proposition 13.17. Algorithm 32 performs at most O (m2c +m2 log (m)+m log (n))
swap operations at line 7, and hence runs in time polynomial in n, m and the size of the
coordinates of bi’s.

And that completes the analysis of the LLL algorithm and hence Theo-
rem 13.7, and hence concludes the algorithm to factorize polynomials in Z[x].

Algorithm 33: Factorization over integers
Input : f ∈ Z[x] of degree n, and coefficients bounded by 2c

Output :A non-trivial factor of f if one exists, or Irreducible otherwise

// Preprocessing

1 Make f square free
2 Ensure that cont(f) = 1
3 Find a prime p such that f mod p is square-free and deg(f) and p does not divide

the leading coefficient of f .

// Hensel Lifting

4 Factorize f (x) = g0h0 mod p where g0(x) is irreducible and monic. If no such
factorization exists, return Irreducible.

5 Let k be chosen so that p2k
> 23cn3

.
6 for i = 1,⋯, k − 1 do
7 From the factorization f = gihi mod p2i

where gi is monic, use Hensel lifting to
obtain

f = gi+1hi+1 mod p2i+1

where gi+1 and gi+1 = gi mod p2i

// Reconstruction

8 If deg gk = m, construct the lattice

L ∶= ⟨gk(x), xgk(x), . . . , xn−m−1gk(x), p2k
, p2k

x, . . . , p2k
xn−1⟩

Z
.

Using Algorithm 32, compute a short vector f̃ (x) ∈ L.

9 if ∥ f̃ ∥ > 23cn2
then

// If f was reducible, then LLL ought to find an f̃ with

coefficients at most 22cn2
+O(n).

10 return Irreducible.
11 else
12 Compute g = gcd(f , f̃), which would be a non-trivial factor of f . Say f = g ⋅ h.
13 Undo the appropriate preprocessing steps to obtain a factor g′ for the input

polynomial. return g′.

92

14. Kaltofen’s black-box factorization algorithm

14 Kaltofen’s black-box factorization algorithm
Lecture 20:
April 10th, 2017 The algorithms we have seen in section 12 that we can use an algorithm for k-

variate factorization and boot-strap it with the Hensel Lifting approach to obtain
a factorization algorithm for (k + 1)-variate polynomials. This works of course,
but the running time degrades very badly in k. Hence, using this approach for
factorizing multivariate polynomials (where the number of variables n grows)
is infeasible.

The other question is, if we are dealing with polynomials over many variables,
we could potentially have many monomials for such a polynomial. How is the
input provided to us?

Kaltofen came up with a remarkable algorithm where given just blackbox
access to the polynomial (that is, all we know are its degree, number of variables,
and we are only allowed to evaluate the polynomial at any chosen point of ours),
we can construct blackboxes for each of its factors as well! Firstly, it is not at all
clear that the factors should even be efficiently computable in the first place!
Kaltofen’s result shows that they indeed can be, and also construct a randomized
algorithm to find blackboxes for the factors given a blackbox for the polynomial.

A key ingredient in the algorithm is the Hilbert’s Irreducibility theorem
Theorem 14.1 which gives a test for irreducibility of multivariate polynomials.

Hilbert’s irreducibility theorem

If we wish to come up with a blackbox factorization algorithm, at the very least
we should be able to check if a given polynomial is irreducible or not. We know
how to test for irreducibility for univariate polynomials using any of the factoring
algorithms we have seen previously. A natural approach seems to be to reduce to
this case, by substituting each variable xi with a polynomial function ai(t) and
checking for the irreducibility of the univariate polynomial f (a1(t), . . . , an(t)).
However there is an obvious reason why this idea won’t work because if the
field is C, every univariate polynomial factorizes into linear factors.

The following remarkable theorem shows that a random bivariate substitution
preserves irreducibility:

(x, y1, . . . , yn)↦ (x, a1t + b1, . . . , ant + bn).

For simplicity, we shall state the theorem for polynomials that are monic in x,
but as we have seen earlier, this can very easily be ensured by minor massaging.

Theorem 14.1 (Hilbert’s Irreducibility Theorem). Let f (x, y1, . . . , yn) be a degree
d polynomial which is monic in x. Suppose S ⊆ F and

Pr
ā,b̄∈Sn

[f (x, a1t + b1, . . . , ant + bn) is reducible] ≥
O(d5)

∣S∣

then f (x, y1, . . . , yn) is reducible.

