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Abstract

This is a short exposition of the polynomial multiplication algorithm of Schönhage and
Strassen [SS71] with almost all the details. I’ve have made the mistake (twice!) of assuming
that a weaker recurrence also yields the main result of Schönhage and Strassen and this article
is to write down the algorithm in as much details as possible, and also to show why weaker
versions fall short.

1 Preliminaries

1.1 Principal roots of unity

Definition 1.1 (Principal roots of unity). An element ω of a commutative ring R is said to be a n-th
principal root of unity (n-PROU) if

• ωn = 1,

• For all 0 < i < n− 1, we have ∑n−1
j=0 ωij = 0. ♦

Lemma 1.2 (Sufficient condition for n-PROU). Suppose n is a power of 2 and ω ∈ R such that ωn/2 +

1 = 0. Then ω is an n-PROU.

1.2 Discrete Fourier Transform

Definition 1.3 (Discrete Fourier Transform). Suppose ω ∈ R is an n-PROU. The Discrete Fourier
Transform (DFT) with respect to ω of a polynomial f (x) ∈ R[x] with deg( f ) < n is the tuple of
evaluations:

DFTω( f ) =
(

f (1), f (ω), . . . , f (ωn−1)
)

. ♦

*hopefully
Base version: (2022-05-17 09:10:59 +0530) , 5aa9b5e
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Observation 1.4 (Inverse DFT is a DFT too). If ω ∈ R is an n-PROU and f ∈ R[x] with deg( f ) < n,
then

DFTω−1 ◦DFTω( f ) = n · f ,

where we are interpreting the tuple DFTω( f ) as the coefficients of a polynomial.

In other words, DFTω−1 is the inverse of DFTω, up to a multiplication by n. When n is a power
of two, there is a very efficient algorithm for computing the Discrete Fourier Transform.

Algorithm 1: FASTFOURIERTRANSFORM( f , ω)

Data: f0, f1, . . . , fn−1 ∈ R, and ω ∈ R that is an n-PROU
Result: ( f (1), f (ω), . . . , f (ωn−1))

1 if n = 1 then
2 return f0

3 feven ← ( f0, f2, f4, . . . , fn−2)
4 fodd ← ( f1, f3, f5, . . . , fn−1)

5 Pre-compute 1, ω, ω2, . . . , ωn−1

6 a0, . . . , a n
2−1 = FASTFOURIERTRANSFORM( feven, ω2)

7 b0, . . . , b n
2−1 = FASTFOURIERTRANSFORM( feven, ω2)

8 for i = 0, . . . , n
2 − 1 do

9 γi ← ai + ωibi

10 γi+ n
2
← ai + ωi+ n

2 bi

11 return γ0, . . . , γn−1.

Lemma 1.5 (Running time of the Fast Fourier Transform). When n is a power of 2, Algorithm 1 on a
polynomial f ∈ R[x] of degree less than n and an n-PROU ω ∈ R performs

• O(n log n) additions of two arbitrary elements in R,

• O(n log n) multiplications of an arbitrary element of R with a power of ω.

1.3 Polynomial multiplication in rings that support FFT

Suppose f (x), g(x) ∈ R[x] with deg( f g) < n where n is a power of 2. Suppose ω ∈ R is a n-PROU,
and we can divide by 2 in R. Then, we can compute the product f (x) · g(x) very efficiently.

Lemma 1.6 (Polynomial multplication over rings supporting FFT). Suppose R is a ring that contains
an n-PROU ω. Then two polynomials f (x), g(x) ∈ R[x] with deg( f g) < n can be multiplied using
Algorithm 2 by performing

• O(n log n) additions of two arbitrary elements in R,

• O(n log n) multiplications of an arbitrary element of R with a power of ω,
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Algorithm 2: POLYMULTWITHPROU( f , g, ω)

Data: Polynomials f (x), g(x) given by coefficients from R with deg( f ) + deg(g) < n, and
an ω ∈ R that is a n-PROU

