
CSS.203.1 COMPUTATIONAL COMPLEXITY (2023-I) PROBLEM SET 4

Problem Set 4

• Due date: 7 May, 2023 (released on 24 Apr, 2023)

• The points for each problem is indicated on the side. The total for this set is 90 points but
you are expected to answer any 70 points worth of questions for a full score (anything
additional would nevertheless be included in your aggregate score).

• The problem set has a fair number of questions so please do not wait until close to the
deadline to start on them. Try and do one question every couple of days.

• Turn in your problem sets electronically (PDF; either LATEXed or scanned etc.) via email.

• Collaboration with other students taking this course is encouraged, but collaboration
with others is not allowed. Irrespective of this, all writeups must be done individually
and must include names of all collaborators (if any).

• Referring to sources other than the text book and class notes is STRONGLY DISCOUR-
AGED. But if you do use an external source (eg. other text books, lecture notes, or any
material available online), ACKNOWLEDGE all your sources (including collaborators)
in your writeup. This will not affect your grades. However, not acknowledging will be
treated as a serious case of academic dishonesty.

• Be clear in your writing.

Throughout this problem set, we will identify {0, 1} with the field F2 of two elements (just
add and multiply modulo 2). You may assume the following fact for granted.

Claim. Let 0 < r ≤ n be integers. Suppose H =
{

hA,b : A ∈ Fn×r
2 , b ∈ Fr

2
}

is the family of
functions from Fn

2 → Fr
2 defined as follows:

hA,b(x) = Ax + b.

Then, for any x 6= y ∈ Fn
2 and a, b ∈ Fr

2, we have

Pr
A,b

[hA,b(x) = a and hA,b(y) = b] = Pr
A,b

[hA,b(x) = a] · Pr
A,b

[hA,b(y) = b] =
1
2r ·

1
2r .

The family H described above has 2nr+r different functions (in contrast with 2r·2n
possible

functions from Fn
2 → Fr

2). This is the standard construction of a “pairwise independent hash
family” and you can use the above property freely for this problem set without proof. (The
proof isn’t hard; you can prove it yourself if you wish but you aren’t expected to.)

1. [UniqueSAT and ⊕SAT] (5 + 5 + 3 + 7)

(a) Suppose S ⊆ {0, 1}n with 2r−2 ≤ |S| ≤ 2r−1. Show that there is a fixed constant1 α
such that

Pr
A,b

[
There is a unique x ∈ S
such that hA,b(x) = 0r

]
≥ α.

where hA,b : Fn
2 → Fr

2 is as defined above.

1The proof I have in mind gets α = 1/8 but any positive constant would do.

git info: 83ae584 , (2023-04-23 11:24:24 +0530) 1 of 4

CSS.203.1 COMPUTATIONAL COMPLEXITY (2023-I) PROBLEM SET 4

(b) Let UniqueSAT be the language consisting of string encoding formulas ϕ(x) that
have a unique satisfying assignment. Construct a polynomial time randomised re-
duction from SAT to UniqueSAT with the following guarantee. That is, come up
with a randomised algorithm f : Σ∗ → Σ∗ with the following property

ϕ /∈ SAT =⇒ Pr[f (ϕ) /∈ SAT] = 1 (and hence f (ϕ) /∈ UniqueSAT)
ϕ ∈ SAT =⇒ Pr[f (ϕ) ∈ UniqueSAT] ≥ 1/poly(n).

[Hint:TheproofIhaveinmindhasthesuccessprobabilitytobe1/8nwhere
1/8comesfromtheabovelemmaand1/ncomesfrom“guessing”therto
use.]

(c) For a formulas ϕ, let #ϕ refer to the number of satisfying assignments of ϕ. Given
two formulas ϕ1 and ϕ2, construct algorithms to build formulas ψ for each of the
following guarantees.

i. #ψ = (#ϕ1) + 1.
ii. #ψ = (#ϕ1) + (#ϕ2).

iii. #ψ = (#ϕ1)× (#ϕ2).