We shall prove this shortly but for now let us assume this and complete
Kaltofen’s algorithm.

93

14. Kaltofen’s black-box factorization algorithm

Algorithm

Here is an algorithm for black box factorization assuming Theorem 14.1. We
will see a proof of 14.1 in the next section.

The algorithm has two steps: In step 1, given the blackbox for f , the algo-
rithm outputs the factorization pattern of f . In step 2, given an index i and a
point (α, β1, . . . , βn) it outputs the evaluation of the i-th factor at the point i.e.,
fi(α, β1, . . . , βn). Fix a set S ∈ F large enough.

Algorithm 34: Blackbox Factorization
Input :A blackbox computing f ∈ F[x, y1, . . . , yn] that is monic in x and

of degree at most d
Output :Factorization pattern of f

1 Pick ā, b̄ uniformly at random from Sn.
2 Compute the monomial representation of

f ā,b̄(x, t) = f (x, a1t + b1, . . . , ant + bn) by evaluating it at sufficiently many
points and interpolating.

3 Factorize f ā,b̄(x, t) to obtain

f ā,b̄(x, t) = f ′1(x, t)e1⋯ f ′r(x, t)er .

4 return (e1, e2, . . . , er) as the factorization pattern

Input :An index i ∈ [r] and a point (α, β1, . . . , βn)

Output :The evaluation of the i-th factor of f at (α, β1, . . . , βn)

5 Compute the polynomial

f̃ (x, t1, t2) = f (x, a1t1 + t2(β1 − b1)+ b1, . . . , ant1 + t2(βn − bn)+ bn).

6 Factorize this polynomial as f̃ = f̃1
e′1⋯ f̃r

e′r

7 Find the j for which f̃ j(x, t, 0) = f ′i (x, t).
8 return f j(α, 0, 1)

Theorem 14.2. Algorithm 34 outputs the right answer with probability at least 1 −
O(d6)/∣S∣.

Proof. Suppose the true irreducible factors of f were { f1, . . . , fr}. We shall say
that the projection ā, b̄ is bad for fi if the corresponding bivariate projection of
fi fails to be irreducible. By Theorem 14.1, the probability that ā, b̄ is bad for
any fixed fi is at most O(d5)/∣S∣. By taking a union bound over all factors, the
probability that it is bad for any fi is bounded by O(d6)/∣S∣. We will show that if
the chosen projection ā, b̄ is not bad for any fi, then the algorithm outputs the
right answer.

Since the chosen projection was not bad, it is clear that the factorization
pattern of f ā,b̄(x, t) is the correct factorization pattern for f . Further more, the

94

14. Kaltofen’s black-box factorization algorithm

polynomial f̃ (x, t1, t2) is constructed so that

f̃ (x, t, 0) = f ā,b̄(x, t) and f̃ (α, 0, 1) = f (α, β1, . . . , βn).

The only issue is that when we factorize f̃ , eventhough every factor of f̃ corre-
sponds to a factor of f ā,b̄(x, t), the order might be shuffled. But since they are all
irreducible and distinct, the correct order can be found by checking for the right
j so that f̃ j(x, t, 0) = f ′i (x, t).

The probability can also be amplified by trying out many projections {ā, b̄}
and choosing one that yields the coarsest factorization of f ā,b̄(x, t).

14.1 Proof of Hilbert’s Irreducibility theorem

We would need the following standard fact that a non-zero polynomial cannot
be zero too often. This is called the

Schwartz Lemma or
the Schwartz-Zippel
Lemma or the
Schwartz-Zippel-
DeMillo-Lipton
Lemma or Øre’s
Lemma.

Lemma 14.3 (Øre,Schwartz,Zippel,DeMillo-Lipton). If f is a non-zero polynomial
of degree at most d and S ⊆ F is a finite set then

Pr
ā∈Sn

[f (ā) = 0] ≤
d
∣S∣

.

We are given that a random bivariate projection f ā,b̄(x, t) is reducible very
often and we would like to show that f must be reducible. As a warm-up, we will
first show that if f0̄,b̄(x) is not square-free too often, then f cannot be square-free.

Not square-free too often implies reducible

Lemma 14.4. Suppose f is a polynomial monic in x and say deg(f) ≤ d. If it is the
case that Pr [f (x, b1, . . . , bn) not square-free] ≥ 2d2

∣S∣ then f (x, y1, . . . , yn) is reducible.

