
Cryptography

Problem Set

1. The problem set (as on 3/12/19) has 23 questions with a total score of
295 points.

2. A lot of the problems refer to [Ros19], which is the 21 Mar 2019 version
on its webpage. If you need a copy of this version (and the Joy of Cryp-
tography draft gets updated), you may get one from the slack group for
the course, or contact me.

3. You are welcome to discuss with other classmates as long as these dis-
cussion are reasonable; these are not meant for one to solve the problem
for the other. You are eventually expected to find and write your own
solutions.

If you do discuss, you are expected to explicitly mention who you dis-
cussed with and which parts of your solution came from these discus-
sions.

4. Solutions may be submitted either as a pdf, or handwritten. If you are
creating a pdf, please do not print! You can email the pdf to me instead.
If you do send me a pdf via email, please make sure the subject of the
email includes the word “Crypto”, and use the following scheme for the
filename:

firstname_lastname_YYYY-MM-DD_n.pdf

For example, if I were to submit an assignment on 19/09/2019, then I’ll
name mine it as

ramprasad_saptharishi_2019-09-19_1.pdf.

If I make a minor correction and resubmit it on the same day, it would
be named

ramprasad_saptharishi_2019-09-19_2.pdf

(If you have already submitted problem set solutions via different file
names, don’t worry about those. Just use this scheme for all subsequent
submissions; makes my life a little easier :-))

1

Deadline: 9th September 2019

Question 1. [5 points] [Ros19, Problem 1.7]. It might be helpful to have the
following ascii conversions

alpha: 0110000101101100011100000110100001100001

bravo: 0110001001110010011000010111011001101111

delta: 0110010001100101011011000111010001100001

gamma: 0110011101100001011011010110110101100001

Question 2. [10 points] [Ros19, Problem 2.2]

Question 3. [10 points] [Ros19, Problem 2.5]

Question 4. [10 points] [Ros19, Problem 2.14]

Question 5. [5 points] [Ros19, Problem 4.13]

Question 6. [15 points] [Ros19, Problem 5.8]

Deadline: 12th September 2019

Question 7. [10 points] [Ros19, Problem 6.5]

Question 8. [15 points] [Ros19, Problem 6.6]

Deadline: 19th September 2019

Question 9. [10 points] Let F be a secure PRF. Show why a 2-round Feistel
structure using F does not yield a PRP by exhibiting an attacker.

Question 10. [15 points] Suppose F : {0, 1}λ × {0, 1}b → {0, 1}b be a secure
PRP. Show that the CBC-mode of encryption with this PRP is CPA$ secure.
Recall that the encryption algorithm is given by:

function Enc(k,(m1, . . . , m`))
c0 ∈R {0, 1}b

for i = 1, . . . , ` do
xi = ci−1 ⊕mi
ci = F(k, xi)

end for
return (c0, . . . , c`)

end function

2

Hint: The following hybrid library may be helpful.

k ∈R {0, 1}λ

function CText(m1, . . . , m`)
c0 ∈R {0, 1}b

for i = 1, . . . , ` do
xi = ci−1 ⊕mi
ci = Lookup(xi)

end for
return (c0, . . . , c`)

end function

◦

bad = 0

function Lookup(x)
if T[x] is undefined then

T[x] ∈R {0, 1}b \Values(T)
else

bad = 1
r ∈R {0, 1}b

return r
end if
return T[x]

end function

Can you show that the probability that bad is set to 1 is negligible?

Deadline: 23rd September 2019

Question 11. [10 points] [Ros19, Problem 6.6]. Show that a 3-round Feistel
cipher, with any PRF, cannot be a strong PRP.

Question 12. [15 points] [Ros19, Problem 9.5]. Show how a padding-check
oracle (for CBC-mode encryption, with X.923 padding (the one that ends with
01 or 00 02 or 00 00 00 03 etc.)) can be used to generate a valid encryption
of any chosen plaintext, under the same (secret) key that the padding-check
oracle uses.

