Problem Set 2

- Due date: 3 Mar, 2023 (released on 15 Feb, 2023)
- The points for each problem is indicated on the side. The total for this set is $\mathbf{6 5}$ points.
- The problem set has a fair number of questions so please do not wait until close to the deadline to start on them. Try and do one question every couple of days.
- Turn in your problem sets electronically (PDF; either $\mathrm{LATEX}_{\mathrm{E}} \mathrm{Xed}$ or scanned etc.) via email.
- Collaboration with other students taking this course is encouraged, but collaboration with others is not allowed. Irrespective of this, all writeups must be done individually and must include names of all collaborators (if any).
- Referring to sources other than the text book and class notes is STRONGLY DISCOURAGED. But if you do use an external source (eg.,other text books, lecture notes, or any material available online), ACKNOWLEDGE all your sources (including collaborators) in your writeup. This will not affect your grades. However, not acknowledging will be treated as a serious case of academic dishonesty.
- Be clear in your writing.

1. [Mahoney's theorem]

Show that if there is a sparse language L that is NP-hard, then $\mathrm{P}=\mathrm{NP}$.

2. [Baker-Gill-Solovay for NP and coNP]

Show that there is a language A such that $\mathrm{NP}^{A} \neq \mathrm{coNP}^{A}$.

3. [Classes and reductions]

Show that $\operatorname{NTIME}(n) \neq \mathrm{P}$.

4. [Unique witness]

Define the following language

$$
\text { Unique3Col }=\left\{\begin{array}{cc}
\langle G\rangle: & \begin{array}{c}
\langle G\rangle \text { encodes an undirected graph } \\
\text { that has a unique 3-colouring, } \\
\text { up to permutation of the three colours. }
\end{array}
\end{array}\right\}
$$

Show that Unique3Col $\in \mathrm{P}^{\mathrm{SAT}}$.

5. [Cook-Levin in the presence of oracles]

A natural question is whether the Cook-Levin reduction continues to hold even in the presence of oracles. Turns out, the answer is 'Yes, and no' - it depends on how precisely the question is posed.
(a) Let A be an arbitrary language. Define a suitable relatived version of CircuitSAT and show that it is NP^{A}-complete under polynomial time many-one reductions.
(b) Show that there is a language A and another language L_{A} such that $L_{A} \in \mathrm{NP}^{A}$ but there is no polynomial-time oracle TM M such that M^{A} is a reduction from L_{A} to CircuitSAT.
(That is, giving oracle access to A does not allow us build a reduction from L_{A} to CircuitSat even though $L_{A} \in \mathrm{NP}^{A}$.)
[¿suo!̣эпрәл-әןгело әu!̣

6. [A decideable function that is not time-constructible]

Given an example a decideable function $f: \mathbb{N} \rightarrow \mathbb{N}$ that is not time-constructible.
['шәлоәчұ Кчэлелә!ч әчұ ұэฺрехииол