(d) Let ⊕SAT be the language consisting of strings encoding formulas ϕ(x) that have
an odd number of satisfying assignments. Construct a polynomial time randomised
reduction from SAT to ⊕SAT with the following guarantees:

ϕ ∈ SAT =⇒ Pr[f (ϕ) ∈ ⊕SAT] ≥ 1− 1/2poly(n),
ϕ /∈ SAT =⇒ Pr[f (ϕ) ∈ ⊕SAT] < 1/2poly(n).

[Hint:YoucanbeginwithfbeingthereductiontoUniqueSAT,since1isan
oddnumber,butthesuccessprobabilityistoosmall.Try“amplifying”the
successbyusingmultipleattemptsoff1(ϕ),...,ft(ϕ)intoasingleformula
ψsothatψhasanoddnumberofsatisfyingassignmentsifandonlyifone
ofthefi(ϕ)’shadanoddnumberofsatisfyingassignments.]

2. [Using hash functions to show BPP ⊆ Π2] (10)

Let L ∈ BPP. As we saw in class, let ACCM(x) =
{

r ∈ {0, 1}m : M(x, r) = accept
}

. If
M is a “BPP-machine” for L, then we can ensure the following guarantee:

x ∈ L =⇒ |ACCM(x)| ≥ (1− 1/2poly(n)) · 2m,
x /∈ L =⇒ |ACCM(x)| ≤ 1/2poly(n) · 2m,

Using a suitable family of hash functions H (by choosing the right output length), build
a Π2 sentence for L that roughly translates to “every h ∈ H will create a collision on
ACCM(x)”. Choose the poly(n) in the BPP guarantee, and the right output length forH
to formally show that this sentence is true only for x ∈ L (thereby proving that BPP ⊆
Π2).

3. [Round reduction for AM] (3 + 9 + 5 + 3)

We mentioned in our lectures that AM[k] = AM for constant k; we will prove this in
this problem using some quantifier jugglery. For the purpose of this problem, we will
use a definition different from that in lecture, the k in AM[k] and MA[k] will not refer to
the number of rounds, but to the number of messages (w/ alternation). In other words,
AM[3] = AMA and not AMAMAM.

git info: 83ae584 , (2023-04-23 11:24:24 +0530) 2 of 4

CSS.203.1 COMPUTATIONAL COMPLEXITY (2023-I) PROBLEM SET 4

Let prAM[k] be the promise problem version of AM[k] (i.e, it has the same completeness
and soundness properties for the YES and NO instances as AM[k], but the YES and NO
instances do not partition the universe (there could be “don’t care” instances)).

For a class C of promise problems, we define prΣ · C to be the class of promise problems
Π such that there exists a promise problem Π′ ∈ C and a polynomial p for which

x ∈ ΠY ⇒ ∃y ∈ {0, 1}p(n) : (x, y) ∈ Π′Y
x ∈ ΠN ⇒ ∀y ∈ {0, 1}p(n) : (x, y) ∈ Π′N

(You can check for yourself that ΠY ∩ΠN = ∅ since Π′Y ∩Π′N = ∅.)

Similarly, we define prBP · C to be the class of promise problems Π such that there exists
a promise problem Π′ ∈ C and a polynomial p for which

x ∈ ΠY ⇒ Pr
y∈{0,1}p(n)

[(x, y) ∈ Π′Y] ≥ 2/3

x ∈ ΠN ⇒ Pr
y∈{0,1}p(n)

[(x, y) ∈ Π′N] ≥ 2/3

(You can check for yourself that ΠY ∩ΠN = ∅ since Π′Y ∩Π′N = ∅.)

(a) Show that for every integer k ≥ 1, we have prMA[k] = prΣ · prAM[k − 1] and
prAM[k] = prBP · prMA[k− 1], (where prMA[0] = prAM[0] = prP by definition).

(b) Similar to the proof you saw in class for MA ⊆ AM, show that we have prΣ · prBP ·
C ⊆ prBP · prΣ · C for any class C of promise problems.

[Hint:Youmaywanttochangethat2/3tosomethingexponentiallyclose
to1first(withappropriatejustificationofcourse!).]