Proof. Note that f (x, b1, . . . , bn) ∈ F[x] is a univariate polynomial in x. Consider
the polynomial R((̄y)) ∶= Resx (f , ∂ f

∂x) ∈ F[ȳ]. For every b̄ such that f (x, b1, . . . , bn)

is not square-free, we know that R(b̄)) = 0. This implies that R(ȳ) is a polynomial
of degree at most 2d2 but is zero with probability more than 2d2/∣S∣ on Sn and
hence by Lemma 14.3 we must have that R(y) = 0.

This then implies that f and ∂ f
∂x have a non-trivial gcd in F(ȳ)[x], which

by Gauss’s Lemma (Theorem 12.2) means that they have a non-trivial gcd in
F[x, ȳ]. This of course implies that f (x, ȳ) not just reducible, but in fact not
square-free.

Therefore, we may assume that there are many points in b̄ ∈ Sn where
f (x, b1, . . . , bn) is square-free (for otherwise, Lemma 14.4 already shows that
f is reducible). Without loss of generality, let us assume that f (x, 0, . . . , 0) is
square-free. This essentially allows us to forget the b̄ and instead work with
f (x, a1t, . . . , ant). The problem therefore has reduced to the following — we are

95

14. Kaltofen’s black-box factorization algorithm

given a monic (in x) polynomial f (x, y1, . . . , yn) of degree at most d such that
f (x, 0, . . . , 0) is square-free and also

Pr
ā∈Sn

[f (x, a1t, . . . , ant) is reducible] > O(d5)

∣S∣
,

and we want to conclude that f must be reducible.

The main sub-case: f (x, 0, . . . , 0) is square-free

Define the following auxiliary polynomials which will be useful in arguing the
reducibility of f

p(x, t, y1, . . . , yn) ∶= f (x, a1t, . . . , ant).

For every ā ∈ Fn define a bivariate polynomial

f ā(x, t) ∶= f (x, at, . . . , ant).

Notice that p(x, t, a1, . . . , an) = f ā(x, t) and p(x, 1, y1, . . . , yn) = f (x, y1, . . . , yn).
The following lemma says that it suffices to show that p(x, t, ȳ) is reducible.

Claim 14.5. If p(x, t, ȳ) is reducible, then f (x, ȳ) is reducible.

Proof. If p is reducible, then p can be written as

p(x, t, ȳ) = A(x, t, ȳ) ⋅ B(x, t, ȳ)

Recall that f (x, ȳ) = p(x, 1, ȳ). Therefore f (x, ȳ) = A(x, 1, ȳ) ⋅ B(x, 1, ȳ). The only
thing to be checked is if A(x, 1, ȳ) or B(x, 1, ȳ) becomes a constant. But this
cannot happen as p is also monic in x and hence so are A and B. Therefore
A(x, 1, ȳ), B(x, 1, ȳ) are non-constants and f is reducible.

Hensel lifting a bivariate factorization

Just like in section 12, we would be using Hensel lifting heavily. The first step is
to get better factorizations for f ā(x, t). We start with

f ā(x, t) = g0(x) ⋅ h0(x) mod t

where g0(x) is monic in x and is coprime with h0(x). This can be done as we know
f ā(x, t) mod t = f (x, 0, . . . , 0) which is square-free. Starting from this solution,
we apply Hensel lifting repeatedly to get

f ā(x, t) = g0(x) ⋅ h0(x) mod t

⋮

f ā(x, t) = gk,ā(x, t) ⋅ hk,ā(x, t) mod tk,

where gk,ā(x, t) is monic in x, and again we shall lift until k > 2d2.

96

14. Kaltofen’s black-box factorization algorithm

At the face of it, if we were to start with a different choice of ā, the polyno-
mial gk,ā(x, t) could be completely different. The following lemma says that the
different gk,ā(x, t)s are globally correlated.

Lemma 14.6. There is a polynomial gk(x, t, ȳ) such that for every ā we have gk,ā(x, t) =
gk(x, t, ā)).

Proof. Consider obtaining factorizations of f (x, y1,⋯, yn) via Hensel Lifting, by
starting with

f (x, y1, . . . , yn) = g0(x) ⋅ h0(x) mod ⟨y1,⋯, yn⟩.

We have the same start as f (x, y1, . . . , yn) mod ⟨y1,⋯, yn⟩ = f (x, 0, . . . , 0). Apply
Hensel lifting here gives

f (x, y1, . . . , yn) = g′k(x, ȳ) ⋅ h′k(x, ȳ) mod ⟨y1,⋯, yn⟩
k.