Result: Coefficients of f (x) · g(x)
1 Interpret both f and g as polynomials of degree less than n (by padding with zeroes if

necessary).
2 a0, . . . , an−1 = FASTFOURIERTRANSFORM( f , ω)
3 b0, . . . , bn−1 = FASTFOURIERTRANSFORM(g, ω)
4 for i = 0, . . . , n− 1 do
5 ci = ai · bi

6 h0, . . . , hn−1 ← 1
n · FASTFOURIERTRANSFORM([c0, . . . , cn−1], ω−1)

7 return h0, . . . , hn−1

• n multiplications of two arbitrary elements in R,

• n divisons by n.

2 The Schönhage-Strassen approach

Suppose we are working over a ring R that possibly does not contain a n-PROU. In that case, we
are not in a position to directly use Algorithm 2. Schönhage and Strassen used a clever idea of
artificially adding a suitable root of unity to the ring and working with that. The main theorem
we are heading towards is the following.

Theorem 2.1 (Schönhage-Strassen [SS71]). For an arbitrary ring R, multiplication of two polynomials
f , g ∈ R[x] with deg( f g) < n can be computed using O(n log n log log n) operations in R.

Attempt 1

The first attempt is to work expand our ring of coefficients to R′ = R[t]
tn/2+1 as t ∈ R′ satisfies

tn/2 + 1 = 0 and is hence an n-PROU by Lemma 1.2.
Thus, we can interpret f (x), g(x) ∈ R[x] as in fact elements of R′[x] and multiply them using

Algorithm 2 with ω = t. However, this would use roughly n log n additions of arbitrary elements
of R′, each of which costs O(n) additions in R. Thus, the running time of the algorithm is at least
as large as n2 log n, which is worse than the standard naïve multiplication.

Attempt 2

The next idea is to somehow reduce the degree of the polynomial so that we only need to add a
smaller root of unity. This is done by rewriting f and g as bivariate polynomials instead. Suppose
k and m are powers of two with k ·m = n (we’ll eventually choose those to about

√
n each). Once
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again, let us pad f and g and think of both f (x), g(x) as polynomials of degree less than n.

f (x) = f0 + f1x + · · ·+ fn1−1xn1−1

= F0 + F1xm + F2x2m + · · ·+ Fk1−1x(k1−1)m

where Fj(x) = f jm + f jm+1x + · · ·+ f jm+(m−1)x
m−1

∴ If f̃ (x, y) := F0 + F1y + · · ·+ Fk1−1yk1−1

then f (x) = f̃ (x, xm)

Thus, we can work with the bivariate polynomial f̃ (x, y) and g̃(x, y). If we can multiply the
polynomials f̃ and g̃ quickly, then we can substitute y = xm in f̃ · g̃ to get f (x) · g(x).

We can interpret f̃ and g̃ as elements in R′[y] where R′ = R[x] and, since mk = n = deg( f g),
we have set it up so that degy( f̃ g̃) < k. Thus, in order to multiply these two polynomials, we can
use Algorithm 2 if somehow R′ contained a k-PROU. Unfortunately, that may not be the case.

Here comes another cool idea of Schönhage and Strassen. Let R′′ be the ring

R′′ =
R[x]

x2m + 1
.

On the face of it, it seems like we are making a typo of putting 2m instead of k but bear with it for
a moment. The key observation is the following.

Observation 2.2. The product of f̃ and g̃ when intepreted as elements of R′[y] is the same as the product
when f̃ and g̃ are intepreted as elements of R′′[y].

Proof. Note that degx( f̃ g̃) < 2m as deg(Fi), deg(Gj) < m by construction. Since the difference
between R′ and R′′ is the relation x2m + 1, the product f̃ · g̃ remains unchanged when considered
modulo x2m + 1.

