Problem Set 1

- Due date: $\mathbf{1 2}$ Feb, 2023 (released on 28 Jan, 2023)
- The points for each problem is indicated on the side. The total for this set is $\mathbf{1 0 0}$ points.
- The problem set has a fair number of questions so please do not wait until close to the deadline to start on them. Try and do one question every couple of days.
- Turn in your problem sets electronically (PDF; either $\mathrm{AT}_{\mathrm{E}} \mathrm{Xed}$ or scanned etc.) via email.
- Collaboration with other students taking this course is encouraged, but collaboration with others is not allowed. Irrespective of this, all writeups must be done individually and must include names of all collaborators (if any).
- Referring to sources other than the text book and class notes is STRONGLY DISCOURAGED. But if you do use an external source (eg.,other text books, lecture notes, or any material available online), ACKNOWLEDGE all your sources (including collaborators) in your writeup. This will not affect your grades. However, not acknowledging will be treated as a serious case of academic dishonesty.
- Be clear in your writing.

1. [Classification of problems]

For each of these problems, mention (with justification) if they are in P, or not (known to be) in P, or in NP, or in coNP, or is NP-hard, or is coNP-hard etc.
(a) Factoring $=\left\{\left(1^{n}, 1^{k}\right): n\right.$ has a prime factor less than $\left.k\right\}$.
(b) Contradiction $=\{\langle\varphi\rangle:\langle\varphi\rangle$ encodes a formula that is false for every assignment. $\}$ (For example, $\left\langle x_{1} \wedge \neg x_{1}\right\rangle$ is in the language.)
(c)

EquivalentFormulas $=\left\{\left(\left\langle\varphi_{1}\right\rangle,\left\langle\varphi_{2}\right\rangle\right): \begin{array}{c}\left\langle\varphi_{1}\right\rangle,\left\langle\varphi_{2}\right\rangle \text { encode two formulas such that } \\ \text { for all } x \text { we have } \varphi_{1}(x)=\varphi_{2}(x) .\end{array}\right\}$
2. [Properties of reductions]

Suppose L_{1}, L_{2} be two arbitrary languages with $L_{1} \leq_{m}^{\text {poly }} L_{2}$ (that is, there is a polynomial time many-one reduction from L_{1} and L_{2}).
Answer each of these questions as true/false with brief justifications.
(a) If L_{1} is in P , then so is L_{2}.
(b) If L_{2} is in P, then so is L_{1}.
(c) If L_{1} is NP-complete, then so is L_{2}.
(d) If L_{2} is NP-complete, then so is L_{1}.
(e) If L_{1} is in $\operatorname{DTIME}\left(2^{o(n)}\right)$, then so is L_{2}.
(f) If L_{2} is in $\operatorname{DTIME}\left(2^{o(n)}\right)$, then so is L_{1}.
3. [Operations on languages]
(a) If L_{1}, L_{2} are two languages in NP, show that the languages $L_{1} \cap L_{2}$ and $L_{1} \cup L_{2}$ are in NP as well.
(b) For any three languages L_{1}, L_{2}, L_{3},

$$
\operatorname{Maj}\left(L_{1}, L_{2}, L_{3}\right)=\left\{x: x \text { is in at least two of the } L_{i}^{\prime} \mathrm{s}\right\} .
$$

Show that, if $L_{1}, L_{2}, L_{3} \in N P$, then the language $\operatorname{Maj}\left(L_{1}, L_{2}, L_{3}\right)$ is also in NP.
(c) For two languages L_{1}, L_{2}, let $L_{1} \oplus L_{2}=\left\{x \in \Sigma^{*}: x\right.$ is in exactly one of $\left.L_{1}, L_{2}\right\}$. If $L_{1}, L_{2} \in \mathrm{NP} \cap$ coNP, show that $L_{1} \oplus L_{2} \in \mathrm{NP} \cap$ coNP as well.

4. [P-complete languages]

List two languages in P that are P -complete under polynomial-time many-one reductions, and two languages in P that are not P -complete under polynomial-time many-one reductions.

5. [Dominating set is NP-complete.]