In this problem, you are not given access to an encryption subroutine, or
any valid ciphertexts — only the padding-check oracle. All you are allowed
is to send strings of your choice (say x) to the padding-check oracle and the
oracle would tell you if the decryption of x is properly padded or not. Given
this, the goal is to generate a valid encryption of any chosen plain text (under
the same key).

Question 13. [10 points] [Ros19, Problem 9.7] Suppose you have an encryption
Enc with message space {0, 1}n. Define the encryption Enc

(2), with message
space {0, 1}2n by just encrypting the left and right halves and concatenating
the ciphertexts:

Enc
(2)(m1m2) = c1c2 where, c1 = Enc(m1) , c2 = Enc(m2).

1. Show that if Enc is CPA-secure, then so is Enc
(2).

2. Show that, even if Enc is CCA-secure, Enc
(2) is not CCA-secure by pro-

ducing an attacker.

3

Deadline: 3rd October 2019

Question 14. [10 points] [Ros19, Problem 10.8] In class, when we studied the
“Encrypt-then-MAC” method to make a CPA-secure encryption scheme CCA-
secure, we stressed that we sent the MAC of the ciphertext and not the mes-
sage. (You can check for yourself why that is the case.)

But consider the following variant called “Encrypt-then-Encrypted-message-
MAC”.

function Enc
′(kEnc, kMAC, m)

c = EncCPA(kEnc, m)
t = MAC(kMAC, m)
c′ = EncCPA(kEnc, t)
return (c, c′)

end function

The decryption is defined in the natural way. Show that this scheme does not
result in a CCA-secure scheme by exhibiting an attacker.

Question 15. [15 points]
For the standard “Encrypt-Then-MAC” scheme, we use two separate keys

for the encryption scheme and the MAC. The following is an attempt to derive
it from a single key using a pseudorandom function F : {0, 1}λ × {0, 1}λ →
{0, 1}λ.

function Enc
′(k, m)

kEnc = F(k, 00 · · · 0)
kMAC = F(k, 11 · · · 1)
c = EncCPA(kEnc, m)
t = MAC(kMAC, c)
return (c, t)

end function

Does this give you a CCA-secure scheme? Justify your answer by either
exhibiting an attacker or proving CCA-security.

Question 16. [10 points] [Ros19, Problem 11.13] Let H : {0, 1}n → {0, 1}n be
a collision resistant hash function (we are ignoring the salt just for ease of
writing/reading. And yes, input and output length being n is perhaps silly,
but let’s work with this). Consider the following CBC-MAC type of function
to create a candidate hash function for larger input lengths (but same output

4

length):

function H∗(m1, . . . m`)
// each mi is n-bits long

y0 = 0n // or this could even be a part of the salt

for i = 1, . . . , ` do
yi = H(mi ⊕ yi−1)

end for
return y`

end function

Show that the function H∗ is not collision resistant by showing how you can
construct a collision.

Deadline: 18th October 2019

Question 17. [15 points] Prove or disprove the following:

Suppose f : {0, 1}n → {0, 1}n is a one-way function. Then, the
function f ′ : {0, 1}n → {0, 1}n defined as f ′(x) = f (x)⊕ x is also
a one-way function.

(Hint: Say f (x, y) = (g(x)⊕ y, y))

Question 18. [15 points] Let us assume that injective one-way functions exist.
In class we studied the notion of hardcore predicates for injective one-way
functions, and we saw that the most significant bit of the RSA function is a
concrete hardcore predicate. This question explores if the same works for any
function. That is, for any injective one-way function, perhaps one of the input
bits xi is itself a hardcore predicate? Prove or disprove the following:

Assume that injective one-way functions. Then, there exists an in-
jective one-way function f : {0, 1}n → {0, 1}∗ such that, for every
i ∈ [n], there is an efficient algorithm Ai such that

Pr
x
[Ai(f (x)) = xi]�

1
2

.

That is, there are injective one-way functions such that none of
the coordinate functions {hi(x) = xi : i ∈ [n]} are hardcore pred-
icates for it.