Therefore, we may as well think that the f̃ and g̃ are polynomials in R′′[y]. Now, fortunately,
x ∈ R′′ is a 4m-PROU due to Lemma 1.2. If we can arrange for the parameters such that 4m ≥ k,
then this is sufficient to multiply f̃ and g̃ using Algorithm 2. Let us make it so. If n = 2`, let
m = 2b`/2c and k = 2d`/2e. This ensures that 2m ≥ k and both are powers of 2 with their product
being n.

Hence, we can compute the product h̃(x, y) using Algorithm 2 with the k-PROU ω suitably
chosen (ω = x2 if ` is odd (and hence 2m = k), and ω = x4 if ` is even (and hence m = k)).

Thus, we can compute the product h̃ = f̃ · g̃ using

(a) O(k log k) additions of elements in R′′,

(b) O(k log k) multiplications of elements in R′′ with powers of x,

(c) k multiplications of arbitrary elements in R′′.
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Note that each addition of elements in R′′ corresponds to m additions over R. Also, multiplications
of elements in R′′ by powers of x just amounts to “shifts” and sign-changes and hence once again
correspond to O(m) operations.

As for the third item, these are elements of R′′, which correspond to polynomials of degree less
than 2m that need to be multiplied (and hence its product has degree less than 4m) and then the
relation “x2m + 1” performed. These multiplications can be called recursively! (And performing
the “modulo x2m + 1” is inexpensive as it is once again involves some shifts and additions in R).
Thus, overall, we get the following recurrence. For simplicity, let us assume k = m =

√
n.

T(n) = O(mk log k) + k · T(4m)

= O(n log n) +
√

n · T(4
√

n).

Solving this recurrence should give us T(n) = O(n log n log log n), right? No! It doesn’t!1 Solving
this recurrence actually yields T(n) = O(n(log n)α), and not T(n) = O(n log n log log n) as was
claimed in Theorem 2.1. (Roughly speaking, the next expansion yields and additional yields the
factor of 4 but the difference between log n and log

√
n will only absorb a factor of 2.) Hence this

doesn’t yield what we want.

Where was the loss, and how do we improve?

Had the recurrence instead been T(n) = O(mk log k) + k · T(2m), then this recurrence would have
resulted in T(n) = O(n log n log log n). This extra factor of 2 appears to just come from the fact that
we want to compute a product of two coefficients in R′′ = R[x]

x2m+1 , and we intepreted had to “pad”
them to degree 4m each, compute the product (which is a polynomial of degree 4m), and then go
modulo x2m + 1. Can we avoid this artefact of first increasing the degree and then decreasing it
again?

Let’s turn the whole thing around. Why don’t we start with the task of computing f (x) ·
g(x) mod xn + 1?

3 Convolutions

Definition 3.1 (Convolution). Suppose f = [ f0, . . . , fn−1] and g = [g0, . . . , gn−1] are two “vectors”
with each fi, gi ∈ R. The convolution of f and g, denoted by f ∗ g, is a “vector” [h0, . . . , h2n−1] such that

h` =
n−1

∑
i=0

fi · g`−i for all ` = 0, . . . , 2n− 1. ♦

The above is just a fancy way of saying that the “vector” h, when interpreted as the coefficients
of a polynomial is just the product of the polynomials f and g.

1I have made this mistake at least twice, and there appears to be multiple notes on the web that also makes the same
mistake.
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A modification of the above convolution definition, that is incredibly useful (as we shall soon
see) is the notion of wrapped convolutions.

Definition 3.2 (Wrapped convolutions). Given two “vectors” f = [ f0, . . . , fn−1] and g = [g0, . . . , gn−1]

with each fi, gj ∈ R, the positively wrapped convolution of f and g is given by the “vector” h+ =

[h+0 , . . . , h+n−1] defined as

h+` =
n

∑
i=0

( fi · g`−i + fi · gn+`−i) for all ` = 0, . . . , 2n− 1. ♦

Similarly, the negatively wrapped convolution (PWC) of f and g is given by the “vector” h− =

[h−0 , . . . , h−n−1] defined as

h−` =
n

∑
i=0

( fi · g`−i − fi · gn+`−i) for all ` = 0, . . . , n− 1.

