
CSS.203.1 COMPUTATIONAL COMPLEXITY (2023-I) PROBLEM SET 1

Problem Set 1

• Due date: 12 Feb, 2023 (released on 28 Jan, 2023)

• The points for each problem is indicated on the side. The total for this set is 100 points.

• The problem set has a fair number of questions so please do not wait until close to the
deadline to start on them. Try and do one question every couple of days.

• Turn in your problem sets electronically (PDF; either LATEXed or scanned etc.) via email.

• Collaboration with other students taking this course is encouraged, but collaboration
with others is not allowed. Irrespective of this, all writeups must be done individually
and must include names of all collaborators (if any).

• Referring to sources other than the text book and class notes is STRONGLY DISCOUR-
AGED. But if you do use an external source (eg.,other text books, lecture notes, or any
material available online), ACKNOWLEDGE all your sources (including collaborators)
in your writeup. This will not affect your grades. However, not acknowledging will be
treated as a serious case of academic dishonesty.

• Be clear in your writing.

1. [Classification of problems] (3 + 3 + 4)

For each of these problems, mention (with justification) if they are in P, or not (known to
be) in P, or in NP, or in coNP, or is NP-hard, or is coNP-hard etc.

(a) Factoring =
{
(1n, 1k) : n has a prime factor less than k

}
.

(b) Contradiction = {〈ϕ〉 : 〈ϕ〉 encodes a formula that is false for every assignment.}
(For example, 〈x1 ∧ ¬x1〉 is in the language.)

(c)

EquivalentFormulas =

{
(〈ϕ1〉 , 〈ϕ2〉) : 〈ϕ1〉 , 〈ϕ2〉 encode two formulas such that

for all x we have ϕ1(x) = ϕ2(x).

}
2. [Properties of reductions] (5)

Suppose L1, L2 be two arbitrary languages with L1 ≤
poly
m L2 (that is, there is a polynomial

time many-one reduction from L1 and L2).

Answer each of these questions as true/false with brief justifications.

(a) If L1 is in P, then so is L2.

(b) If L2 is in P, then so is L1.

(c) If L1 is NP-complete, then so is L2.

(d) If L2 is NP-complete, then so is L1.

(e) If L1 is in DTIME(2o(n)), then so is L2.

(f) If L2 is in DTIME(2o(n)), then so is L1.

3. [Operations on languages] (10)

(a) If L1, L2 are two languages in NP, show that the languages L1 ∩ L2 and L1 ∪ L2 are
in NP as well.

git info: 1ed1cc0 , (2023-01-29 12:56:54 +0530) 1 of 4

CSS.203.1 COMPUTATIONAL COMPLEXITY (2023-I) PROBLEM SET 1

(b) For any three languages L1, L2, L3,

Maj(L1, L2, L3) = {x : x is in at least two of the Li’s} .

Show that, if L1, L2, L3 ∈ NP, then the language Maj(L1, L2, L3) is also in NP.

(c) For two languages L1, L2, let L1 ⊕ L2 = {x ∈ Σ∗ : x is in exactly one of L1, L2}. If
L1, L2 ∈ NP∩ coNP, show that L1 ⊕ L2 ∈ NP∩ coNP as well.

4. [P-complete languages] (10)

List two languages in P that are P-complete under polynomial-time many-one reduc-
tions, and two languages in P that are not P-complete under polynomial-time many-one
reductions.

5. [Dominating set is NP-complete.] (10)

In an undirected graph G = (V, E), a set of vertices S ⊆ V is said to be a dominating set if
every vertex v ∈ V either is an element of S or has a neighbour in S.

Show that the following language

DominatingSet =
{
(〈G〉 , 1k) : 〈G〉 encodes an undirected graph that

has a dominating set of size at most k

}
is NP-complete.

6. [Tape reduction with non-determinism.] (10)

Suppose you are given a non-deterministic Turing machine M deciding a language L
uses 10827 tapes running in time T(n) : N→N. Show that there is an equivalent Turing
Machine with just two work-tapes that decides the same language running in time T′(n)
such that T′(n) = O(T(n)).

[Hint:Trytouseonetapefortheinterleavedversionof10827tapesofM,
andusetheothertapetojustwritedownwhatyouguesstheheadsdoin
eachofthesteps.]

7. [If P = NP...] (3 + 7 + 5)

(a) If P = NP, show that NP = coNP.

(b) A Σ2 formula is a quantified formula ψ of the form

ψ := ∃x ∈ {0, 1}n ∀y ∈ {0, 1}n : ϕ(x, y)

For example,

∃x ∈ {0, 1}n ∀y ∈ {0, 1}n : ((x1 ∧¬y1)∨ (¬x1 ∧ y1)) · · · ((xn ∧¬yn)∨ (¬xn ∧ yn))

is the formula that asserts that for there is a string x, that is the bit-wise negation of
all strings y, which of course is false.
Define the language True Σ2 as {〈ψ〉 : 〈ψ〉 encodes a Σ2 formula that is true.}.

If P = NP, show that True Σ2 is in P.