In an undirected graph $G=(V, E)$, a set of vertices $S \subseteq V$ is said to be dominating set if every vertex $v \in V$ either is an element of S or has a neighbour in S.
Show that the following language

$$
\text { DominatingSet }=\left\{\left(\langle G\rangle, 1^{k}\right): \begin{array}{l}
\langle G\rangle \text { encodes an undirected graph that } \\
\text { has a dominating set of size at most } k
\end{array}\right\}
$$

is NP-complete.

6. [Tape reduction with non-determinism.]

Suppose you are given a non-deterministic Turing machine M deciding a language L uses 10827 tapes running in time $T(n): \mathbb{N} \rightarrow \mathbb{N}$. Show that there is an equivalent Turing Machine with just two work-tapes that decides the same language running in time $T^{\prime}(n)$ such that $T^{\prime}(n)=O(T(n))$.

> [‘sdәұs әчұ ґо чэеә

7. [If $\mathrm{P}=\mathrm{NP} . .$.

$$
(3+7+5)
$$

(a) If $P=N P$, show that $N P=\operatorname{coNP}$.
(b) A Σ_{2} formula is a quantified formula ψ of the form

$$
\psi:=\exists x \in\{0,1\}^{n} \forall y \in\{0,1\}^{n}: \varphi(x, y)
$$

For example,

$$
\exists x \in\{0,1\}^{n} \forall y \in\{0,1\}^{n}:\left(\left(x_{1} \wedge \neg y_{1}\right) \vee\left(\neg x_{1} \wedge y_{1}\right)\right) \cdots\left(\left(x_{n} \wedge \neg y_{n}\right) \vee\left(\neg x_{n} \wedge y_{n}\right)\right)
$$

is the formula that asserts that for there is a string x, that is the bit-wise negation of all strings y, which of course is false.
Define the language $\operatorname{True} \Sigma_{2}$ as $\left\{\langle\psi\rangle:\langle\psi\rangle\right.$ encodes a Σ_{2} formula that is true. $\}$.
If $P=N P$, show that $\operatorname{True} \Sigma_{2}$ is in P.
(c) Can you extend your proof for $\operatorname{True} \Sigma_{3}$? That is, if $P=N P$, can you show that True $\Sigma_{3} \in \mathrm{P}$ as well?
As you might expect, Σ_{3} formulas of the form

$$
\exists x \in\{0,1\}^{n} \forall y \in\{0,1\}^{n} \exists z \in\{0,1\}^{n}: \varphi(x, y, z) .
$$

8. [Reductions between reductions.]

In class we saw the notion of Turing reduction, and many-one reductions. Here is a brief description of it, along with two other types or reductions. Let $\Sigma=\{0,1\}$.

Many-one reductions. A many-one reduction from a language L_{1} to a language L_{2}, denoted by $L_{1} \leq_{m} L_{2}$, is given by a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that for all $x \in \Sigma^{*}$ we have $x \in L_{1} \Longleftrightarrow f(x) \in L_{2}$. The running time of the reduction is the running time of the Turing machine computing f.
Turing reductions. A Turing-reduction from a language L_{1} to a language L_{2}, denoted by $L_{1} \leq_{\text {TM }} L_{2}$, is given by an oracle Turing machine M such that $M^{L_{2}}$ decides L_{1}. The running time fo the reduction is the running time of the M.
Projection reductions. A projection-reduction from L_{1} to L_{2}, denoted by $L_{1} \leq_{\text {proj }} L_{2}$, is given by a sequence of functions $\left\{f_{i}: \Sigma^{i} \rightarrow \Sigma^{m_{i}}: i \in \mathbb{N}\right\}$, one for each length n such that