In other words, both the above wrapped convolutions is a way of “folding” the standard
convolution h = f ∗ g to half its length, with the positively wrapped convolution setting h+` =

h` + hn+` and the negatively wrapped convolution setting h−` = h` − hn+`.

Observation 3.3. Suppose f and g are intepreted as polynomials of degree less than n, then the polynomials
h+ and h− corresponding the the positively and negatively wrapped convolutions respectively are given by

h+(x) = f (x) · g(x) mod xn − 1,

h−(x) = f (x) · g(x) mod xn + 1.

We’ll now see why both the positively and negatively wrapped convolutions can be computed
quickly using the Fast Fourier Transform Algorithm 1.

3.1 Computing positively wrapped convolutions using FFT

The Fourier Transform can actually be used to compute the positively wrapped convolutions
(PWC) quite quickly.

This almost seems identical to the Algorithm 2 and it is, except for the fact that in that case
we would have used a 2n-th PROU and not an n-th PROU as used above. Roughly speaking, the
above algorithm ensures that the output polynomial h+(x), of degree less than n, satisfies

h(ωi) = f (ωi) · g(ωi) for i = 1, . . . , n− 1

=⇒ h(x)− f (x)g(x) = 0 mod (x−ωi) for i = 1, . . . , n− 1

=⇒ h(x)− f (x)g(x) = 0 mod
n

∏
i=0

(x−ωi) (some version of CRT)

= 0 mod xn − 1.
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Algorithm 3: PWC-WITH-PROU( f , g, ω)

Data: “Vectors” f = [ f0, . . . , fn−1], g = [g0, . . . , gn−1] with entries in R and an ω ∈ R that is
a n-PROU

Result: The positively wrapped convolution h+ = [h0, . . . , hn−1] of f and g.
1 a0, . . . , an−1 = FASTFOURIERTRANSFORM( f , ω)
2 b0, . . . , bn−1 = FASTFOURIERTRANSFORM(g, ω)
3 for i = 0, . . . , n− 1 do
4 ci = ai · bi

5 h0, . . . , hn−1 ← 1
n · FASTFOURIERTRANSFORM([c0, . . . , cn−1], ω−1)

6 return h0, . . . , hn−1

Lemma 3.4 (PWC over rings supporting FFT). Suppose R is a ring that contains an n-PROU ω.
Then the PWC of two polynomials f (x), g(x) ∈ R[x] with deg( f ), deg(g) < n can be computed using
Algorithm 3 by performing

• O(n log n) additions of two arbitrary elements in R,

• O(n log n) multiplications of an arbitrary element of R with a power of ω,

• n multiplications of two arbitrary elements in R,

• n divisons by n.

The key difference between the above lemma and Lemma 1.6 is that when deg( f ), deg(g) < n,
we only have that deg( f g) < 2n − 1 and hence would need about 2n multiplications of two
arbitrary elements in R whereas the above algorithm shows that n multiplications are enough to
compute the PWC.

3.2 Computing negatively wrapped convolution

Negatively wrapped convolutions (NWC) of two vectors can also be computed efficiently using
FFT, except we now need a 2n-PROU in the ring. The main idea is as follows. Suppose n is a
power of 2 and ω satisfies ωn + 1 = 0 and hence is a 2n-PROU (Lemma 1.2). Then, observe that

−(xn + 1) = −xn − 1 = (ω · x)n − 1 = (ω−1 · x)n − 1

7



Therefore, if f̃ (x) = f (ω · x) and g̃(x) = g(ω · x), and h̃ is the PWC of f̃ and g̃, we have

h̃(x) = f̃ (x)g̃(x) mod xn − 1

=⇒ h̃(x) = f̃ (x)g̃(x) + q(x) · (xn − 1)

= f (ω · x) · g(ω · x) + q(x) · (xn − 1).