Question 19. [10 points] Let f : {0, 1}n → {0, 1}n be an efficiently computable,
injective function. Prove or disprove the following:

If h : {0, 1}n → {0, 1} is a hardcore predicate for f , then f is a
one-way function

5

Answer the same question in the setting when f is not injective. That is, prove
or disprove the following:

Let f : {0, 1}n → {0, 1}n be an efficiently computable (possible
non-injective) function. Then, if h : {0, 1}n → {0, 1} is a hardcore
predicate for f , then f is a one-way function.

Deadline: 18th Nov 2019

Question 20. In class, we saw a construction of a digital signature scheme that
was secure against chosen message attacks from a scheme that was one-time
secure based on the “tree” construction. In the scheme we saw in class, the
signer was stateful in the sense that needed to “remember” all the public keys
he had to reveal in the course of previous signatures. In this problem, we
shall attempt to come up with a scheme that avoids this using pseudorandom
functions.

For simplicity, let us assume that we are signing messages of length n,
the on-time signature scheme S uses a public key of length at most (n/2)
and signs messages of length n (so that internal nodes, that have to sign two
public keys, end up signing length n messages). Furthermore, assume that
the signing scheme S has the property that the key generation algorithm GenS
uses n random bits to generate two (public key, secret key) pairs, and uses n
random bits for each signature it produces (the scheme based on OWFs was
deterministic, but one might imagine signatures generated via a randomized
algorithm as well).

Assume that F : {0, 1}λ × {0, 1}n/2 → {0, 1}n is a secure pseudoran-
dom function. Consider the following signature scheme similar to the “tree”
scheme discussed in class.

6

function Gen()
(pkε, skε) = GenS()

k1, k2 ∈R {0, 1}λ

return (pkε, (skε, k1, k2))
end function

function Sign(m, skε, k1, k2)
for i = 0, · · · , n− 1 do

m[i] = prefix of first i bits of m
r1 = F(k1, pkm[i]

) , r2 = F(k2, pkm[i]
)

Generate two (public-key, secret-key) pairs (pkm[i]0
, skm[i]0) and

(pkm[i]1
, skm[i]1) using GenS with randomness r1.

Let σ′i = S(pkm[i]0
||pkm[i]1

, skm[i]), using randomness r2

σi = (σ′i , pkm[i]0
, pkm[i]1

)

end for
Let r = F(k2, pkm)
σn = S(m , skm), using randomness r
return (σ0, . . . , σn)

end function

The verification routine is exactly as it was discussed in class.
[15 points] Show that the above digital signature scheme is secure against

chosen message attacks (assuming of course that the scheme S is one-time
secure and F is a secure pseudorandom function). [You does not have to be
extremely verbose here but the answer should be sufficiently formal and con-
vincing to me.]

Question 21. In class, we saw the Merkle-Damgård transform that, given a
collision-resistant hash function (CRHF) H =

{
hs : {0, 1}2` → {0, 1}`

}
s

to
build a CRHF with larger input lengths. Another way to achieve this is via
what are called Merkle trees defined as:

h0
s : x 7→ x

hi
s : {0, 1}2i` → {0, 1}`

hi
s :(x, y) 7→ hs(hi−1

s (x)||hi−1
s (y)) , for all i > 0

[10 points] Show that, for any i = O(log n), the function
{

hi
s
}

s is a CRHF if h
is a CRHF.

Question 22. In class we saw a zero knowledge protocol for 3-colouring, as-
suming the existence of commitment schemes, However, that protocol re-
quired O(|E|) rounds to obtain soundness error at most 1/2 due to sequential
repetition. However, consider the following protocol for the Hamiltonian Cycle
problem where the language LHam is the set of all graphs G such that there

7

is a Hamiltonian cycle in G (a cycle that passes through every vertex exactly
once). Consider the following protocol for LHam.

The Prover (provided the input G, and the cycle C) choose a ran-
dom permutation H = σ(G) of the graph G and sends the verifier
a commitment Λ to entries of the adjacency matrix of H.

The verifier chooses a bit b ∈R {0, 1}, uniformly at random, and
sends that to prover.

If b = 0, the prover opens all committed bits and reveals σ so that
the verifier can check if the prover had honestly committed to a
permutation of G.

If b = 1, the prover only opens the bits corresponding to the cycle
C so that the verifier can check that H indeed has a Hamiltonian
cycle.