- For all $x \in \Sigma^{*}$ with $|x|=n, x \in L_{1} \Leftrightarrow f_{n}(x) \in L_{2}$.
- Each of the functions f_{i}^{\prime} s are just projections, in the sense that every output bit is either a constant, or equals one of the input bits or its negation. For example, $f_{3}\left(x_{1}, x_{2}, x_{3}\right)=\left(0, \neg x_{3}, x_{3}, 1, x_{1}, 1, \neg x_{2}, \neg x_{1}\right)$ is a projection function.
The running time of this reduction is given by just the function $i \mapsto m_{i}$.
Truth-table reductions. A truth-table reduction from L_{1} to L_{2}, denoted by $L_{1} \leq_{\mathrm{TT}} L_{2}$, is given by a Turing machine M that, on input x, outputs a set of finite strings y_{1}, \ldots, y_{k} and boolean function $h: \Sigma^{k} \rightarrow \Sigma$ such that $x \in L$ if and only if $h\left(L_{2}\left(y_{1}\right), \ldots, L_{2}\left(y_{k}\right)\right)=$ 1. (In other words, it is a Turing reduction where the queries and the post-processing function have to be written down beforehand before actually running the oracle for L_{2}.)
The running time of the reduction is the running time of the Turing machine M.
(a) Among the four reductions above, which ones imply another? That is, name all $X, Y \in\{\mathrm{~m}, \mathrm{TM}$, proj, TT$\}$ from above such that you can formally show that $L_{1} \leq_{X}^{\text {poly }}$ L_{2} implies $L_{1} \leq_{Y}^{\text {poly }} L_{2}$ (where the poly refers to only polynomial time reductions.)
(b) For what $X, Y \in\{$ many-one, Turing, projection, truth-table $\}$ can you prove the following statement:

If L is NP-complete under polynomial-time X-reductions, then L is NPcomplete under Y-reductions as well.
(c) Give one non-trivial example of each of the above kinds for reductions.

9. [System of quadratic equations]

A system of quadratic equations \mathcal{Q}, is specified by a set of quadratic equations. For example,

$$
\left\{\begin{aligned}
x_{1} x_{2}+x_{3} x_{4}+\cdots x_{n-1} x_{n} & =0 \\
x_{1}+7 x_{3} x_{n}+3 x_{1}^{2} & =0 \\
\vdots & \\
x_{2} x_{3}-7 x_{9} x_{12} & =0
\end{aligned}\right\}
$$

Let QuadEqns $=\left\{\langle\mathcal{Q}\rangle: \begin{array}{c}\langle\mathcal{Q}\rangle \text { encodes a system of quadratic equations } \\ \text { such that some } x \in\{0,1\}^{*} \text { satisfies all of them. }\end{array}\right\}$.
(a) Show that QuadEqns is NP-complete.
(b) Turns out, there is an important result in mathematics that states the following:

Suppose $f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are polynomials such that there is no $\mathbf{x} \in \mathbb{C}^{n}$ that satisfies all of them. Then, there are polynomials g_{1}, \ldots, g_{m} such that $f_{1} g_{1}+\cdots+f_{m} g_{m}=1$.
Now, given a system \mathcal{Q}, we can always add equations of the form $x_{i}^{2}-x_{i}=0$ to ensure that only $x_{i} \in\{0,1\}$ can satisfy them. Given such a system \mathcal{Q}, here is a "proof" for QuadEqns \in coNP.

It suffices to show that the complement of QuadEqns is in NP. Given any input $\mathcal{Q}=\left\{f_{1}, \ldots, f_{m}\right\}$ that is not satisfied by any $\mathbf{x} \in\{0,1\}^{n}$, let \mathcal{Q}^{\prime} be the system

$$
\mathcal{Q}^{\prime}=\mathcal{Q} \cup\left\{x_{i}^{2}-x_{i}=0: i=1, \ldots, n\right\} .
$$

Since the system \mathcal{Q}^{\prime} has no complex solutions either (since we enforced that $x_{i}^{2}-x_{i}=0$ for all i), from the above fact, we know that there must exist polynomial $g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{n}$ such that

$$
g_{1} f_{1}+\cdots+g_{m} f_{m}+h_{1} \cdot\left(x_{1}^{2}-x_{1}\right)+\cdots+h_{n} \cdot\left(x_{n}^{2}-x_{n}\right)=1 .
$$

So the non-deterministic Turing machine can just guess $g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{m}$ and verify if the above equality holds.
This shows that the complement of QuadEqns is in NP, and hence QuadEqns \in coNP.

What is wrong with the above "proof"?