∴ h(x) := h̃(ω−1 · x) = f (x) · g(x) + q(ω−1 · x) · ((ω−1 · x)n − 1)

= f (x) · g(x) + q′(x) · (xn + 1)

=⇒ h(x) = f (x)g(x) mod xn + 1.

This immediately yields an algorithm.

Algorithm 4: NWC-WITH-PROU( f , g, ω)

Data: “Vectors” f = [ f0, . . . , fn−1], g = [g0, . . . , gn−1] with entries in R and an ω ∈ R that is
a 2n-PROU

Result: The negatively wrapped convolution h− = [h0, . . . , hn−1] of f and g.
1 Compute the coefficients of f̃ (x) := f (ω · x) and g̃(x) := g(ω · x).
2 h̃(x)← PWC-WITH-PROU( f , g, ω2)

3 Compute the coefficients [h0, . . . , hn−1] of h−(x) := h̃(ω−1 · x).
4 return h0, . . . , hn−1

Lemma 3.5 (NWC over rings supporting FFT). Suppose R is a ring that contains a 2n-PROU ω.
Then the NWC of two polynomials f (x), g(x) ∈ R[x] with deg( f ), deg(g) < n can be computed using
Algorithm 4 by performing

• O(n log n) additions of two arbitrary elements in R,

• O(n log n) multiplications of an arbitrary element of R with a power of ω,

• n multiplications of two arbitrary elements in R,

• n divisons by n.

Once again, it is crucial that we only need n multiplications of arbitrary elements in R, and not
2n.

3.3 NWC in rings without a PROU

We are now going to follow the same strategy that we tried earlier for polynomial multiplication,
but this time instead for computing NWC in rings without a 2n-PROU.

Suppose we are given f , g ∈ R[x] with deg( f ), deg(g) < n and we wish to compute the NWC
h(x) of f and g, which we know satisfies

h(x) = f (x)g(x) mod xn + 1.
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Once again, if n = 2`, let m = 2b`/2c and k = 2d`/2e and consider the following bivariate polyno-
mials

f̃ (x, y) := F0 + F1y + · · ·+ Fk−1yk−1

where Fj(x) = f jm + f jm+1x + · · ·+ f jm+(m−1)x
m−1

so that f (x) = f̃ (x, xm).

Similarly, g̃(x, y) := G0 + G1y + · · ·+ Gk−1yk−1

where Gj(x) = gjm + gjm+1x + · · ·+ gjm+(m−1)x
m−1.

Note that degy f̃ , degy g̃ < k. Suppose we could compute the negative convolution h̃−(x, y) of
f̃ (x, y) and g̃(x, y). Then, note that

h̃−(x, y) = f̃ (x, y) · g̃(x, y) mod yk + 1

=⇒ h̃−(x, y)− f̃ (x, y) · g̃(x, y) = q(x, y) · (yk + 1)

=⇒ h̃−(x, xm)− f̃ (x, xm) · g̃(x, xm) = q(x, xm) · (xkm + 1)

=⇒ h(x) := h̃−(x, xm) = f (x) · g(x) mod xn + 1.

Therefore, in order to compute the NWC of f and g, it suffices to compute the NWC of f̃ and g̃.
Since degx f̃ , degx g̃ < m, we have that degx( f̃ · g̃) < 2m and hence we can safely interpret the
polynomials f̃ and g̃ as elements of R′[y] where

R′′ =
R[x]

x2m + 1
.

Now, since the ring R′′ now contains a 4m-PROU, namely x, and since 2m > k by our choice of
parameters, we certainly have a 2k-PROU ω ∈ R′′ (if ` is even, then m = k and ω = x2; if ` is
odd, then 2m = k and hence ω = x). Thus, we can certainly use Algorithm 4 to compute the
k-length NWC h̃− of f̃ and g̃. Once we have h̃−(x, y), we can compute h(x) = h̃−(x, xm) which is
the desired output.