Bear with the ′ on the RHS; that’s only because these are not quite the gk we are
after. What the above equation means is that if we consider the polynomial

f (x, y1, . . . , yn)− g′k ⋅ h
′
k,

then every monomial in this polynomial has y-degree at least k. Therefore, if we
scale the y-variables by t

f (x, ty1, . . . , tyn)− g′k(x, ty1, . . . , tyn) ⋅ h′k(x, ty1, . . . , tyn)

now is divisible by tk. In other words,

f (x, ty1, . . . , tyn) = g′k(x, ty1, . . . , tyn) ⋅ h′k(x, ty1, . . . , tyn) mod tk

Ô⇒ f ā(x, t) = g′k(x, ta1, . . . , tan) ⋅ h′k(x, ta1, . . . , tan) mod tk

∶= gk(x, t, ā)hk(x, t, ā) mod tk

where gk(x, t, ȳ) ∶= g′k(x, ty1,⋯, tyn). Observe that gk(x, t, ā) is also monic in x,
and is equal to g0(x) mod t and we also have a lifted equation

f ā(x, t) = gk,ā(x, t) ⋅ hk,ā(x, t) mod tk.

By the uniqueness of Hensel Lifting (Theorem 12.1) we have that gk,ā(x, t) =

gk(x, t, ā) for all ā.

Reconstructing a factor of p(x, t, ȳ)

Like in Algorithm 30, the last step would be to reconstruct a factor of p(x, t, ȳ)
from a sufficiently lifted factor gk(x, t, ȳ). As in the bivariate case, we would
like to build a system of equations that should have a solution if p(x, t, ȳ) is
reducible.

We shall interpret gk(x, t, ȳ) as a bivariate polynomial, by thinking of it as an
element of F(ȳ)[x, t]. The system of equations solves for a possible f̃ (x, t), ˜̀(x, t) ∈

97

14. Kaltofen’s black-box factorization algorithm

F(ȳ)[x, t] such that f̃ (x, t) = gk ⋅ ˜̀(x, t) mod tk. The indeterminates would be the
coefficients of f̃ and ˜̀, where

f̃ (x, t) =
degx(p)−1

∑
i=0

degt(p)

∑
j=0

αi,jx
iyj

˜̀(x, t) =

degx(p)−
degx(gk)−1

∑
i=0

k−1
∑
j=0

βi,jx
iyj

The number of interminates is m = O(kd) = O(d3) and so is the number of
constraints is also O(d3) (but bigger than m). Therefore, this entire system can
be represented as a matrix equation

M(ȳ) ⋅ (ᾱ β̄)
T
= 0̄

where M is an O(m)×m matrix made up of polynomials in ȳ. At the moment, it is
completely unclear as to why there should even be a solution over F(y1, . . . , yn).
If we can show that rankF(ȳ)(M(ȳ)) < m, then we would at least have some
solution over F(y1, . . . , yn).

Claim 14.7. If Prā[f ā(x, t) is reducible] > O(d5)/∣S∣, then rankF(ȳ)(M(ȳ)) < m.

Proof. Suppose not, then there is some m ×m submatrix of M that has non-zero
determinant. Let’s call this submatrix M′(ȳ).

For every ā such that f ā(x, t) is reducible, if we were to write down the
equations for

f̃a(x, t) = gk(x, t, ā) ⋅ ˜̀k,a(x, t) mod tk

with the same degree constriants etc, we have the matrix equation

M(ā) ⋅ (ᾱ β̄)
T
= 0̄

and since f ā(x, t) was reducible, this equation does indeed have a solution.
But then, this means that det(M′(ā)) = 0 as we know that rank M(ā) < m. But
det(M′(ȳ)) is a polynomial of degree at most O(km) = O(d5) and somehow is
zero with probability more than O(d5)/∣S∣. Therefore, by Lemma 14.3, we must
have rank M(y) < m.

Since rank(M(ȳ)) < m, there exists a solution in F(y1, . . . , yn)[x, t] for f̃ (x, t)
and ˜̀(x, t) but these involve coefficients that have denominators as polynomials
in ȳ. But we are working with a homogeneous system of equations and hence
we can clear out all denominators to get f̃ (x, t, ȳ) and ˜̀(x, t, ȳ) that are indeed
polynomials in F[x, t, ȳ], with degx f̃ < degx(p) ≤ d and degt f̃ ≤ degt(p) ≤ d.