(c) Can you extend your proof for True Σ3? That is, if P = NP, can you show that
True Σ3 ∈ P as well?
As you might expect, Σ3 formulas of the form

∃x ∈ {0, 1}n ∀y ∈ {0, 1}n ∃z ∈ {0, 1}n : ϕ(x, y, z).

git info: 1ed1cc0 , (2023-01-29 12:56:54 +0530) 2 of 4

CSS.203.1 COMPUTATIONAL COMPLEXITY (2023-I) PROBLEM SET 1

8. [Reductions between reductions.] (5 + 5 + 5)

In class we saw the notion of Turing reduction, and many-one reductions. Here is a brief
description of it, along with two other types or reductions. Let Σ = {0, 1}.

Many-one reductions. A many-one reduction from a language L1 to a language L2, de-
noted by L1 ≤m L2, is given by a function f : Σ∗ → Σ∗ such that for all x ∈ Σ∗ we
have x ∈ L1 ⇐⇒ f (x) ∈ L2. The running time of the reduction is the running time
of the Turing machine computing f .

Turing reductions. A Turing-reduction from a language L1 to a language L2, denoted by
L1 ≤TM L2, is given by an oracle Turing machine M such that ML2 decides L1. The
running time fo the reduction is the running time of the M.

Projection reductions. A projection-reduction from L1 to L2, denoted by L1 ≤proj L2,
is given by a sequence of functions

{
fi : Σi → Σmi : i ∈N

}
, one for each length n

such that

• For all x ∈ Σ∗ with |x| = n, x ∈ L1 ⇔ fn(x) ∈ L2.
• Each of the functions fi’s are just projections, in the sense that every output bit

is either a constant, or equals one of the input bits or its negation. For example,
f3(x1, x2, x3) = (0,¬x3, x3, 1, x1, 1,¬x2,¬x1) is a projection function.

The running time of this reduction is given by just the function i 7→ mi.

Truth-table reductions. A truth-table reduction from L1 to L2, denoted by L1 ≤TT L2, is
given by a Turing machine M that, on input x, outputs a set of finite strings y1, . . . , yk
and boolean function h : Σk → Σ such that x ∈ L if and only if h(L2(y1), . . . , L2(yk)) =
1. (In other words, it is a Turing reduction where the queries and the post-processing
function have to be written down beforehand before actually running the oracle for
L2.)
The running time of the reduction is the running time of the Turing machine M.

(a) Among the four reductions above, which ones imply another? That is, name all
X, Y ∈ {m, TM, proj, TT} from above such that you can formally show that L1 ≤

poly
X

L2 implies L1 ≤
poly
Y L2 (where the poly refers to only polynomial time reductions.)

(b) For what X, Y ∈ {many-one, Turing, projection, truth-table} can you prove the fol-
lowing statement:

If L is NP-complete under polynomial-time X-reductions, then L is NP-
complete under Y-reductions as well.

(c) Give one non-trivial example of each of the above kinds for reductions.

9. [System of quadratic equations] (8 + 7)

A system of quadratic equations Q, is specified by a set of quadratic equations. For
example,

x1x2 + x3x4 + · · · xn−1xn = 0
x1 + 7x3xn + 3x2

1 = 0
...

x2x3 − 7x9x12 = 0


Let QuadEqns =

{
〈Q〉 : 〈Q〉 encodes a system of quadratic equations

such that some x ∈ {0, 1}∗ satisfies all of them.

}
.

(a) Show that QuadEqns is NP-complete.

git info: 1ed1cc0 , (2023-01-29 12:56:54 +0530) 3 of 4

CSS.203.1 COMPUTATIONAL COMPLEXITY (2023-I) PROBLEM SET 1

(b) Turns out, there is an important result in mathematics that states the following:

Suppose f1(x), . . . , fm(x) ∈ C[x1, . . . , xn] are polynomials such that there is
no x ∈ Cn that satisfies all of them. Then, there are polynomials g1, . . . , gm
such that f1g1 + · · ·+ fmgm = 1.

Now, given a system Q, we can always add equations of the form x2
i − xi = 0 to

ensure that only xi ∈ {0, 1} can satisfy them. Given such a system Q, here is a
“proof” for QuadEqns ∈ coNP.

It suffices to show that the complement of QuadEqns is in NP. Given any
input Q = { f1, . . . , fm} that is not satisfied by any x ∈ {0, 1}n, let Q′ be the
system

Q′ = Q∪
{

x2
i − xi = 0 : i = 1, . . . , n

}
.

Since the system Q′ has no complex solutions either (since we enforced
that x2

i − xi = 0 for all i), from the above fact, we know that there must
exist polynomial g1, . . . , gm, h1, . . . , hn such that

g1 f1 + · · ·+ gm fm + h1 · (x2
1 − x1) + · · ·+ hn · (x2

n − xn) = 1.

So the non-deterministic Turing machine can just guess g1, . . . , gm, h1, . . . , hm
and verify if the above equality holds.
This shows that the complement of QuadEqns is in NP, and hence QuadEqns ∈
coNP.

What is wrong with the above “proof”?

git info: 1ed1cc0 , (2023-01-29 12:56:54 +0530) 4 of 4