By Lemma 3.5, we can compute the m-length NWC of f̃ and g̃ using O(m log m) additions of
arbitrary elements in R′′, and O(m log m) multiplications of elements of R′ with powers of x, and
m multiplications of arbitrary elements of R′′. But each multiplication in R′′ is also yet another
NWC computation of length 2m and hence these will be recursive calls. Thus, the running time
can be expressed as

T(n) = O(k log k)× additions in R′′

+ O(k log k)× multiplications of the form xi × R′′

+ k×NWC computations of length-2m

=⇒ T(n) = O(n log n) + k · T(2m)
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and that’s the better recurrence we were looking for! Solving this recurrence (Lemma A.1) yields
T(n) = O(n log n log log n).

Theorem 3.6 (Fast negatively wrapped convolutions [SS71]). Given two polynomials f (x), g(x) ∈
R[x] with deg f , deg g < n = 2`, and if we can divide by 2 in R, then we can compute the length-n
negatively wrapped convolution of f and g in deterministic O(n log n log log n).

Algorithm 5: FAST-NWC( f , g)

Data: “Vectors” f = [ f0, . . . , fn−1], g = [g0, . . . , gn−1] with entries in R, with n = 2`.
Result: The negatively wrapped convolution h− = [h0, . . . , hn−1] of f and g.

1 k← 2d`/2e and m← 2b`/2c.
2 Express f (x) and g(x) as bivariates f̃ (x, y) and g̃(x, y) satisfying degx f̃ , degx g̃ < m and

degy f̃ , degy g̃ < k, with f (x) = f̃ (x, xm) and g(x) = g̃(x, xm).

3 Interpret f̃ and g̃ as elements of R′[y] where R′ = R[x]
x2m+1 .

4 if ` is even then
5 ω ← x2.
6 else
7 ω ← x.

8 h̃−(x, y)← NWC-WITH-PROU( f̃ , g̃, ω)

9 Compute the coefficients [h0, . . . , hn−1] of h̃(x, xm)

10 return h0, . . . , hn−1.

Corollary 3.7 (Theorem 2.1). Suppose R is a ring in which we can divide by 2. Then, we can compute
the product of two polynomials f (x), g(x) ∈ R[x] in deterministic time O(n log n log log n), where n is
an upper bound on their degrees.

Proof. Just think of f and g as polynomials of degree less than 2n by padding, and their negatively
wrapped convolution h(x), which can be computed using Algorithm 5 is the product f g.
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A Solving the recurrence

Considering I’ve made a mistake earlier (twice!) in assuming that the wrong recurrence yields
O(n log n log log n), it is perhaps prudent to prove it completely.

Lemma A.1. The recurrence (defined for powers of 2) given by

T(n) = O(n log n) + k · T(2m) , T(1) = 1
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where n = 2`, m = 2b`/2c and k = 2d`/2e, solves to T(n) = O(n log n log log n).

Proof. Let S(n) = T(n)/n. Thus, the above recurrence can be written as

S(n) = O(log n) + 2 · S(2m)

≤ c log n + 2 · S(2
√

n)

for some absolute constant c. Therefore,

S(n) ≤ c log n + 2(c log(2
√

n) + 2 · S(21+ 1
2 n1/4))

≤ c log n + c log(22n) + 22 · S(21+ 1
2 n1/22

)

≤ c log(221
n) + c log(222

n) + 22 · S(21+ 1
2 n1/22

)

≤ c log(221
n) + c log(222

n) + c log(222(1+ 1
2 )n) + 23 · S(21+ 1

2+
1
4 n1/23

)

≤ c log(221
n) + c log(222

n) + c log(223
n) + 23 · S(21+ 1

2+
1
4 n1/23

)

...

≤ c
log log n

∑
i=1

log(22i
n) = c

log log n

∑
i=1

(
log n + 2i

)
= c log n log log n + c(1 + 2 + 22 + · · ·+ log n)

= c log n log log n + 2c log n = O(log n log log n)

∴ T(n) = O(n log n log log n).
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