(c) Prove that for every constant k ≥ 2, we have prAM[k] = prAM. Conclude that
AM[k] = AM.

(d) Where in the above parts was it important to work with promise problems instead
of languages? And where in the above parts was it important that k is a constant?

4. [GI is unlikely to be NP-complete] (6 + 4)

(a) Show that AM ⊆ NP/ poly (recall, the RHS refers to non-deterministic machines
that receive an advice string for every fixed input length).

[Hint:RecalltheproofofAdleman’stheoremofBPP⊆P/polyanduse
thathere.]

(b) Recall one of your earlier problem set questions where you proved that coNP ⊆
NP/ poly, then PH = Σ3 = Π3. Using this fact2, show that PH collapses to Σ3 ∩Π3
if GI is NP-complete.

5. [Upper bound for IP] (3 + 7 + 2 + 3)

In an interactive protocol, the prover and verifier can be abstracted to just be the follow-
ing ‘next-message’ functions:

V : Σ∗ × Σ∗ × Σ∗ → Σ∗ P : Σ∗ × Σ∗ × Σ∗ → Σ∗

V : (x, r, si) 7→ yi+1 P : (x, si, yi+1) 7→ zi+1

where x refers to the input, r refers to the instantiation of randomness, and si is the
message stream so far (i.e., y1#z1# · · · yi#zi).

2You are allowed to use it even if you didn’t solve the question in the previous problem set. :-)

git info: 83ae584 , (2023-04-23 11:24:24 +0530) 3 of 4

CSS.203.1 COMPUTATIONAL COMPLEXITY (2023-I) PROBLEM SET 4

(a) In the above definition, the prover is assumed to be deterministic and not ran-
domised. Why is this without loss of generality?

(b) Given a specific V, P, and for a fixed x, si, let

Acc(V, P, x) = Pr
r
[V(r)↔ P accepts for input x] .

Furthermore, we will extend the above definition to denote

Acc(V, P, x, si) = Pr
r
[V(r)↔ P, starting with si, accepts for input x] .

Let us fix a verifier function V. For each yi+1, define the function P∗ as follows:

P∗(x, si, yi+1) = arg max
zi+1

Acc(V, P∗, x, si#yi+1#zi+1).

That is, zi+1 is the response that maximises the Verifier’s probability of acceptance,
defined recursively. This is certainly what the Prover ought to respond with in each
round in order to maximise their chance of acceptance.
Show that for any given verifier V, the above prover P∗ is in PSPACE (functional
version rather than decision version).

(c) Conclude that IP ⊆ PSPACE.

(d) Show that if PSPACE ⊆ P/ poly, then PSPACE = MA.

6. [Perfect-completeness in public-coin interactive proofs] (15)

In this question, will restrict our attention to public-coin protocols (we outlined in class
that this is essentially without loss of generality). However, it could be that we have a
public coin protocol with completeness probability c < 1. The goal of this question is to
modify the protocol to get another public coin protocol that has perfect-completeness.

Given below is a sketch of the protocol. Complete the sketch and argue correctness and
perfect-completeness.

Let us consider the protocol on inputs of length n. We will assume that the pro-
tocol uses t rounds, and message is of length exactly m. Note that the verifier’s
messages are just random strings as this is a public-coin protocol.
In the new protocol, the Prover begins by sending k (to be worked out) strings
s1, . . . , sk ∈ {0, 1}tm. We will think of each si as broken into s(1)i , . . . , s(t)i ∈
{0, 1}m. The Prover and verifier play k parallel simulations of the old protocol
in the following fashion. In the Verifier’s turn in round i, the verifier sends
a random string ri ∈ {0, 1}m. This is semantically interpreted as the Verifier
sending ri⊕ s(i)j ∈ {0, 1}m in the j-th parallel simulation of the old protocol. The
prover returns answers y1, . . . , yk ∈ {0, 1}m for each of the parallel simulations.
The verifier eventually accepts if any of the k simulations resulted in the verifier
accepting.

git info: 83ae584 , (2023-04-23 11:24:24 +0530) 4 of 4