[15 points] Prove that, assuming the commitment scheme is secure, this
protocol has perfect completeness, soundness error at most (1/2) and is com-
putational zero knowledge.

Question 23. It is known that, in the single prover setting (which was the
only setting we discussed in class), a k-fold parallel/concurrent repetition of
a protocol with soundness error ε results in a protocol with soundness error
εk. You may assume this result for the purposes of this question.

1. [10 points] Recall that Σ-protocol is a Proof Of Knowledge protocol for
a relation RL(x, y), with special soundness and Honest-Verifier-Zero-
Knowledge satisfies the following template:

• Prover sends a “commitment” a,

• Verifier sends a “challenge” c chosen uniformly at random from a
challenge set C,

• Prover sends a response r. Verifier checks if P(a, c, r) is true, for
some deterministic polynomial time function P.

It satisfies the special soundness property in the sense that there is an
efficient algorithm E that, given any pair (a, c, r) and (a, c′, r′) such that
P(a, c, r) = P(a, c′, r′) = True and c 6= c′, can compute a y such that
RL(x, y) = True.

Furthermore, there is a simulator Sim that on input x and a random
c ∈ C outputs a triple (a, c, e) such that (a, c, e) is distributed according
the same distribution as the transcript of the honest prover with the
honest verifier.

[10 points] Show that a k-fold parallel repetition of such a Σ-protocol
with the above properties also results in a Σ-protocol with all the above
properties.

8

2. A slight variant of parallel repetition is the notion of “concurrent repeti-
tion” where the verifier is running k protocols together and can choose
to “pause” one run, execute a few steps of another run, etc. Consider the
following Proof Of Knowledge protocol for discrete-log.

• Verifier (on input (x, g, p)) attempts to randomly guess a y′ and
checks if gy′ = x mod p. Verifier sends 1 to the Prover (who has
inputs (x, y, g, p)) if he was lucky, and sends 0 otherwise.

• If Verifier had sent 1, then the Verifier initiates a Proof-Of-Knowledge
protocol for discrete log (say Schnorr’s protocol we saw in class) to
tell the Prover that he did find the discrete log of x. If the prover is
convinced, then the prover sends y to the verifier. If the prover is not
convinced, then the prover sends nothing and the verifier rejects.

• If the Verifier had sent 0, then the Prover initiates a Proof-Of-Knowledge
protocol for discrete log (say Schnorr again) and the verifier accepts
if he is convinced.

[10 points] Show that the above protocol is indeed a Zero Knowledge
Proof of Knowledge.

[10 points] Show that a malicious Verifier, with just two concurrent runs
of this protocol, can completely recover y.

References

[Ros19] Mike Rosulek. Joy of cryptography, March 2019. Lecture notes
for CS427 in Oregon State University. URL: http://web.engr.

oregonstate.edu/~rosulekm/crypto/.

A Typesetting libraries (some hacky way)

I’ve created a small macro \LibBlock{} that takes an algorithm pseudocode
(syntax as in the package algpseudocode) and puts it inside an inline tikz box.
The following is an example of using this macro. The macro requires the use
of packages tikz, varwidth, algpseudocode. If any of you have a nicer way
of typesetting it, please do let me know.

LpOTP
left :

function Eavesdrop(mL, mR)
s← {0, 1}λ

z = G(s)
c = z⊕mL
return c

end function

9

http://web.engr.oregonstate.edu/~rosulekm/crypto/
http://web.engr.oregonstate.edu/~rosulekm/crypto/

Lhyb1
:

function Eavesdrop(mL, mR)
z = Query()
c = z⊕mL
return c

end function

◦

function Query()
s← {0, 1}λ

r = G(s)
return r

end function

Lhyb2
:

function Eavesdrop(mL, mR)
z = Query()
c = z⊕mL
return c

end function

◦
function Query()

r ← {0, 1}n

return r
end function

LOTP
left :

dummyglobal = 42

function Eavesdrop(mL, mR)
z← {0, 1}n

c = z⊕mL
return c

end function

10

	Typesetting libraries (some hacky way)

