ALGEBRA AND COMPUTATION

PROBLEM SET 2

Due date: March 3rd, 2019

Instructions

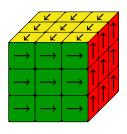
- 1. The problem set has 10 questions with a total score of 100 points.
- 2. The due date is Sunday, March 3rd, 2019.
- 3. You are welcome to discuss with other classmates as long as these discussion are reasonable; these are not meant for one to solve the problem for the other. You are eventually expected to find and write your own solutions and code.
 - If you do discuss, you are expected to explicitly mention who you discussed with and which parts of your solution came from these discussions.
- 4. Solutions are expected as a LATEX documents and sage worksheets (.ipynb files).

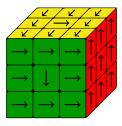
QUESTIONS (FOR SAGE ETC.)

Question 1. [5 points] Build a move for the 3x3x3 Rubik's cube that flips two edges.

(You may use http://alg.cubing.net.)

Question 2. [5 points] Compute the generators for the group of the arrow-version of the 3x3x3 Rubik's cube:





An unsolved state

On http://alg. cubing.net, the notation for the middle layer moves are M, S, E.

[5 points] Find a suitable commutator that *twists* some of the centres.

Question 3. [10 points] Consider the group for the 4x4x4 Rubik's cube (via its action on the 16×6 stickers). Compute the orbits and minimal blocks of this action.

QUESTIONS

Question 4. [10 points] Given a permutation group $G = \langle S \rangle \leq S_n$, give an efficient algorithm to generate a uniformly random element from G.

Question 5. [10 points] Prove the following lemma that we sketched in class.

Lemma. Suppose G acts on [n] and $\sigma, \pi \in G$. Then,

Move(
$$[\sigma, \pi]$$
) $\subseteq S \cup \sigma^{-1}(S) \cup \pi^{-1}(S)$,

where $S = \text{Move}(\sigma) \cap \text{Move}(\pi)$.

Question 6. [10 points]

Show (via a formal proof) that for any $n \ge 3$, the set of 3-cycles generate all even permutations on n elements.

If you have solved this in the last problem set (gave a formal proof, I mean), you do not have to write the solution again.

Question 7. [5 points] Consider the version of the 15-puzzle with the pieces being

A	L	G	Ε
В	R	A	
О	M	Р	С
2	О	1	9

Can this puzzle be solved? Justify your answer. (In the solved state, the third line should read "C O M P" and the other rows are identical)

Question 8. [10 points] Using the following hint (or not), prove that any subgroup $G \le S_n$ has a generating set of size at most (n-1), and that it can be computed efficiently given a generating set for G.

For any non-trivial permutation $g \in S_n$, let $\ell(g)$ be the smallest $i \in \{1, ..., n\}$ moved by g, i.e. $\ell(g) = \min\{i : i^g \neq i\}$.

Given a set *A* of permutations, define the graph $X_A = (V, E_A)$ as

$$V = \{1, ..., n\}$$
 and $E_A = \{(i, i^g) : g \in A, i = \ell(g)\}.$

If X_A has no cycles in it, then of course $|A| \leq (n-1)$.

Question 9. Prove the following two facts we used in Lecture 5.

- (a). **[5 points]** If G normalizes H and $K \leq G$, show that $[GH : KH] \leq [G : K]$.
- (b). [5 points] If $K \leq G$, show that $[G \cap H : K \cap H] \leq [G : K]$.

Question 10. Nilpotent groups are groups with the following property:

A group *G* is *nilpotent* if there is a finite number *k* such that for any choice of $g_1, \ldots, g_k \in G$ we have

for
$$k = 4$$
, you want $[g_1, [g_2, [g_3, g_4]]] =$ id for every $g_1, \dots, g_4 \in G$

$$[g_1, [g_2, [\cdots [g_{k-1}, g_k] \cdots]]] = id$$

where
$$[g_1, g_2] := g_1 g_2 g_1^{-1} g_2^{-1}$$
.

(In the previous problem set, you must have observed that Sylow-subgroups are nilpotent.)

[15 points] Given $G = \langle S \rangle \leq S_n$, construct a deterministic algorithm that runs in time poly(n, |S|) to test if the group G is nilpotent.

Hint: Consider the set of all elements of the form $[g_1, [g_2, [\cdots [g_{k-1}, g_k] \cdots]]]$. What subgroup of G do they generate?

[5 points] Are nilpotent groups the same as solvable groups? Prove or disprove your claim.