As in Claim 12.8, we can once again show that gcd(p, f̃) ≠ 1 and this gcd
must be a proper factor of p as degx f̃ < degx p. This shows that p(x, t, ȳ) is
reducible, and hence f (x, ȳ) is reducible (Claim 14.5), thus completing the proof

98

of Theorem 14.1. (Theorem 14.1)

Part III: Very Basic Algebraic Geometry

This part of the course is not going to be scribed but below is just a list of topics
covered in each lecture. Hopefully the notes here would be completed in one of
the future offerings of this course.

• Lecture 21: Introduction to varieties, existence of Gröbner bases, and Buch-
berger’s algorithm

• Lecture 22: Analysis of Buchberger’s algorithm (partial; rest left as exercise)
and proof of Hilbert’s Nullstellensatz.

• Lecture 23: Explicit degree bounds for ideal membership, and geometry
of elimination.

• Lecture 24: Quantifier elimination, introduction to ideal-variety correspon-
dence, computing ideal intersections

• Lecture 25: Ideal variety correspondence, irreducible varieties and prime
ideals, prime decomposition of a radical ideal

• Lecture 26: Hilbert polynomials and the dimension of a variety

99

List of scribes

• Lecture 1, 2: Ramprasad Saptharishi

• Lecture 3: Somnath Chakraborty

• Lecture 4: Anamay Tengse

• Lecture 5: Prerona Chatterjee

• Lecture 6: Suhail Sherif

• Lecture 7: Gunjan Kumar

• Lecture 8: Siddharth Bhandari

• Lecture 9: Prerona Chatterjee

• Lecture 10/11: Tulasi mohan Molli

• Lecture 12: Ramprasad Saptharishi

• Lecture 13: Kshitij Gajjar

• Lecture 14: Somnath Chakraborty

• Lecture 15: Suhail Sherif

• Lecture 16: Prerona Chatterjee

• Lecture 17: Anamay Tengse

• Lecture 18: Ramprasad Saptharishi

• Lecture 19: Siddharth Bhandari

• Lecture 20: Tulasi mohan Molli & Ramprasad Saptharishi

100

	I Group theoretic algorithms
	Introduction
	Bringing in group theory

	Crash course on Group Theory
	Homomorphisms, kernels, normal subgroups etc.
	Group Actions
	Orbits and stabilizers

	Studying huge groups
	Algorithmic tasks given a succinct group
	Computing orbits and the orbit graph
	Computing stabilizers
	Membership testing
	Computing the size of a group
	Normal closures and subnormality
	Commutators and solvability

	Towers of subgroups
	Set stabilizers, group intersection, and graph isomorphism
	Descending towers
	Revisiting the group intersection problem
	Solving an Automorphism Problem

	Divide and Conquer techniques.
	Intransitive case
	Blocks
	Block systems and structure forests
	Sylow Theorems and p-groups
	Divide and conquer via blocks

	Colour Stabilizer for special groups
	If G is not transitive
	If G is not primitive

	Graph isomorphism for bounded degree graphs
	Trivalent Graphs
	Generalizing to higher (but bounded) degree graphs

	General graph isomorphism
	Colour Refinements
	Reducing to the bounded generalized colour valence case
	GraphIso for bounded generalized colour valence graphs

	II Computations on polynomials
	Preliminaries
	Polynomial rings
	Fraction fields
	Finite fields
	Adjoining elements and splitting fields

	Basic operations on polynomials
	Polynomial multiplication
	Fast Fourier Transform
	Polynomial division
	Multi-point evaluations

	Factorizing univariate polynomials over finite fields
	Computing the GCD
	Handling repeated factors
	Some field properties, and Distinct Degree Factorization (DDF)
	The Chinese Remainder Theorem
	The Cantor-Zassenhaus Algorithm
	Berlekamp's Algorithm

	Factorizing Bivariate Polynomials over Finite Fields
	Hensel Lifting
	Bivariates as univariates over the fraction field
	The Resultant

	Factorizing polynomials in Z[x]
	Finding a good prime
	How large should k be?
	Lattices
	Gram-Schmidt Orthogonalization

	Kaltofen's black-box factorization algorithm
	Proof of Hilbert's Irreducibility theorem

	III Very Basic Algebraic Geometry

